Логистика в работе электроэнергетических систем

Основная особенность электроэнергетики - непрерывность и практическое совпадение во времени процессов производства, распределения и потребления. Основные элементы электроэнергетической системы. Характеристика основных принципов энергетической логистики.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 06.01.2011
Размер файла 19,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

9

Институт экономики и управления

Кафедра экономики и управления

Реферат

Логистика в работе электроэнергетических систем

  • Пирогов Григорий
    • Группа 321
      • Руководитель:
      • Савенкова Татьяна Ивановна,
      • к.т.н., д.э.н., профессор
      • Таллинн
      • 2010 г.

Для лучшего понимания данной темы автор считает нужным упомянуть сначала о том что такое электроэнергетика и каковы ее особенности и проблемы как промышленности, а потом, причем тут логистика.

Электроэнергетика - одна из наиболее фондоемких отраслей промышленности, выполняющая системообразующую роль в народном хозяйстве любой промышленно-развитой страны. Основная особенность электроэнергетики - это непрерывность и практическое совпадение во времени процессов производства, распределения и потребления электроэнергии. Отсюда возникают главные технические и организационные проблемы отрасли, поскольку в ней полностью отсутствует прямая возможность складировать готовую продукцию энергетического потока, в то время как режим работы региональных энергосистем и единой энергосистемы страны, должны быть направлены на покрытие переменной части суточных, недельных, сезонных и годовых графиков электрических нагрузок.

В этой связи при планировании электроэнергетического хозяйства нельзя ориентироваться только на показатели средней мощности электроснабжения. Здесь обязательно учитывается вероятность возникновения крайне неравномерного режима электропотребления, что в корне отличает электроэнергетические предприятия от подавляющего большинства других производственно-коммерческих структур, где основной задачей обычно является нацеленность на ритмичный режим работы, а не на оперативное, с высочайшей надежностью выполнение электроэнергетических заказов потребителей. Иначе и быть не может, ибо даже при кратковременном нарушении работы энергосистемы или ее перегрузке потребители рискуют недополучить электроэнергию, а то и вовсе оказаться отключенными от энергосистемы с вытекающими отсюда последствиями. Чтобы до предела снизить вероятность появления такой ситуации необходимо постоянно сохранять баланс между генерированием и потреблением электроэнергии. Обеспечить данный баланс при переменной электрической нагрузке и аварийных ситуациях можно двумя путями: созданием определенных резервных мощностей региональных энергосистем и созданием мощных межсистемных электрических сетей для перетока электроэнергии в случае необходимости из одной региональной энергосистемой в другую.

Электроэнергетика по своей физической природе функционирует как потоковый процесс:

1. группировка потоков электроэнергии является объектом товародвижения и основой формирования логистической системы электроэнергетики;

2. логистический подход при формировании тарифной политики электроснабжения основан на максимально возможном учете индивидуальных особенностей электропотребления;

3. разработаны научно-методические основы прямого и укрупненного нормирования расхода электроэнергии как необходимого условия логистической системы управления электроснабжением.

Энергосистема как топливно-энергетический комплекс охватывает энергетические ресурсы, выработку, преобразование, передачу и использование различных видов энергии. В энергосистему входят электроэнергетика, снабжение различными видами топлива, атомная энергетика - все это в масштабах страны образует единую энергетическую систему.

Принципиально важным является то, что электропроизводство, электросбыт и электроснабжение представляют собой потоковые процессы в силу своей физической сущности в электроэнергетической системе, которая включает следующие элементы:

1. электростанции;

2. повышающие трансформаторы;

3. синхронные компенсаторы;

4. понижающие трансформаторы у потребителей;

5. статические конденсаторы разного напряжения;

6. электроприборы, включая электродвигатели;

7. электротехнические установки;

8. электрические сети.

