Внедрение парогазовых турбин в энергосистему (ТЭЦ 21 и 27)
Процесс внедрения парогазовых турбин в энергосистему страны. Коэффициент полезного действия и экономичность газовых турбин. Электрическая мощность вводимой установки. Электрическая схема парогазовых турбин. Расчеты по внедрению парогазовых турбин.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 18.06.2010 |
Размер файла | 266,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
22
Внедрение парогазовых турбин в энергосистему (ТЭЦ 21 и 27)
Содержание
- Введение
- 1. Внедрение парогазовых турбин в энергосистему
- 2. Электрическая часть и эл. схема парогазовых турбин
- 3. Расчеты по внедрению парогазовых турбин
- Заключение
- Список используемой литературы
Введение
Проблемы отечественной энергетики часто связывают с выработкой ресурса оборудования, но не менее важно, что оборудование это устарело морально и простая его замена на новые установки старого образца принципиально ничего не решит.
Развитие энергетики страны до настоящего времени шло в основном за счет ввода новых паротурбинных агрегатов, имеющих более высокие начальные параметры и большую единичную мощность. Повышение начальных параметров позволяло совершенствовать термодинамический цикл и снижать удельный расход топлива.
Коэффициент полезного действия отечественных электростанций в среднем оценивается в 36%. Более десятой части электроэнергии и вовсе вырабатывается на установках, кпд которых равен 25% (эффективность, характерная для 30?х годов прошлого столетия). Между тем в развитых странах этот показатель в среднем не опускается ниже 45%. Рост эффективности энергосистем Запада связан с внедрением новых технологий, прежде всего речь идет об установках парогазового цикла (ПГУ), кпд которых колеблется от 52 до 60%.
Поэтому целью работы является изучение процессов внедрения парогазовых турбин в энергосистему страны.
1. Внедрение парогазовых турбин в энергосистему
Длительная эксплуатация устаревших тепловых электростанций в маневровом режиме грозит выходом из строя энергосистемы Украины. Чтобы предотвратить это, необходимо обеспечить работу ТЭС в условиях, близких к постоянной нагрузке, т.е. использовать для покрытия дефицита электроэнергии в дневное время какие-то другие источники энергии.
Для этой цели можно использовать промышленные газовые турбины, хорошо приспособленные для работы в маневровом режиме. Газовые турбины являются одной из главных составляющих топливно-энергетического комплекса многих стран мира. Сегодня более 65% новых электрогенерирующих мощностей, вводимых в эксплуатацию в мире (базовый и маневровый режимы), основываются на использовании парогазовых установок (ПГУ) и газотурбинных тепловых электростанций, превосходящих по многим показателям традиционные пылеугольные паротурбинные станции.
Газовые турбины нового поколения имеют высокий коэффициент полезного действия, характеризуются эксплуатационной надежностью, производятся во всем мире и обеспечены развитой системой сервисного обслуживания. Они применяются в широком диапазоне мощностей, используются в дежурном режиме (ожидание), для покрытия пиковых нагрузок, а также при постоянной нагрузке. В диапазоне мощностей от 60 до 120 МВт около 60% газовых турбин покрывают пиковые нагрузки, а более 85% сверхмощных газовых турбин (180 МВт и более) используются для выработки электроэнергии в базовом режиме Цанаев С.В., Буров В.Д., Ремезов А.Н. Газотурбинные и парогазовые установки тепловых электростанций, М.: МЭИ, 2009 г., 581 с.. Для современных энергогазотурбинных установок стоимость одного киловатта установленной мощности составляет 400-700 долл., для парогазовых - до 1000 долл. В то же время для пылеугольных паротурбинных электростанций (основных ТЭС) его стоимость уже превысила 1200 долл.
До 2006 года мировое производство промышленных газовых турбин характеризовалось некоторой нестабильностью. Рост производства в 1996-м сменился спадом в 1997-м и ростом в 1998-2000 годах. С 2006 года начинается быстрый подъем мирового рынка энергетического газотурбостроения, что обусловлено выводом на рынок газовых турбин нового поколения. Прогноз на десятилетний период (2006-2015 годы) выглядит благоприятным и предсказывает быстрый рост производства промышленных газотурбин различной мощности.
