Система электроснабжения города
Перечень электроприемников первой категории городских электрических сетей. Выбор схемы электроснабжающей сети. Схема сети 110-330 кВ кольцевой конфигурации для электроснабжения крупного города. Схемы присоединения городских подстанций к сети 110 кВ.
Рубрика | Физика и энергетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 02.06.2014 |
Размер файла | 892,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
Введение
1. Классификация электроприемников
2. Выбор схемы электроснабжающей сети
3. Развитие электроснабжающей сети крупного города
Литература
Введение
В России насчитывается около 3000 городов (включая поселки городского типа), в которых проживает порядка 110 млн человек. Электрические сети в городах делятся на электроснабжающие (110 кВ и выше) и распределительные 0,38 и 6-10 кВ. В настоящее время с помощью городских сетей распределяется около половины вырабатываемой в стране электроэнергии (коммунально-бытовая сфера потребляет до 20 % электроэнергии, в т. ч.население 10-12 %). Общая протяженность сетей 0,38-10 кВ ориентировочно составляет 900 тыс. км при наличии порядка 300 тыс.шт. ТП 6-10 / 0,4 кВ с установленной мощностью трансформаторов порядка 90 тыс. МВ?А. Протяженность ВЛ 0,38 кВ составляет почти 50 % от общей протяженности распределительных сетей. Для технического обновления городских сетей с учетом их старения необходимо ежегодно заменять порядка 6-7 % воздушных и 3-4 % КЛ и ТП.
Города характеризуются высокой плотностью электрических нагрузок (от 5 до 15-20 МВт / км2 в центральных районах городов) и большим количеством потребителей, расположенных на ограниченной площади. Крайне ограниченная территория и стесненные условия для выбора трасс ВЛ и площадок ПС, повышенные архитектурно-эстетические требования к сооружаемым элементам сети диктуют необходимость применения простых схем ПС, сооружения закрытых ПС, двухцепных ВЛ и КЛ.
Значительная стоимость КЛ 110-220 кВ предопределяет их использование только в центральной части крупнейших городов. Воздушные линии и узловые ПС располагаются в пригородной зоне. Большая концентрация электрических нагрузок, решающая роль электроэнергии в обеспечении нормальной жизнедеятельности города требуют высокой надежности электроснабжения. Электроприемники и их комплексы, а также отдельные потребители, при внезапном прекращении электроснабжения которых возникают опасность для жизни людей и нарушение работы особо важных элементов городского хозяйства, относятся к первой категории. При рассмотрении надежности электроснабжения коммунально-бытовых потребителей следует определять категорию отдельных электроприемников. Допускается категорирование надежности электроснабжения для группы электроприемников.
электроснабжение городской подстанция
1. Классификация электроприемников
Группа электроприемников - совокупность электроприемников, характеризующаяся одинаковыми требованиями к надежности электроснабжения, например, электроприемники операционных, родильных отделений и др. В отдельных случаях в качестве группы электроприемников могут рассматриваться потребители в целом, например, водопроводная насосная станция, здание и др. Требования к надежности электроснабжения электроприемника следует относить к ближайшему вводному устройству, к которому электроприемник подключен через коммутационный аппарат. При построении сети требования к надежности электроснабжения отдельных электроприемников более высокой категории недопустимо распространять на все остальные электроприемники. Перечень электроприемников первой категории городских электрических сетей включает:
а) электроприемники операционных и родильных блоков, отделений анастезиологии, реанимации и интенсивной терапии, кабинетов лапароскопии, бронхоскопии и ангиографии; противопожарных устройств и охранной сигнализации, эвакуационного освещения и больничных лифтов;
б) котельные, являющиеся единственным источником тепла системы теплоснабжения, обеспечивающие потребителей первойкатегории, не имеющих индивидуальных резервных источников тепла;
в) электродвигатели сетевых и подпиточных насосов котельных второй категории с водогрейными котлами единичной производительностью более 10 Гкал / ч;
г) электродвигатели подкачивающих и смесительных насосов в насосных, дренажных насосов дюкеров тепловых сетей;
д) объединенные хозяйственно-питьевые и производственные водопроводы в городах с числом жителей более 50 тыс. человек: насосные станции, подающие воду непосредственно в сеть противопожарного и объединенного противопожарного водопровода; канализационные насосные станции, не допускающие перерыва или снижения подачи сточных вод, очистные сооружения канализации, не допускающие перерыва в работе;
е) электроприемники противопожарных устройств (пожарные насосы, системы подпора воздуха, дымо-удаления, пожарной сигнализации и оповещения о пожаре), лифты, эвакуационное и аварийное освещение, огни сетевого ограждения в жилых зданиях и общежитиях высотой 17 этажей и более;
