Расчет стального сферического магнитного экрана

Понятие и назначение магнитных экранов. Виды экранирования, определение его эффективности. Расчет параметров магнитного экрана с применением метода Фурье для интегрирования уравнения Лапласа. Подтверждение полученных результатов с помощью программы ELCUT.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 17.06.2013
Размер файла 179,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

1. ТЕОРИЯ МАГНИТНОГО ЭКРАНИРОВАНИЯ

2. СОВРЕМЕННЫЕ МЕТОДЫ РАСЧЁТА. ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ

3. РАСЧЁТНАЯ ЧАСТЬ

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

ВВЕДЕНИЕ

Электротехникой называют науку о применении электрической энергии для практических целей.

История развития электротехники - это постепенное, сначала медленное, а затем более быстрое накопление опытных фактов об электромагнитных явлениях, обобщение и анализ их, формулировка основных теоретических положений и законов и вытекающих из них следствий. Теоретическое осмысление электромагнитных явлений шло одновременно с применением их для нужд практической деятельности человека.

Только с развитием электротехники появилась возможность применять в промышленности новые технологические процессы, осуществлять широкую автоматизацию производства, создавать новые высокопроизводительные машины.

С электрическими явлениями люди были знакомы очень давно, но практическое использование этих явлений началось в начале девятнадцатого века.

Больших достижений в области электротехники добились такие учёные, как М. В. Ломоносов, основоположник всей русской науки, В. В. Петров, П. Л. Шиллинг, Э. Х. Ленц, Б. С. Якоби, А. Г. Столетов, А. Н. Лодыгин, П. Н. Яблочков, Фарадей, Д. К. Максвелл, основоположник электромагнитной теории.

В настоящее время электротехника продолжает развиваться, рассматривая новые вопросы. Совершенствование энергетического оборудования даёт возможность снижать удельные расходы топлива, капитальные затраты на сооружение электростанций и себестоимость электроэнергии. Электрическая энергия, вырабатываемая электростанциями, широко используется в промышленности, сельском хозяйстве, на транспорте, для бытовых нужд.

Теория электромагнитного поля является той основой, которая позволяет понять принцип работы различных электромагнитных и электрических устройств и спроектировать и рассчитать их на заданные условия работы. Одной из задач расчёта полей является расчёт магнитных экранов.

1. ТЕОРИЯ МАГНИТНОГО ЭКРАНИРОВАНИЯ

Протекающие в любых электрических цепях токи создают в окружающем пространстве магнитные поля, которые воздействуют на различные элементы приборов и цепей, ухудшая работу устройства, а иногда и вовсе нарушая ее.

Для защиты электроизмерительных приборов от влияния посторонних магнитных полей их системы помещают в массивные замкнутые или почти замкнутые оболочки из ферромагнитного материала. Такие оболочки называют магнитными экранами.

Поле внутри экрана оказывается ослабленным по сравнению с внешним полем.

Существуют следующие виды экранирования:

1) электростатическое экранирование, основанное на компенсации внешнего поля полем зарядов, выявившихся на стенках экрана вследствие электростатической индукции. Толщина стенок экрана при электростатическом экранировании, в отличие от экранирования в магнитном и электромагнитном полях, может быть сколько угодно малой;

2) экранирование в магнитном поле постоянного тока, основанное, грубо говоря, на том, что линии магнитной индукции внешнего поля, стремясь пройти по пути с наименьшим магнитным сопротивлением, сгущаются внутри стенок экрана, почти не проникая в его полость;

3) экранирование в переменном электромагнитном поле, основанное на том, что электромагнитная волна, проникающая в стенки экрана, быстро затухает, расходуя энергию на покрытие потерь, обусловленных вихревыми токами в стенках экрана.

Электромагнитные экраны представляют собой полые цилиндрические, сферические или прямоугольные оболочки, внутри которых помещается экранируемое устройство (например, катушка индуктивности, измерительный прибор и так далее).

Экранирование может принести пользу в двух случаях. Во - первых, оно может использоваться для подавления излучения источника в небольшом объеме (экраны с внутренним возбуждением электромагнитного поля); это предотвратит распространение помех и их воздействие на близлежащие критичные компоненты схемы. Однако, такое экранирование может привести к тому, что при недостаточно тщательной разработке и размещении шин земли, либо при некорректном подключении, сам экран будет являться источником дополнительных помех, что усугубит проблему.