Общее количество газовых турбин, которые уже произведены и будут произведены в мире в 2006-2015 годах, превысит 12 тыс. единиц. Больше всего - 1337 штук - планируется произвести в 2011 году (рисунок 1), однако в 2015-м производство газовых турбин снизится до 1206 единиц. Это объясняется ожидаемым поступлением на рынок новых энерготехнологий - топливных элементов, ядерных энергетических установок нового поколения, более активным использованием промышленных и бытовых отходов для производства энергии, а также существенным расширением использования ветровой и солнечной энергии.
Рисунок 1. Ожидаемое производство парогазовых турбин до 2015 года.
Несмотря на дефицит природных энергоносителей, примерно 75% газовых турбин мощностью более 15 МВт будут использовать в качестве топлива природный газ. Быстрый рост мировых цен на газ и трудности его доставки в некоторые районы мира даже в сжиженном состоянии будут способствовать повышению роли угля как источника энергии. Поэтому быстрое развитие энергетического газотурбостроения будет сопровождаться разработкой и внедрением новых технологий получения синтетического газа из угля и других природных энергоносителей.
В связи с широким использованием газа в качестве топлива экономичность газовых турбин приобретает особую важность. Этот показатель важен для снижения расхода природного газа на собственные нужды и уменьшения выбросов в атмосферу диоксида углерода (при сжигании 1 кг природного газа образуется 1,8 кг СО2), а также вредных оксидов азота и углерода (NOx, СОх). Достижение высокой экономичности газотурбинных установок связано, в первую очередь, с величиной температуры продуктов сгорания после камеры сгорания. Однако при современном уровне развития материаловедения дальнейшее повышение температуры продуктов сгорания наталкивается на серьезные трудности Мастепанов А. М., Коган Ю. М. Повышение эффективности использования энергии, М.: Феникс, 2009 г., 211 с..
Поэтому в последние годы интенсивное развитие получили газотурбинные установки, работающие по сложному термодинамическому циклу. К таким циклам относятся регенеративный цикл (теплообменник-регенератор на выходе газовой турбины), циклы с промежуточным охлаждением воздуха в процессе сжатия или с подогревом продуктов сгорания в процессе расширения, подача пара в проточную часть газовой турбины (технология STIG), подача пара и утилизация воды в конденсаторе на выходе, бинарный воздушный цикл. Использование сложных термодинамических циклов позволяет повысить мощность и к. п. д. промышленных газотурбинных установок без существенного увеличения температуры продуктов сгорания и за счет этого применять проверенные практикой конструкционные материалы и газотурбинные технологии. Освоение сложных циклов связано с усложнением конструкции, увеличением стоимости производства, приводит к дополнительным сложностям при эксплуатации и техническом обслуживании.
В России, где износ электростанций составляет около 60%, парогазовую технологию стали внедрять недавно, что связано с большими капитальными затратами на освоение технологии (около 30 млрд. долл). Согласно проектам реконструкции и нового строительства энергообъектов в России в 2008-2012 годах запланирован ввод 20 энергоблоков ПГУ-400 на природном газе на основе газотурбинной установки мощностью 270 МВт.
Первая в современной России промышленная электростанция, использующая парогазовый цикл, была введена в строй в 2002 году в ОАО "Северо-Западная ТЭЦ-3" (Санкт-Петербург). В составе энергетического блока использованы две газотурбинные установки компании Siemens AG (V94.2), два котла-утилизатора и паровая турбина российского производства. Следующая ПГУ-450 с двумя газотурбинными установками российского производства мощностью по 160 МВт, построенными по лицензионному соглашению с компанией Siemens AG (аналог установки V94.2), введена в эксплуатацию в конце 2005 года в ОАО "Калининградская ТЭЦ-2" (блок №1). Следует также упомянуть названную выше российско-украинскую ПГУ-325 мощностью 325 МВт, установленную на Ивановской ГРЭС, парогазовую установку мощностью 220 МВт на Тюменской ТЭЦ-1 и два энергоблока мощностью 39 МВт каждый на Сочинской ТЭС.
В конце 2006 года были завершены пусконаладочные работы и проведено комплексное испытание второго блока ПГУ-450 на ОАО "Северо-Западная ТЭЦ-3" с российскими аналогами газовых турбин компании Siemens AG, а в 2007-м введен в эксплуатацию энергоблок №3 на ТЭЦ-27 ОАО "Мосэнерго". Реализуются проекты парогазовых установок мощностью 450 МВт на ТЭЦ-21 и ТЭЦ-27 ОАО "Мосэнерго", Южной ТЭЦ-22 (Санкт-Петербург), где будет использовано оборудование только российского производства.