ж) электроприемники противопожарных устройств, лифты, охранная сигнализация общественных зданий и гостиниц высотой 17 этажей и более, гостиниц, домов отдыха, пансионатов и турбаз более чем на 1000 мест, учреждений с количеством работающих более 2000 человек1, независимо от этажности, учреждений финансирования, кредитования и государственного страхования федерального подчинения, библиотек, книжных палат и архивов на 1000 тыс. единиц хранения и более;
з) музеи и выставки федерального значения;
и) электроприемники противопожарных устройств и охранной сигнализации музеев и выставок республиканского, краевого и областного значения;
к) электроприемники противопожарных устройств общеобразовательных школ, профессионально-технических училищ, средних специальных и высших учебных заведений при количестве учащихся более 1000 человек;
л) электроприемники противопожарных устройств, эвакуационное и аварийное освещение крытых зрелищных и спортивных предприятий общей вместимостью 800 мест и более, детских театров, дворцов и домов молодежи со зрительными залами любой вместимости;
м) электроприемники противопожарных устройств и охранной сигнализации универсамов, торговых центров и магазинов с торговой площадью более 2000 м2, а также столовых, кафе и ресторанов с числом посадочных мест свыше 500; 1 Вместимость одного здания.
н) тяговые подстанции городского электротранспорта;
о) ЭВМ вычислительных центров, решающих комплекс народно-хозяйственных проблем и задачи управления отдельными отраслями, а также обслуживающие технологические процессы, основные электроприемники которых относятся к первой категории;
п) центральный диспетчерский пункт городских электрических сетей, тепловых сетей, сетей газоснабжения, водопроводно-канализационного хозяйства и сетей наружного освещения;
р) пункты централизованной охраны;
с) центральные тепловые пункты (ЦТП), обслуживающие здания высотой 17 этажей и более, все ЦТП в зонах с зимней расчетной температурой -40 °С и ниже;
т) городской ЦП (РП) с суммарной нагрузкой более 10 000 кВ?А. Все прочие электроприемники потребителей, перечисленных в подпунктах а), в), г), е), ж), и), к), л), относятся ко второй категории. К электроприемникам второй категории относятся:
а) жилые дома с электроплитами за исключением одно- - восьмиквартирных домов;
б) жилые дома высотой 6 этажей и более с газовыми плитамиили плитами на твердом топливе;
в) общежития вместимостью 50 человек и более;
г) здания учреждений высотой до 16 этажей с количеством работающих от 50 до 2000 человек;
д) детские учреждения;
е) медицинские учреждения, аптеки;
ж) крытые зрелищные и спортивные предприятия с количеством мест в зале от 300 до 800;
з) открытые спортивные сооружения с искусственным освещением с количеством мест 5000 и более или при наличии 20 рядов и более;
и) предприятия общественного питания с количеством посадочных мест от 100 до 500;
к) магазины с торговой площадью от 250 до 2000 м2;
л) предприятия по обслуживанию городского транспорта;
м) бани с числом мест свыше 100;
н) комбинаты бытового обслуживания, хозяйственные блоки и ателье с количеством рабочих мест более 50, салоны-парикмахерские с количеством рабочих мест свыше 15;
о) химчистки и прачечные (производительностью 500 кг и более белья в смену);
п) объединенные хозяйственно-питьевые и производственные водопроводы городов и поселков с числом жителей от 5 до 50 тыс. человек включительно; канализационные насосные станции и очистные сооружения канализации, допускающие перерывы в работе, вызванные нарушениями электроснабжения, которые могут устраняться путем оперативных переключений в электрической сети;
р) учебные заведения с количеством учащихся от 200 до 1000 человек;
с) музеи и выставки местного значения;
т) гостиницы высотой до 16 этажей с количеством мест от 200 до 1000;
у) библиотеки, книжные палаты и архивы с фондом от 100 тыс. до 1000 тыс. единиц хранения;
ф) ЭВМ вычислительных центров, отделов и лабораторий;
х) электроприемники установок тепловых сетей - запорной арматуры при телеуправлении, подкачивающих смесителей, циркуляционных насосных систем отопления и вентиляции, насосов для зарядки и разрядки баков аккумуляторов, баков аккумуляторов для подпитки тепловых сетей в открытых системах теплоснабжения, подпиточных насосов в узлах рассечки, тепловых пунктов;
ц) диспетчерские пункты жилых районов и микрорайонов, районов электрических сетей;
ч) осветительные установки городских транспортных и пешеходных тоннелей, осветительные установки улиц, дорог и площадей категории «А» в столицах республик, в городах-героях, портовых и крупнейших городах;
ш) городские ЦП (РП) и ТП с суммарной нагрузкой от 400 до 10 000 кВА. Проектирование схемы электрических сетей города должно выполняться с выявлением очередности развития на срок не менее 10 лет. Необходимо учитывать генеральные планы развития городов, которые выполняются на перспективу 25-30 лет. Городские электрические сети подразделяются: на электроснабжающие сети 110 кВ и выше; питающие и распределительные сети 10 (6) кВ.