Во - вторых, экраны могут быть размещены вокруг критичных элементов схемы для предотвращения воздействия помех на них (экраны внешнего электромагнитного поля). В данном случае, экраном может служить металлический кожух или кабель с металлической оплеткой вокруг центрального проводника [2].

Экран, защищая цепи, детали, колебательные контуры от воздействия внешних полей, оказывает существенное влияние на параметры экранируемых элементов. Из - за перераспределения электромагнитного поля внутри экрана происходят изменения их первичных параметров, в результате чего, например, изменяются магнитные связи, уменьшается первичная индуктивность катушек, увеличивается емкость контуров, возрастает активное сопротивление, что ведет к изменению частоты. Относительные изменения параметров экранируемых элементов можно учесть с помощью коэффициентов

, (1)

где Aэij - значение i - го параметра j - го экранируемого элемента при наличии экрана;

A0ij - значение i - го параметра j - го экранируемого элемента без экрана.

Задаваясь допустимыми пределами изменений параметров и зная размеры экранируемых элементов, можно определить габаритные размеры экрана, материал, из которого он должен быть изготовлен, и условия размещения элементов внутри него.

Эффективность экранирования определяется структурой электромагнитного поля (магнитные, электрические, плоская волна и так далее), зависящей от конфигурации и расположения источников и конструкции экрана (его конфигурации, толщины, степени герметичности, материала).

Степень влияния конфигурации, расположения источников, конструкции экрана и других факторов на эффективность экранирования изучена не достаточно. Теоретические соотношения были проверены в определенных экспериментальных условиях. В сложных условиях окончательный вывод об эффективности экранирования можно получить только на основании экспериментальных данных.

Наиболее распространен способ оценки эффективности экранирования с помощью функций экранирования Т и обратного действия R, которые обычно определяются соотношениями

, (2)

, (3)

где H, H+,H- - составляющие напряженности электромагнитного поля в рассматриваемой точке соответственно при наличии экрана (+) и при отсутствии экрана (-) и отраженной индуцированной волны.

В этом случае эффективность экранирования, Дб

. (4)

Если поле внутри замкнутого экрана имеет сложную структуру, то вычисление функций экранирования и обратного действия по формулам (2) и (3) теряет практический смысл [4].

Рассмотрим более подробно магнитное экранирование.

Вокруг витка с постоянным током существует постоянное магнитное поле с напряженностью H0, зависящее от точки измерения (рисунок 1). Так как любой реальный виток имеет конечное сопротивление, то для поддержания в нем тока необходим источник задающего напряжения, а в пространстве вокруг витка, кроме постоянного магнитного поля, существует еще и постоянное электрическое поле. Внимание сосредоточим на экранировании только магнитного поля.

Рисунок 1 - Поле витка с постоянным током

Окружим виток замкнутым экраном. Если экран изготовлен из немагнитного материала, то есть из материала, у которого µ = 1 (медь, алюминий), то он не окажет на магнитное поле никакого влияния, то есть эффективность экранирования в установившимся режиме будет равна 1 (рисунок 2).

Если материал изготовлен из материала µ > 1, то он намагнитится, и созданное им вторичное поле, сложившись с первичным, приведет к ослаблению поля вне экрана. То есть силовые линии поля витка, встречая экран, обладающий меньшим магнитным сопротивлением, чем свободное пространство, стремятся пройти по стенкам экрана и в меньшем числе проникают в пространство вне экрана. Такой экран одинаково пригоден для защиты от воздействия магнитного поля и для защиты внешнего пространства от влияния магнитного поля созданного источником внутри экрана.

Рисунок 2 - Экранирование витка с током

Помехи из - за воздействия магнитного поля значительно труднее поддаются экранировке, чем помехи, создаваемые электрическим полем, поскольку линии магнитного поля проходят сквозь проводящие материалы. Типичный экран, расположенный вокруг проводника и заземленный на одном его конце, обладает небольшим эффектом подавления магнитно - наведенного напряжения на этот проводник.

Пронизывая проводник, интенсивность магнитного поля убывает по экспоненциальному закону. Глубина поверхностного слоя материала экрана определяется как глубина проникновения магнитного поля, на которой происходит его ослабление до 37% (e-1) по сравнению со значением в воздушной среде.