ТЭЦ-21 и ТЭЦ-27 входят в состав ОАО "Мосэнерго". Установленная электрическая мощность станций 1340 МВт и 160 МВт соответственно.
Сегодня на ТЭЦ-21 ОАО "Мосэнерго" началось комплексное опробование нового парогазового энергоблока № 11 ПГУ-450Т на номинальной нагрузке. Испытания установки продлятся несколько дней. Ввод новой генерации позволит обеспечить дополнительными объемами электрической и тепловой энергии Северо-Западный и Центральный округа Москвы, а также город Химки.
Электрическая мощность вводимой установки составит 450 МВт, тепловая - 300 Гкал/час. Главное отличие нового энергоблока от уже действующих на ТЭЦ-21 агрегатов заключается в использовании парогазового цикла производства электроэнергии. Такая технология позволяет значительно улучшить рабочие и эксплуатационные характеристики энергоблока по сравнению с установками, принцип работы которых основан на традиционном паросиловом цикле. В частности, КПД увеличивается с 38% до 51%, расход топлива сокращается на 30%. Кроме того, на треть снижается уровень вредных выбросов в атмосферу.
Пуск в промышленную эксплуатацию энергоблока № 11 ТЭЦ-21 - очередной этап реализации компанией Программы развития и технического перевооружения. За последний год это уже второй объект парогазовой генерации, вводимый Мосэнерго в рамках данной программы Замалеев М.М. Резервы повышения эффективности использования регенеративных отборов турбин ТЭЦ / М.М. Замалеев, В.И. Шарапов // Теплоэнергетика. - 2008. - № 4. - С. 64-67..
Строительство энергоблока № 11 на ТЭЦ-21 началось 16 марта 2006 года. Проектировщиком и генеральным подрядчиком строительства выступили филиалы ОАО "Мосэнерго" - "Мосэнергопроект" и "Мосэнергоспецремонт". Турбинное оборудование для энергоблока произведено концерном "Силовые машины", котельное - Подольским машиностроительным заводом, трансформаторное - компанией "Электрозавод". Монтаж газовой турбины ГТЭ-160 и трубопроводов в пределах турбины, вспомогательного оборудования выполнен Московским филиалом ОАО "Центроэнергомонтаж" Замалеев М.М. Резервы повышения эффективности использования регенеративных отборов турбин ТЭЦ / М.М. Замалеев, В.И. Шарапов // Теплоэнергетика. - 2008. - № 4. - С. 64-67..
ОАО "Мосэнерго" успешно провело синхронизацию и включение в сеть двух газовых и паровой турбины энергоблока № 3 ПГУ-450Т на ТЭЦ-27 в рамках плановых испытаний.
В настоящий момент на энергоблоке № 3 ПГУ-450Т ТЭЦ-27 идет подготовка к 72-часовым ходовым испытаниям, предусматривающим синхронизацию и включение в сеть двух газовых и паровой турбины. ПГУ-450Т на ТЭЦ-27 установленной электрической мощностью 450 МВт станет первой парогазовой энергетической установкой и наиболее мощным энергоблоком в Московской энергосистеме, способным дать свет более чем в 400 тысяч квартир.
В состав энергоблока № 3 ПГУ-450Т на ТЭЦ-27 входят две газовые турбины единичной электрической мощностью 160 МВт и паровая турбина установленной электрической мощностью 130 МВт.
21 октября 2007 года прошли испытания первой газовой турбины энергоблока с включением в сеть.
29 октября 2007 года прошли испытания второй газовой турбины на холостом ходе с частотой 3000 оборотов в минуту.
1 ноября 2007 года проведены испытания паровой турбины на холостом ходе.
2 ноября 2007 года в рамках пусковых испытаний первая газовая и паровая турбины синхронизированы с энергосистемой и включены в сеть в течение двух часов.
5 ноября 2007 года прошли испытания второй газовой турбины энергоблока с включением в сеть.
Строительство энергоблока № 3 ПГУ-450Т ТЭЦ-27 началось 22 декабря 2005 года. Ввод запланирован в ноябре 2007 года. В настоящее время на энергоблоке завершаются пуско-наладочные работы. Срок строительства энергоблока - 22 месяца - является рекордным в российской энергетике.