2. Выбор схемы электроснабжающей сети
В качестве основного для городских сетей среднего напряжения принято 10 кВ. Аналогичная рекомендация принята МЭК для большинства стран. В тех городах, где имеются сети 6 кВ, они, как правило, переводятся на напряжение 10 кВ. Целесообразность применения сетей 20 кВ должна быть технико-экономически обоснована. Принципиальным вопросом построения схемы электроснабжения города является наивыгоднейшее число трансформаций энергии, т. е. количество ее преобразований между напряжениями 110 и 10 кВ. Практика проектирования показывает, что введение промежуточного напряжения 35 кВ увеличивает капиталовложения и потери в сетях. Это является причиной отказа от его примененияв проектируемых системах электроснабжения городов, а также прекращением развития и даже ликвидацией сетей этого напряжения в тех городах, где они существовали ранее. Таким образом, для городских сетей следует считать предпочтительной систему электроснабжения 110 / 10 кВ. К аналогичным выводам в результате многочисленных исследований пришли и зарубежные специалисты.
Для электроснабжения крупных и крупнейших городов используются также сети напряжением 220 кВ и выше. С учетом сказанного электроснабжающие сети условно делятся:
на сети внешнего электроснабжения - линии 220 кВ и выше, обеспечивающие связь системы электроснабжения города с внешними энергоисточниками, и ПС 220 кВ и выше, от которых питаются городские сети 110 кВ, а также линии 220 кВ и выше, связывающие эти ПС;
сети внутреннего электроснабжения - линии 110 кВ и ПС 110 / 10 кВ, предназначенные для питания городских сетей 10 кВ в отдельных случаях применяются глубокие вводы 220 / 10 кВ, которые также относятся к сетям внутреннего электроснабжения.
Выбор схемы электроснабжающей сети зависит от конкретных условий: географического положения и конфигурации селитебной территории города, плотности нагрузок и их роста, количества и характеристик источников питания, исторически сложившейся существующей схемы сети и др. Выбор производится по результатам технико-экономического сопоставления вариантов.
Разработана «идеальная» схема электроснабжения города, удовлетворяющая приведенным выше требованиям Схема базируется на системе напряжений 110 / 10 кВ. Сеть 110 кВ выполняется в виде двухцепного кольца, охватывающего город и выполняющего роль сборных шин, которые принимают энергию от ЦП - местных электростанций или ПС 220 кВ, расположенных на окраине или за пределами города. Электроснабжающая сеть города является звеном энергетической системы района. Глубокие вводы в районы с высокой плотностью и этажностью застройки выполняются КЛ 110 кВ (линии диаметральной связи на рис. 4.19). Пропускная способность кольца 110 кВ должна обеспечивать перетоки мощности в нормальных и послеаварийных режимах при отключении отдельных элементов сети. Для более благоприятного распределения мощности в кольце следует чередовать присоединение ЦП к сети 110 кВ и ПС 110 / 10 кВ.
Рис. 1. Схема сети 110-330 кВ кольцевой конфигурации для электроснабжения крупного города
Приведенная схема дает возможность дальнейшего расширения без коренной ломки. Пропускная способность сети 110 кВ может увеличиваться за счет «разрезания» кольца и подключения его к новым ЦП и за счет увеличения количества линий 110 кВ, т. е. повторения кольца с прокладкой линий по новым трассам и присоединения к ним новых ПС 110 / 10 кВ (рис. 1). Присоединение сети 110 кВ кольцевой конфигурации к новым ЦП позволяет изменять направление потоков мощности в ней, увеличивая пропускную способность без реконструкции.