В таблице 1 приведены типовые значения глубины поверхностного слоя некоторых материалов для разных частот магнитного поля. Одни материалы более эффективно выполняют роль магнитного экрана на высокой частоте, чем другие. Например, стальной экран, по крайней мере, на порядок более эффективен, чем такой же экран, выполненный из меди или алюминия.

Если необходимо качественное экранирование низкочастотного магнитного поля, то в качестве материала экрана используется металл с высокой магнитной проницаемостью (так называемый µ - металл). К сожалению, при использовании µ - металла возникают некоторые сложности - после насыщения под воздействием очень сильного поля экран из µ - металла теряет свои положительные качества [5].

Таблица 1 - Глубина поверхностного слоя некоторых материалов

Частота

Медь, мм

Алюминий, мм

Сталь, мм

60 Гц

8,5

10,9

0,86

100 Гц

6,6

8,5

0,66

1 кГц

2,1

2,7

0,2

10 кГц

0,66

0,84

0,08

100 кГц

0,2

0,3

0,02

1 МГц

0,08

0,08

0,008

Достаточно трудно защитить какую - либо схему от воздействия магнитного поля изменением способа экранировки. Поэтому наиболее эффективными решениями экранировки на низких частотах являются уменьшение интенсивности мешающего магнитного излучения, уменьшение области приемного контура и минимизация связи посредством оптимального размещения и конфигурации.

Для защиты от магнитных полей обычно применяют металлические листы, которые обеспечивают быстрое затухание поля в материале.

Металлические материалы выбирают из условия:

- достижения заданной величины ослабления электромагнитного поля и его составляющих в рабочем диапазоне частот при соответствующих ограничениях размеров экранов и его влияния на экранируемый объект;

- устойчивости против коррозии и механической прочности;

- технологичности конструкции экрана и получения требуемых его конфигурации и высоко габаритных характеристик.

Первому требованию удовлетворяют практически все применяемые в настоящее время листовые материалы (сталь, медь, алюминий, латунь), так как при соответствующей их толщине обеспечивают достаточно высокую эффективность экранирования.

Но в различных диапазонах рабочих частот при одинаковой толщине экрана эффективность экранирования магнитных и немагнитных материалов будет различной. То есть, пока экран работает как магнитостатический, эффективность магнитных материалов значительно выше немагнитных. В электромагнитном режиме в полосе частот, где эффективность экранирования за счет отражения больше эффективности поглощения, немагнитные материалы, обладающие большой проводимостью по сравнению с магнитными, обеспечивают более высокую эффективность.

Однако в реальных экранах указанные свойства магнитных и немагнитных материалов проявляются слабо. Ввиду экономических и конструктивных соображений предпочтение отдается стальным конструкциям экранов. Но преимущества стали теряются при экранировании токонесущих элементов, критичных к вносимым в них потерям, (то есть применение стальных экранов ограничено из-за больших потерь, вносимых ими).

Применение стали для экранов обусловлено еще тем, что при монтаже такого экрана можно широко использовать сварку.

Толщина стали, выбирается исходя из вида и назначения конструкции, условий ее монтажа и из возможности осуществления сплошных сварных швов. При сварке на переменном токе толщину берут примерно 1,5 - 2 мм, на постоянном токе - около 1 мм, при газовой сварке - 0,8 мм.

К недостаткам листовых металлических экранов можно отнести :

- высокую стоимость (бронза, серебро и так далее);

- значительный вес и габариты;

- сложность пространственного решения конструкции;

- низкую эффективность самого металла, реализуемую лишь на 10 - 20% из - за несовершенства конструкции.

2. СОВРЕМЕННЫЕ МЕТОДЫ РАСЧЁТА. ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ

Методы расчёта и исследования магнитных полей можно подразделить на три группы: аналитическую, графическую и экспериментальную.

Группу аналитических методов объединяют все чисто аналитического порядка приёмы интегрирования уравнения Пуассона (для областей, занятых током), уравнения Лапласа (для областей, не занятых током), применение метода зеркальных отображений (широко используется для расчёта магнитных полей, создаваемых линейными токами, протекающими вблизи стальных масс) и другое.

В силу трудностей математического характера классические аналитические методы позволяют решать относительно небольшой круг задач.