Для региональных энергосистем и предприятий электросетей появляются свои специфические задачи, обусловленные функциями в области планирования и ведения режимов. Так для региональных энергосистем одной из главных задач является распределение электрических и тепловых нагрузок между электростанциями, а для электросетей предприятий -выбор эксплуатационной схемы сети и закона регулирования напряжения в центрах питания распределительных сетей. Следует заметить, что на уровне филиалов региональных энергосистем и электросетей предприятий среди функций оперативного управления преобладают функции диспетчерского управления: переключения, локализации и ликвидации последствий аварийных ситуаций. На уровне центрального аппарата региональных энергосистем и электросетей предприятий больший приоритет имеют задачи по прогнозированию режима отпуска энергии и поступления оплаты за нее. Многолетняя практика показала, что существующая иерархическая система требований к отдельным подсистемам электроэнергетики в целом обеспечивает подчинение режима каждой отдельной энергосистемы оптимальному режиму единой энергосистемы и, наоборот, режим работы единой энергосистемы зависит от сигналов обратной связи с региональными энергосистемами, межсистемными энергетическими сетями и т.д. Вглядываясь глубже с позиций логистики, в электроэнергетике можно увидеть своеобразный гибрид управления логистическим процессом по «тянущему» и «толкающему» способам с использованием концепций производства-поставления товара «точно в срок» и «реагирования на спрос».

Как комплекс взаимосвязанных и взаимозависимых между собой поставщиков топливно-энергетических и других видов ресурсов, генерирующих мощностей электростанций, электросетевых предприятий, сбытовых организаций и всевозможных потребителей электроэнергии электроэнергетику невозможно представить вне системного подхода, который, как известно, является основополагающим принципом логистики.

Логистика отождествляется с процессом управления и выступает элементом менеджмента. Чаще всего объектом управления логистики выступают товарно-материальные потоки в сфере обращения и производства, а также финансовые, информационные и другие потоки, которые обеспечивают и описывают изменения пространственно-временного положения товарно-материальных потоков.

При всем разнообразии толкований логистики в них прямо или опосредованно присутствуют определяющие понятия - поток и управление. Данное обстоятельство предопределяет условие логистизации управляемого процесса.

Логистика в электроэнергетике применяется в сферах аналогичных тем, в которых она применяется в любой традиционной коммерческой логистической системе (в логистике контрактов, логистике закупок, логистике запасов, производственной логистике, транспортной логистике, логистике хранения, логистике сбыта и др.), но со специфическими особенностями. Эти особенности делают энергетическую логистику более технической наукой.

В работе электроэнергетическая логистика рассматривается как наука об управлении и оптимизации энергетических потоков, потоков услуг в сфере энергоснабжения и связанных с ними информационных и финансовых потоков в системе энергоснабжения для достижения поставленных целей.

Следовательно, основной деятельностью любой энергетической компании является энергетическая логистика, а любая энергетическая компания является логистической энергетической системой.

Практика создания логистических управляющих систем позволила сформулировать следующую систему принципов энергетической логистики:

1. безопасность управленческих решений - реализация управленческих решений не должна приводить к ущербу жизни, здоровья и имущества людей;

2. экологичность управленческих решений - реализация управленческих решений должна сопровождаться минимальным влиянием на окружающую среду;

3. надежность функционирования системы энергоснабжения - реализация любого управленческого решения должна обеспечивать нормальное непрерывное функционирование системы энергоснабжения;

4. эффективность затрат - управленческое решение должно обеспечивать максимальную эффективность функционирования всей системы энергоснабжения;

5. адаптивность управленческих решений - управленческое решение должно быть рассчитано с учетом всех изменений внешней среды и самой системы энергоснабжения к моменту окончания его исполнения;

6. синхронизация управленческих воздействий - управленческое решение должно быть рассчитано с учетом того, что его влияние на разные элементы системы энергоснабжения может наступить не одновременно, например вследствие их удаленности друг от друга;

7. регулирование в режиме реального времени - частота выработки управленческих решений, величина, время и место исполнения соответствующих управляющих воздействий на систему энергоснабжения должны обеспечивать заданную точность управления во всех ее элементах;