Проектировщиком энергоблока № 3 ПГУ-450Т ТЭЦ-27 является институт "Мосэнергопроект" - филиал ОАО "Мосэнерго". Генеральный подрядчик - "Мосэнергоспецремонт" - филиал ОАО "Мосэнерго".
В настоящее время ОАО "Мосэнерго" ведет строительство современных парогазовых энергоблоков общей электрической мощностью более 2000 МВт на системообразующих электростанциях, расположенных в кольце 220 кВ (ТЭЦ-21, ТЭЦ-26 и ТЭЦ-27), а также на электростанциях, обеспечивающих энергоснабжение центра Москвы (ТЭЦ-9. ТЭЦ-12).
2. Электрическая часть и эл. схема парогазовых турбин
Парогазовая установка - электрогенерирующая станция, служащая для производства тепло - и электроэнергии. Отличается от паросиловых и газотурбинных установок повышенным КПД Мастепанов А. М., Коган Ю. М. Повышение эффективности использования энергии, М.: Феникс, 2009 г., 211 с..
Парогазовая установка состоит из двух отдельных установок: паросиловой и газотурбинной. В газотурбинной установке турбину вращают газообразные продукты сгорания топлива. Топливом может служить как природный газ, так и продукты нефтяной промышленности (мазут, солярка). На одном валу с турбиной находится первый генератор, который за счет вращения ротора вырабатывает электрический ток. Проходя через газотурбину, продукты сгорания отдают ей лишь часть своей энергии и на выходе из газотурбины все ещё имеют высокую температуру. С выхода из газотурбины продукты сгорания попадают в паросиловую установку, в котел-утилизатор, где нагревают воду и образующийся водяной пар. Температура продуктов сгорания достаточна для того, чтобы довести пар до состояния, необходимого для использования в паровой турбине (температура дымовых газов около 500 градусов по Цельсию позволяет получать перегретый пар при давлении около 100 атмосфер) Цанаев С.В., Буров В.Д., Ремезов А.Н. Газотурбинные и парогазовые установки тепловых электростанций, М.: МЭИ, 2009 г., 581 с.. Паровая турбина приводит в действие второй электрогенератор. Существуют парогазовые установки, у которых паровая и газовая турбины находятся на одном валу, в этом случае устанавливается только один генератор.
ТЭЦ - вид электростанций предназначен для централизованного снабжения промышленных предприятий и городов электроэнергией и теплом. Являясь, как и КЭС, тепловыми электростанциями, они отличаются от последних использованием тепла "отработавшего" в турбинах пара для нужд промышленного производства, а также для отопления, кондиционирования воздуха и горячего водоснабжения Безлепкин В.П. Парогазовые и паротурбинные установки электростанций. СПб.: СПбГТУ, 2008 г., 317 с.. При такой комбинированной выработке электроэнергии и тепла достигается значительная экономия топлива по сравнению с раздельным энергоснабжением, т.е. выработкой электроэнергии на КЭС и получением тепла от местных котельных. Поэтому ТЭЦ получили широкое распространение в районах (городах) с большим потреблением тепла и электроэнергии. В целом на ТЭЦ производится около 25% всей электроэнергии.
Особенности технологической схемы ТЭЦ показаны на рисунке 1.0 (приложение 1). Части схемы, которые по своей структуре подобны таковым для КЭС, здесь не указаны. Основное отличие заключается в специфике пароводяного контура и способе выдачи электроэнергии.
Рисунок 1. Схема ПГТ: ГТУ - газотурбинная установка; ЭГ - электрогенератор; КУ - котёл-утилизатор; ПЕ - пароперегреватель; ИС - испаритель; ЭК - экономайзер; ГПК - газовый подогреватель конденсата; ВД - высокое давление; СД - среднее давление; НД - низкое давление; ПН - питательный насос; РН - насос рециркуляции; Д - деаэратор; ПТУ - паротурбинная установка; ЦВД - цилиндр высокого давления; ЦСД - цилиндр среднего давления; ЦНД - цилиндр низкого давления; К - конденсатор; СП - сетевой подогреватель.
Специфика электрической части ТЭЦ определяется расположением электростанции вблизи центров электрических нагрузок. В этих условиях часть мощности может выдаваться в местную сеть непосредственно на генераторном напряжении. С этой целью на электростанции создается обычно генераторное распределительное устройство (ГРУ). Избыток мощности выдается, как и в случае КЭС, в энергосистему на повышенном напряжении Мастепанов А. М., Коган Ю. М. Повышение эффективности использования энергии, М.: Феникс, 2009 г., 211 с..