В тех случаях, когда расчёт поля аналитическими методами вызывает затруднения, прибегают к графическому методу построения картины поля или к исследованию магнитного поля на модели. Графические методы построения картины поля применимы к двухмерным безвихревым полям.

За последние годы применяют также метод интегральных уравнений, предполагающий использование ЭВМ и значительно расширяющий круг решаемых задач.

Опытное исследование картины магнитного поля производят различными методами. Один из них основан на явлении электромагнитной индукции и состоит в следующем. Плоскую очень малых размеров рамку с намотанной на неё обмоткой помещают в исследуемую область поля и соединяют с баллистическим гальванометром. При быстром удалении рамки в область, где магнитное поле заведомо слабое, измеряют количество электричества, протекшее по баллистическому гальванометру, и по нему судят о среднем значении индукции в рамке. Затем рамку помещают в другую точку поля и снова определяют индукцию и так далее. Этот метод даёт возможность исследовать магнитные поля практически любой конфигурации в пространстве вне ферромагнетиков.

Качественное исследование магнитного поля часто производят с помощью стальных опилок, которые насыпают на плоский лист из неферромагнитного материала, помещают в магнитное поле и слегка по листу постукивают. Опилки расположатся вдоль силовых линий. По густоте силовых линий можно качественно судить об интенсивности магнитного поля.

Вместо опилок нередко используют мельчайшие порошки окислов железа, находящихся во взвешенном состоянии в какой - либо жидкости, например керосине.

Так как в рассматриваемой задаче во всех трёх областях (внутренняя область, область тела экрана, область снаружи экрана) нет тока, то решение задачи сводится к интегрированию уравнения Лапласа .

Выбрав систему координат таким образом, чтобы граничные поверхности в поле описывались наиболее удобно и соответствующим образом раскрыв уравнение Лапласа, получим уравнение в частных производных

, (5)

для интегрирования которого можно применить метод Фурье. Тогда, согласно этому методу, искомую функцию полагают в виде произведения двух пока неизвестных функций M и N, одна из которых зависит только от r, а вторая - от б

. (6)

Вид функций M и N подлежит определению. Определение функции ц в виде произведения двух функций (6) позволяет разбить уравнение в частных производных (5) на два обыкновенных дифференциальных уравнения, из которых одно будет составлено относительно M, другое - относительно N.

Для расчета и анализа магнитных экранов может быть использован модуль магнитостатика, который имеется в мощном современном комплексе программ для инженерного моделирования электромагнитных, тепловых и механических задач методом конечных элементов, носящем название ELCUT.

Решение задачи в ELCUT начинается с выбора формулировки. Нелинейная задача магнитостатики записана относительно векторного магнитного потенциала.

Для работы с двумерной моделью в ELCUT имеется редактор геометрической модели. Он оснащен небольшим, но тщательно отобранным набором инструментов.

Закончив рисование модели, следует приступать к построению сетки. Все процедуры метода скрыты в недрах программы и не требуют никакого вмешательства. К примеру, построение сетки треугольных конечных элементов может быть выполнено одним щелчком мыши. Такая автоматическая сетка всегда пригодна для начального прикидочного расчета, а во многих случаях подходит и для окончательного решения. Если этого недостаточно - можно сгустить или разредить сетку в нужных местах, указав желаемый пространственный шаг на любом наборе вершин. Генератор сетки работает в два этапа. Сначала подобласти (в терминологии ELCUT - блоки) разрезаются на подблоки. При этом преследуются две цели: ликвидация геометрической многосвязности и оптимизация размера областей с точки зрения процесса решения.

Для задания источников поля и граничных условий в редакторе модели нужно пометить геометрические объекты, которые понадобятся в дальнейшем, текстовыми метками (желательно мнемоническими). В дальнейшем для каждой метки можно задать свойства материала, значения источников поля, граничные условия разных видов и прочее. При этом физические свойства хранятся отдельно от геометрических данных, что облегчает многовариантные расчеты.

В магнитных задачах источниками поля являются токи (объемные, поверхностные или линейные) и постоянные магниты. Магнитные свойства материалов могут быть заданы кривой намагничивания или константой. В последнем случае допустима анизотропия свойств.

Источники и граничные условия полностью независимы от сетки и могут быть изменены в любое время.