3. Развитие электроснабжающей сети крупного города
Схемы электроснабжения конкретных городов в той или иной степени отличаются от идеальной схемы, однако ее общие принципы находят соответствующее отражение в конкретных проектах.
Рис. 2. Этапы развития электроснабжающей сети крупного города
Для крупных и крупнейших городов можно отметить несколько этапов развития электроснабжающей сети (рис. 2). Начальной стадией создания сети 110 кВ от городской ТЭЦ является 1-й этап, когда отдельные линии и ПС еще не представляют четкой единой системы электроснабжения. На 2-м этапе, связанном с появлением первой ПС 220 / 110 кВ, уже проступают принципы формирования сети; 3-й и 4-й этапы характеризуются процессом окончательного формирования сети 110 кВ и создания вокруг города сети 220 кВ кольцевой конфигурации. Существенное отличие от идеальной схемы в рассматриваемом примере -отсутствие диаметральной связи и ПГВ в центре города, что является следствием высокой стоимости КЛ 110 кВ и трудностей осуществления глубоких вводов в застроенную часть города.
Для городов, вытянутых вдоль морских побережий или рек, электроснабжающая сеть 110 кВ обычно выполняется в виде магистральных двухцепных ВЛ, проходящих вдоль города и присоединенных в нескольких точках к ЦП 220 / 110 кВ (рис. 3).
После создания вокруг города сети напряжением 220 кВ и выше на нее перекладываются функции обеспечения параллельной работы ЦП; сеть 110 кВ может работать разомкнуто с учетом оптимального распределения потоков мощности и обеспечения целесообразных уровней токов КЗ. Основным типом конфигурации сети 110 кВ является двухцепная ВЛ, опирающаяся на два ЦП (тип Д2,); могут применяться также двухцепные радиальные ВЛ (тип Р2), хотя их применение ограничено, так как они характеризуются худшим использованием пропускной способности ВЛ, меньшей надежностью и гибкостью.
Практика проектирования и выполненные технико-экономические исследования позволяют дать следующие рекомендации по схемам присоединения городских ПС к сети 110 кВ:
Рис. 3. Схема «ленточной» сети 110-220 кВ для электроснабжения города, вытянутого вдоль реки: 1 (3) - действующие (намечаемые) ПС 220 кВ; 2 (4) - то же 110 кВ; 5 (7) - действующие (намечаемые)ВЛ 220 кВ; 6 (8) - то же 110 кВ к двухцепным ВЛ, опирающимся на два ЦП (конфигурации Д2,рис. 4,
а) целесообразно присоединять не более четырех подстанций, а к двухцепным радиальным ВЛ (конфигурации Р2, рис. 4,
б) не более двух главные электрические схемы городских ПС на стороне 110 кВ, в качестве коммутационных узлов сети 110 кВ целесообразно использовать РУ 110 кВ ПС с ВН 220-330 кВ и городских ТЭЦ.
Для крупных и крупнейших городов оптимальная мощность ПС 110 / 10 кВ, питаемых по ВЛ, - 2Ч25 МВА с возможностью замены по мере роста нагрузок на 2Ч40 МВА, для ПС, питаемых по КЛ, - 2Ч40 МВА с возможностью замены на 2Ч63 МВА. Исходя из рекомендованных выше схем присоединения городских ПС к ВЛ 110 кВ и их оптимальной мощности сечение проводов для городских двухцепных ВЛ рекомендуется принимать не ниже 240 мм2 (по алюминию).
Рис. 4. Схемы присоединения городских подстанций к сети 110 кВ
Крупнейшие города с населением 1 млн человек и более являются важнейшими промышленными и культурно-политическими центрами страны. Доля потребителей первой и второй категории по надежности оценивается в 70-80 % общей нагрузки города. Частичное, а тем более полное погашение систем электроснабжения таких городов имеет серьезные социально-экономические последствия. Поэтому для них признано целесообразным установить принципы построения систем электроснабжения, обеспечивающие его высокую надежность. Характерной особенностью последних лет является размещение источников небольшой мощности (5-15 МВт) на территории городов. Для отдельных ответственных потребителей городской сети (вычислительные центры, банки, крупнейшие магазины и др.) принята целесообразной установка источников бесперебойного питания.