Существенной особенностью ТЭЦ является также повышенная мощность теплового оборудования по сравнению с электрической мощностью электростанции. Это обстоятельство предопределяет больший относительный расход электроэнергии на собственные нужды, чем на КЭС.
Размещение ТЭЦ преимущественно в крупных промышленных центрах, повышенная мощность теплового оборудования в сравнении с электрическим повышают требования к охране окружающей среды. Так, для уменьшения выбросов ТЭЦ целесообразно, где это возможно, использовать в первую очередь газообразное или жидкое топливо, а также высококачественные угли. Размещение основного оборудования станций данного типа, особенно для блочных ТЭЦ, соответствует таковому для КЭС. Особенности имеют лишь те станции, у которых предусматривается большая выдача электроэнергии с генераторного распределительного устройства местному потребителю. В этом случае для ГРУ предусматривается специальное здание, размещаемое вдоль стены машинного зала (рис.1.1) (приложение 2).
3. Расчеты по внедрению парогазовых турбин
Основным преимуществом новых технологий с использованием парогазовых турбин является то, что экономический эффект достигается без снижения надежности и маневренности турбоустановок. По техническим условиям завода-изготовителя допускается дополнительный отбор пара в количестве до 50 т/ч из пятого отбора на ПНД-3 сверх отбора на этот подогреватель без снижения надежности работы проточной части турбины.
Эффективным и наименее затратным способом, позволяющим обеспечить экономичный подогрев потоков подпиточной воды теплосети и добавочной питательной воды котлов, является непосредственное использование для этой цели регенеративных подогревателей низкого давления (ПНД) Мастепанов А. М., Коган Ю. М. Повышение эффективности использования энергии, М.: Феникс, 2009 г., 211 с..
Оценка тепловой экономичности разработанных технологий проведена по величине удельной выработки электроэнергии на тепловом потреблении , кВтч/м3, получаемой за счет отборов пара на подогрев 1 м3 обрабатываемой воды:
, (1)
где - расход обрабатываемой воды, м3/ч; - мощность, затрачиваемая на привод насосов, перекачивающих воду или конденсат в схемах ВПУ, кВт,
, (2)
где - давление, создаваемое насосом, МПа; - расход учитываемого потока, кг/с; - КПД насоса;
- сумма мощностей, развиваемых теплофикационной турбоустановкой на тепловом потреблении за счет отборов пара на подогрев теплоносителей, кВт,
, (3)
где , - расход, кг/с, и энтальпия, кДж/кг, пара, используемого в качестве греющего агента на i-м участке схемы; - энтальпия свежего пара, кДж/кг; - электромеханический КПД турбогенератора;
- мощность, вырабатываемая на тепловом потреблении за счет отбора пара на условный эквивалентный регенеративный подогреватель, кВт,
, (4)
где - расход пара на регенерацию, кг/с; - энтальпия условного эквивалентного регенеративного отбора, кДж/кг; - энтальпия j-го отбора, перед которым конденсат греющего пара смешивается с основным конденсатом турбины, кДж/кг.
Так, удельная выработка электроэнергии на тепловом потреблении:
, (5)
где - энтальпия деаэрированной воды после вакуумного деаэратора, кДж/кг; - энтальпия воды после химического умягчения, кДж/кг; - энтальпия греющего агента, подаваемого в вакуумный деаэратор, кДж/кг; - энтальпия сетевой воды, подогреваемой в подогревателе греющего агента, кДж/кг; - энтальпия пара регенеративного отбора, кДж/кг; - энтальпия конденсата греющего пара после подогревателя греющего агента, кДж/кг; - КПД подогревателя греющего агента.
Для сравнения разработанных решений, основанных на применении парогазовой турбине, использована относительная безразмерная величина, показывающая во сколько раз удельная выработка электроэнергии за счет пара превышает значение , вырабатываемой паром производственного отбора. Введение данного показателя позволяет оценивать экономичность технологий различного назначения и соответственно с неодинаковыми температурными режимами. Так, на рис.2 представлена диаграмма относительной экономичности новых технологий с использованием парогазовой турбины Рысаков С.А. Проблемы внедрения парогазовых турбин в России // Энергосистема, № 7, 2009 г., С.11-16. Из диаграммы видно, что все разработанные технологии с применением парогазовой турбины по энергетической эффективности значительно превосходят типовые решения, предусматривающие подогрев теплоносителей паром производственного отбора.