На внешних и внутренних ребрах могут быть поставлены граничные условия следующих типов: заданный потенциал (условие Дирихле), заданная плотность потока (условие Неймана) и специальный вид условия Дирихле, при котором потенциал заданной поверхности постоянен, но заранее неизвестен. В магнитной задаче такое условие моделирует сверхпроводник.

Сильной стороной ELCUT является необычно высокая скорость решения задачи. Она достигается применением фирменной технологии "метод геометрической декомпозиции". С точки зрения решения разреженной системы линейных алгебраических уравнений это вариант метода сопряженных градиентов с предобуславливанием матрицы. Технология хранения матрицы и ее обращения основана на декомпозиции области расчета на подблоки заранее оцененного оптимального размера, которая выполняется еще на этапе построения сетки.

Основные виды анализа результатов решения в пакете ELCUT состоят в следующем:

- рисование картины поля различными способами;

- просмотр локальных значений поля "пробником";

- рисование графиков полевых характеристик вдоль заданного контура;

- вычисление интегральных величин по контуру и по объему;

- вычисление индуктивности, емкости и импеданса обмоток с помощью мастера;

- экспорт значений поля в другие программы вдоль контура и по площади с заданным шагом;

- вывод картинок в файл и на печать.

Для рисования картины поля применяются цветная заливка, изолинии потенциала (температуры), изображение векторных величин с помощью семейства направленных отрезков.

Рядом с картиной поля можно увидеть панель "полевого калькулятора", в котором сведены локальные и интегральные значения, а также электротехнические параметры, вычисляемые с помощью мастера.

Инструмент рисования контуров позволяет задать разомкнутый или замкнутый контур, состоящий из отрезков и дуг окружностей. Этот контур используется для построения графиков, табулирования физических величин и вычисления интегралов. Интегральный калькулятор позволяет вычислять силу и момент, действующий на тела, погруженные в поле, потокосцепления, магнитодвижущую силу, тепловой поток, силу и момент реакции опоры, заряд проводника и множество других величин, важных для инженера - расчетчика.

Чаще всего ELCUT применяется для расчета вращающего момента, потерь мощности и других характеристик электрических двигателей, электрической прочности изоляционных конструкций - например, кабельных вводов, индуктивности, емкости, волнового сопротивления и затухания линий передачи, электрических и тепловых параметров установок индукционного нагрева, механической прочности катушек, создающих сильное магнитное поле [9].

3. РАСЧЁТНАЯ ЧАСТЬ

магнитный экран фурье лаплас

В равномерном магнитном поле надо заэкранировать сферическую область пространства. В данной курсовой работе требуется доказать, что в результате применения стального магнитного экрана, внутренний диаметр равен 40 мм, внешнее полеослабляется в 300 раз, то есть (- напряжённость поля внутри экрана).

Размещено на http://www.allbest.ru/

Рисунок 3 - Сферический магнитный экран

Сферический экран внутренним радиусом a = 100 мм, наружным b = 170 мм имеет относительную магнитную проницаемость = 600 (рисунок 3). Внутреннюю область обозначим 1, область тела экрана - 2, область снаружи экрана - 3.

Так как во всех трёх областях нет тока, то магнитное поле в них описывается уравнением Лапласа .

В рассматриваемой задаче граничная поверхность наиболее удобно описывается в сферической системе координат. Поэтому будем пользоваться этой системой.

Экран будем полагать достаточно протяжённым вдоль оси z (ось z перпендикулярна чертежу); зависит только от координат r и цилиндрической системы. Раскрыв уравнение Лапласа в цилиндрической системе, получим уравнение (5), которое представляет собой уравнение в частных производных. Для интегрирования (5) применим метод Фурье. Искомую функцию будем полагать в виде произведения двух функций M и N, одна из которых зависит только от r, а вторая - от б (6).

Разобьём уравнение в частных производных (5) на два обыкновенных дифференциальных уравнения, из которых одно будет составлено относительно M, другое - относительно N.

Подставим (6) в (5), учтя, что

, . (7)

Поэтому

. (8)

Умножим (8) на

. (9)

Первое слагаемое в уравнении (9) представляет собой функцию только r, а второе - функцию б. Сума двух функций, из которых одна зависит только от r, а другая - от б, равна нулю для бесчисленного множества пар значений r и б (уравнение (9) подходит для всех точек поля). Это возможно только тогда, когда каждая из данных функций равна нулю

, (10)

, (11)

либо когда

, (12)

, (13)

где p - некоторое число.