Построение электроснабжающих сетей напряжением 220 (330) кВ должно удовлетворять следующим требованиям: схема должна предусматривать сооружение не менее двух ПС с ВН 220 кВ и выше, питающихся от энергосистемы; линии связи с энергосистемой должны присоединяться не менее, чем к двум внешним территориально разнесенным энерго-источникам и сооружаться, как правило, по разным трассам; общее количество и пропускная способность линий связи с энергосистемой должны выбираться с учетом обеспечения питания города без ограничений при отключении двухцепной ВЛ; построение схемы должно обеспечивать ограничение транзитных перетоков через городскую систему электроснабжения; ЦП 220 (330) кВ должны выполняться, как правило, двух-трансформаторными (220 кВ - не менее 2Ч125 МВ?А, 330 кВ - не менее 2Ч200 МВА); установка одного АТ допускается на первом этапе при обеспечении полного резервирования по сети 110 кВ; для обеспечения оптимальной схемы ЦП 220-330 кВ количество присоединяемых ВЛ этих напряжений, как правило, не должно превышать четырех. Принципы построения сетей внутреннего электроснабжения напряжением 110 кВ не отличаются от изложенных выше для всех городов. Дополнительно рекомендуется при построении сети 110 кВ исходить из обеспечения резервирования не менее 70 % нагрузки любого ЦП 220 (330) кВ при его полном погашении.
Литература
1. Карапетян И. Г., Файбисович Д. Л., Шапиро И. М. - Справочник по проектированию электрических сетей. 4-е издание
2. Липкин Б. Ю., - Электроснабжение промышленных предприятий и установок
Размещено на Allbest.ru
Подобные документы
Основные типы конфигурации электрических сетей и схем присоединения к сети понижающих подстанций. Схемы внешнего электроснабжения магистральных нефтепроводов и газопроводов. Нефтеперекачивающие и компрессорные станции. Электроснабжающие сети городов.
презентация [1,4 M], добавлен 10.07.2015Выбор трансформаторов на понижающих подстанциях. Расчет мощности источника сети кольцевой схемы. Технико-экономическое сопоставление вариантов развития сети. Проектирование электроснабжения аккумуляторной станции. Разработка схемы электроснабжения.
дипломная работа [1,6 M], добавлен 30.04.2015Характеристика потребителей, сведения о климате, особенности внешнего электроснабжения. Систематизация и расчет электрических нагрузок. Выбор напряжения распределительной сети, трансформаторных подстанций и трансформаторов, схем электроснабжения.
дипломная работа [2,4 M], добавлен 06.10.2012Общее потребление активной мощности всеми потребителями. Выбор оптимального варианта схемы сети. Расчёт радиально-магистральной схемы и кольцевой сети. Расчёт потокораспределения сложно-замкнутой сети. Оценка экономической эффективности вариантов.
курсовая работа [178,3 K], добавлен 28.05.2013Характеристика электроприемников городских электрических сетей. Графики нагрузок потребителей. Система электроснабжения микрорайона. Число и тип трансформаторных подстанций. Расчет токов короткого замыкания. Расчет электрических сетей.
курсовая работа [98,8 K], добавлен 15.02.2007Разработка сети для электроснабжения потребителей промышленного района. Составление баланса мощностей. Выбор конфигурации сети, схем подстанций потребителей, трансформаторов. Расчет потоков мощности режима наибольших нагрузок и послеаварийного режима.
курсовая работа [1018,2 K], добавлен 06.12.2015Проектирование сети для электроснабжения промышленного района. Выбор наиболее экономически целесообразного варианта, отвечающего современным требованиям. Определение параметров сети, конфигурации и схемы, номинального напряжения, мощности трансформаторов.
курсовая работа [1,1 M], добавлен 15.05.2014Проектирование электроснабжения сборочного цеха. Схема цеховой сети и расчет электрических нагрузок. Компенсация реактивной мощности и выбор мощности цеховых трансформаторов. Установка силовых распределительных пунктов. Подбор сечения проводов и кабелей.
курсовая работа [1,5 M], добавлен 05.09.2010Характеристика объекта проектирования и существующей схемы электроснабжения. Расчёт распределения мощности по участкам сети схемы. Реконструкция схемы электроснабжения проектируемого села. Расчёт токов короткого замыкания. Выбор электрической аппаратуры.
курсовая работа [97,2 K], добавлен 07.05.2011Разработка вариантов развития сети, расчет мощности его источника сети. Выбор номинального напряжения сети и проводов воздушных линий электропередач. Расчет установившихся режимов сети максимальных нагрузок. Выбор оборудования для радиальной схемы.
курсовая работа [785,6 K], добавлен 19.12.2014