8. минимизация информационных потоков - персонал и система автоматического управления высшего уровня должны быть обеспечены всей необходимой информацией, объем которой должен быть минимальным;

9. защита информации - информация, используемая при управлении системой энергоснабжения, должна быть защищена от несанкционированного доступа;

10. доступность информации - процессы выработки и контроля реализации управленческого решения должны быть обеспечены всей необходимой информацией;

11. прогнозирование в управленческих решениях - управленческое решение должно быть рассчитано с учетом развития во времени текущей ситуации у потребителей, в окружающей среде и в самой системе энергоснабжения;

12. финансовое обеспечение управленческих решений - реализация любого управленческого решения должна быть обеспечена соответствующими финансовыми средствами;

13. системность управленческих решений - управленческое решение должно влиять на изменение не только энергетических потоков, но и потоков информации и финансов, учитывать взаимодействие элементов системы энергоснабжения между собой, а также соответствовать всем принципам энергетической логистики.

Основная задача, решаемая энергетической логистикой, - это автоматическое распределение нагрузки между элементами системы энергоснабжения. Качественное дифференцирование логистической системы электроэнергетического комплекса зависит от надежности работы всех звеньев системы.

Введение надежности в качестве классифицирующего критерия логистических цепей электроэнергетического комплекса и определение их видов в зависимости от восстанавливаемости позволяет оценить степень надежности логистических цепей на основе определения показателей, связанных с явлениями отказа - событиями, заключающимися в нарушении работоспособности. С точки зрения предотвращения, отказы можно разделить на постепенные и внезапные. Если первые можно прогнозировать и предотвращать профилактическими мероприятиями, то внезапные отказы представляют наибольшую опасность для функционирования цепи. Возможность предотвращения постепенных отказов основывается на диагностировании параметров, свидетельствующих о нарушениях в порядке работы, в то время как внезапные отказы проявляются в виде резкого изменения параметров, что говорит о разрушении стабильного поведения логистической цепи.

Классифицировать отказы, возникающие в звеньях логистической цепи, можно на основе перечня логистических функций выполняемых данным звеном. Причины отказов могут быть различными - техническими или организационными, но независимо от природы возникновения необходимо составление максимально полного перечня возможных сбоев в работе логистического звена, что позволит как выявить причины их появления, так и принять соответствующие меры по их предотвращению.

Участники логистической цепи могут увеличить степень ее надежности путем повышения уровня восстановления каждого звена на основе выработки механизмов реагирования на отказы и предотвращения угроз. Однако кардинально ряд внешних воздействий можно устранить только с участием соответствующих государственных институтов и на основе мер макроэкономического регулирования.

Одной из сложностей использования логистики в электроэнергетике, необходимость добавить в свойства логистического звена такие характеристики как:

1. безотказность выполнения логистических операций (сохранение работоспособности звена в течение установленного времени работы данного участка цепи);

2. сохраняемость (свойство логистического звена сохранять работоспособность в достаточном количестве циклов функционирования логистической цепи);

3. ремонтопригодность (возможность разрабатывать и реализовывать организационно-экономические мероприятия, обеспечивающие поддержание на необходимом уровне безотказности его работы).

Вся электроэнергетическая система должна обладать определенным уровнем надежности (сохранять во времени установленные значения всех параметров). К показателям надежности, как было изложено выше, следует отнести: безотказность, сохраняемость, ремонтопригодность. Однако следует заметить, что забота о надежности системы зависит не только от надежности и качества распределения, качества сбыта, но и качества эксплуатации. Надежность постоянно изменяется в процессе эксплуатации электроэнергетической системы (турбины, генераторы, трансформаторы, электроприборы и др.) и при этом характеризует её состояние. Чтобы она сохраняла работоспособное состояние и обеспечивала заданный уровень качества, необходимо, чтобы все звенья, входящие в систему, имели высокий уровень надежности и утвержденные технические регламенты.