Общее решение для ц, согласно (6), равно произведению решений уравнений (10), (11) плюс произведение решений для M и N по уравнениям (12), (13).

Так как в (10), (11) M зависит только от r, а N - только от б, то от частных производных можно перейти к простым

, (14)

. (15)

Интеграл уравнения (14)

. (16)

Найдём интеграл уравнения (15)

. (17)

А1 обязательно должно быть равно нулю, так как только в этом случае в решении будет отсутствовать слагаемое .

Потенциал есть функция непрерывная и на конечном отрезке он не может измениться на бесконечно большую величину. Из физических соображений ясно, что потенциал точек оси z не может быть равен бесконечности. Между тем, если бы , то в решении для потенциала присутствовало бы слагаемое , равное - ? для всех точек, у которых r= 0.

Найдём решение уравнений (12), (13)

(18)

или . (19)

Применим подстановку Эйлера

, (20)

тогда , (21)

. (22)

Подставим производные в уравнение (19)

(23)

или . (24)

Найдём корни квадратного уравнения

. (25)

Значение p определим при интегрировании уравнения

. (26)

Его решение можно записать в виде

. (27)

Убедимся в этом путём подстановки и одновременно найдём значение p:

; (28)

; (29)

. (30)

Следовательно, p = 1.

Подставим значение числа p в (25) и найдём .

Таким образом, полное решение запишется в виде

. (31)

Тогда можно записать:

- для первой области

; (32)

- для второй области

; (33)

- для третьей области

. (34)

Постоянная интегрирования, с точностью до которой определяется потенциал, принята равной нулю.

Для определения шести постоянных (, , , , , ) составим шесть уравнений:

1) сопоставим с выражением “на бесконечности” . Из сопоставления находим, что ;

2) в первой области при r = 0 должен оставаться конечным. Это может быть только в том случае, если в выражении будет отсутствовать слагаемое . Оно будет отсутствовать при ;

3) равенство и при даёт уравнение

; (35)

4) равенство на границе между второй и третьей (при r = b) областями приводит к уравнению

; (36)

5) равенство нормальных составляющих индукции

(37)

на границе между первой и второй областями (при )

; (38)

6) равенство нормальных составляющих индукции при r = b даёт уравнение

. (39)

Совместное решение всех уравнений приводит к выражению потенциала в первой области

. (40)

Или при переходе к декартовой системе координат (ось x направлена вверх, )

. (41)

Здесь , (42)

, (43)

. (44)

Напряжённость поля в первой области (по модулю)

. (45)

Отношение напряжённости поля внутри экрана к напряжённости внешнего поля

(46)

или . (47)

Подставив числовые значения, получим

то есть напряжённость поля внутри экрана составляет 1% от напряжённости внешнего поля.

Для наглядного представления действия рассчитываемого экрана воспользуемся программным комплексом ELCUT.

Рисунок 4 - Действие магнитного сферического экрана

Как видно из рисунка, линии магнитной индукции внешнего поля, стремясь пройти по пути с наименьшим магнитным сопротивлением, сгущаются внутри стенок экрана, почти не проникая в его полость.

ЗАКЛЮЧЕНИЕ

В данной курсовой работе был рассчитан стальной сферический магнитный экран, доказана его способность уменьшать внешнее поле в 300 раз.

Расчёты проводились аналитически с применением метода Фурье для интегрирования уравнения Лапласа. Для подтверждения полученных результатов был использован ELCUT, который позволил в течение пятнадцатиминутного сеанса на персональном компьютере, не прибегая к помощи больших ЭВМ или рабочих станций, описать задачу - её геометрию, свойства сред, источники поля, граничные и другие условия, решить её с большой точностью и проанализировать решение с помощью средств цветной графики.

ELCUT очень удобен для использования в учебном процессе, а также в производственной и исследовательской деятельности инженера - электрика при решении научных и практических задач, так как начать работу с ELCUT можно практически сразу, не отвлекаясь на изучение математических основ вычислительных алгоритмов и особенностей их реализации, редактор модели позволяет легко и быстро описать геометрию модели, при построении сетки конечных элементов можно использовать удобные средства управления ее густотой или полностью довериться автоматической системе построения сетки, кроме того, источники и граничные условия полностью независимы от сетки, и могут быть изменены в любое время.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1 Альтшулер И.Б. и др. Расчет электромагнитных полей в электрических машинах. - М.: Энергия, 1969. - 88 с.

2 Бессонов В.А. Теоретические основы электротехники. Электромагнитное поле. - М.: Высшая школа, 1986. - 263 с.

3 Бинс К., Лауренсон П. Анализ и расчет электрических и магнитных полей. - М.: Энергия, 1970. - 376 с.

4 Буль Б.К. Основы теории и расчета магнитных цепей. - М.: Энергия, 1964. - 464 с.

5 Каплянский А.Е., Лысенко А.П., Полотовский Л.С. Теоретические основы электротехники. - М.: Высшая школа, 1972. - 488 с.

6 Нейман Л.Р., Демирчян К.С. Теоретические основы электротехники: В 2 т. - Л.: Энергоиздат, 1981. - Т. 2. - 416 с.

7 Теоретические основы электротехники. / Г.И. Атабеков и др. - М.: Энергия, 1979. - Ч. 2 и 3. Нелинейные электрические цепи. Электромагнитное поле. - 432 с.

8 Журнал «Новости Электротехники»., //www.news.elteh.ru/

9 ELCUT. // www.tor.ru/elcut.

Размещено на Allbest.ru


Подобные документы

  • Описание конструкции контакторов и магнитных пускателей. Расчет элементов токоведущего контура контактора ПМА. Расчет пружин и построение противодействующей характеристики магнитного пускателя. Расчет приводного электромагнита и обмотки магнитопровода.

    курсовая работа [844,0 K], добавлен 14.12.2014

  • Определение наличия и направления магнитного поля метки. Создание постоянного магнитного поля, компенсирующего действие постоянных внешних магнитных полей. Принципиальная схема зарядно-разрядного узла устройства. Определение разряда накопительной емкости.

    лабораторная работа [1,2 M], добавлен 18.06.2015

  • Регулирование скорости тягового электродвигателя при изменении магнитного поля. Пересчет характеристик при изменении магнитного поля и смешанном возбуждении. Особенности магнитного потока при шунтировании сопротивления и изменением числа витков обмотки.

    презентация [321,9 K], добавлен 14.08.2013

  • Виды геометрической симметрии источников магнитного поля. Двойственность локальной идеализации токового источника. Опытное обнаружение безвихревого вида электромагнитной индукции. Магнито-термический эффект.

    статья [57,7 K], добавлен 02.09.2007

  • Суть явления ядерного магнитного резонанса. Его преимущества и недостатки. Прецессия вектора магнитного момента ядра. Получение спектра ЯМР из сигнала с помощью Фурье-преобразования. Простейшая конструкция датчиков поверхностного ЯМР и их применение.

    курсовая работа [1,3 M], добавлен 18.05.2016

  • Методы получения дифференциального уравнения теплопроводности при одномерном распространении тепла. Расчет температурного поля в стационарных условиях по формуле Лапласа. Изменение температуры в плоской однородной стене при стационарных условиях.

    контрольная работа [397,4 K], добавлен 22.01.2012

  • Принципиальная схема и геометрический фактор бесконтактного магнитного реле. Выбор стандартного магнитопровода. Проведение расчёта номинальных параметров нагрузки. Выбор диодов В1-В4 в рабочей цепи. Определение числа витков и диаметра проводов обмоток.

    курсовая работа [409,1 K], добавлен 04.09.2012

  • Расчет основных параметров низкотемпературной газоразрядной плазмы. Расчет аналитических выражений для концентрации и поля пространственного ограниченной плазмы в отсутствие магнитного поля и при наличии магнитного поля. Простейшая модель плазмы.

    курсовая работа [651,1 K], добавлен 20.12.2012

  • Природа и характеристики магнитного поля. Магнитные свойства различных веществ и источники магнитного поля. Устройство электромагнитов, их классификация, применение и примеры использования. Соленоид и его применение. Расчет намагничивающего устройства.

    курсовая работа [3,2 M], добавлен 17.01.2011

  • Характеристики магнитного поля и явлений, происходящих в нем. Взаимодействие токов, поле прямого тока и круговой ток. Суперпозиция магнитных полей. Циркуляция вектора напряжённости магнитного поля. Действие магнитных полей на движущиеся токи и заряды.

    курсовая работа [840,5 K], добавлен 12.02.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.