Учитывая все вышесказанное автор считает что электроэнергетика неспособна функционировать без использования логистики, так как та является ее неотъемной частью.

Литература

1. Т.И.Савенкова. Логистика учебное пособие. Москва. ОМЕГА-Л. 2009.

2. Альбеков А.У., Тлепцерищев А.М. Организация и функционирование логистической системы электроэнергетического комплекса Ростовской области. Монография. Ростов. РИНХ. 2006.

3. А.А. Полуботко. Надежность и качество поставок электроэнергии - категории эффективности логистической системы. Статья. Ростов. РИНХ. 2009.

4. Осика Л.К. Операторы коммерческого учета на рынках электроэнергии. Технология и организация деятельности. Москва ОМЕГА-Л. 2007.

5. Осика Л.К. Коммерческий и технический учет электрической энергии на оптовом и розничном рынках: теория и практические рекомендации. Москва ОМЕГА-Л. 2006.


Подобные документы

  • Эффективность создания и объединения электроэнергетических систем. Эффект масштаба. Основные эффекты, достигаемые при объединении электроэнергетических систем. Межгосударственные электрические связи и объединения. Разновидности межгосударственных связей.

    презентация [3,3 M], добавлен 26.10.2013

  • Анализ производственной документации учета потребления энергоресурсов. Система производства и распределения сжатого воздуха. Результаты энергообследования систем распределения, производства и потребления энергии на предприятии. Измерения вибрации и шума.

    отчет по практике [70,0 K], добавлен 17.06.2011

  • История становления и перспективы электроэнергетической отрасли в Тюменской области. Значение электроэнергетической отрасли в экономике России и Тюменской области. Типы электростанций, их размещение и характеристика. Полуй — река Тобольской губернии.

    реферат [27,8 K], добавлен 04.06.2010

  • Расчет установившегося режима работы электроэнергетической системы. Токи несимметричного короткого замыкания, их напряжение в месте короткого замыкания. Динамическая устойчивость энергосистемы. Определение величины предельного времени отключения.

    курсовая работа [1,6 M], добавлен 27.12.2012

  • Анализ показателей судна и его энергетической системы, обоснование и расчет состава главной установки. Комплектация судовой электростанции, характеристика основных элементов, обоснование, расчет и выбор главных двигателей; рекомендации по эксплуатации.

    курсовая работа [44,9 K], добавлен 07.05.2011

  • Элементы электроэнергетической системы, классификация ее режимов. Регулирование напряжения и частоты в энергосистемах, баланс реактивной мощности и его связь с напряжением. Расчет мощности электроприемников и напряжения линий, выбор трансформаторов.

    курсовая работа [319,5 K], добавлен 14.04.2014

  • Практический расчёт двух видов замыканий в электроэнергетической системе: трёхфазного и двухфазного на землю. Определение базисной ступени напряжения, базисных величин, схемы замещения. Расчёт периодической составляющей сверхпереходного тока КЗ.

    курсовая работа [2,3 M], добавлен 03.07.2011

  • Анализ мировых аспектов развития солнечной электроэнергетики. Изучение опыта развитых стран в сфере решения технических и экономических проблем эксплуатации солнечных электрических станций различных видов. Оценка положения дел в энергосистеме Казахстана.

    дипломная работа [1,7 M], добавлен 07.07.2015

  • Основная единица измерения выработки и потребления электрической энергии. Базовые элементы, имеющиеся практически во всех электронных схемах радиоэлектронной аппаратуры. Цифровые схемы, их сравнение с аналоговыми. Понятие и элементы технической системы.

    реферат [36,3 K], добавлен 13.01.2014

  • Топливно-энергетический комплекс Республики Беларусь: система добычи, транспорта, хранения, производства и распределения всех видов энергоносителей. Проблемы энергетической безопасности республики, дефицит финансовых средств в энергетической отрасли.

    реферат [21,0 K], добавлен 16.06.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.