Рис.2. Относительная величина удельной выработки электроэнергии для новых технологий с использованием парогазовой турбины
Результаты оценки энергетической эффективности новой технологии, предусматривающей использование ПНД парогазовой турбины в качестве подогревателя исходной подпиточной или добавочной питательной воды перед ВПУ, представлены на рис. 3.
Рис. 3. Удельная выработка электроэнергии для технологий подогрева исходной воды перед ВПУ:
1 - пар отопительного отбора турбины;
2 - пар производственного отбора;
3 - пар регенеративного отбора
Из диаграммы видно, что использование низкопотенциальных регенеративных отборов пара турбин ТЭЦ для подогрева теплоносителей ВПУ существенно повышает экономичность ТЭЦ даже в сравнении с достаточно эффективным способом с использованием в качестве греющей среды регулируемого парогазовых турбин.
Экономия условного топлива ДВ, определяется с помощью разности Днтф, (кВт·ч) /м3:
, (6)
где - удельный расход условного топлива на конденсационную выработку электроэнергии, кг/ (кВт. ч); - удельный расход условного топлива на теплофикационную выработку электроэнергии, кг/ (кВт. ч); - общий расход подготавливаемой воды в исследуемом режиме, м3.
При расчете энергетической эффективности технологий подготовки воды необходимо учитывать затраты топлива на выработку в котле дополнительного расхода пара Вдоп, т/год, при повышении нтф
, (7)
где - разность расходов пара при использовании пара разных потенциалов для нагрева воды на одну и ту же величину, т/год; , - энтальпии свежего пара и питательной воды, кДж/кг; - теплота сгорания условного топлива, кДж/кг; - КПД парового котла.
Применение на ТЭЦ решения, показанного на рис.1, позволяет ежегодно экономить более 3000 тонн условного топлива в расчете на ВПУ производительностью 2000 м3/ч.
По приведенной методике были произведены расчеты технико-экономических показателей для блока парогазовой турбины 21 ТЭЦ. Расчеты проводились для двух вариантов: 1 котел и ПУ работают на природном газе; 2 котел работает на мазуте, ПУ на природном газе. Для обоих вариантов принималось 5000 часов использования установленной мощности в год. Экономия котельного топлива, составила: B< = 0.819 кг/с=14.74 тыс. т/год (5000 ч/год), стоимость которого 14.74-103х120=1.769 млн. долл. /год. Общий КИТ блока около 90%. Затраты на топливо составила 33 и 25% от общих годовых затрат, а зарплата - 2.5-2.8%. Без учета налога прибыль составила 2.812 и 3.120 млн. долл., срок окупаемости 2.85 и 2.56 лет и рентабельность 25.83 и 29.48%.
С учетом налога на прибыль 30%: прибыль 1.97 и 2.18 млн. долл., срок окупаемости - 4.06 и 3.66 лет и рентабельность 16.88 и 18.96%.
Полученные данные говорят о высокой эффективности внедрения работы ПГТ.
Основным видом топлива для парогазовых установок всех типов является природный газ. В качестве резервного топлива в сравнительно небольших объема может использоваться дизельное и газотурбинное жидкое топливо. К настоящему времени в России открыто более 700 газовых газоконденсационных и газонефтяных месторождений, из которых разработку вовлечено около 300, подготовлено к промышленному освоению 60 и в стадии разведки находится более 200 месторождений.
Заключение
В заключение работы необходимо обратить внимание на то, что наибольшее внимание следует обратить на внедрение парогазовых установок. Для России наибольший интерес представляют парогазовые установки с котлами, сжигающими уголь в кипящем слое под давлением. Эта технология, внедренная на энергоблоках 80-350 МВт в Швеции, Японии и других странах, показала высокую надежность, обеспечила хорошие экономические и экологические показатели. Расчетный КПД энергоблоков с котлами КСД составляет 42%. Одно из преимуществ этих установок - малые габариты - дает возможность установки их в существующих помещениях ТЭС взамен демонтируемого старого оборудования и тем самым проведения реконструкции на новой технической базе.
Сжигание природного газа на ТЭС в будущем должно происходить только на установках с современными технологиями использования топлива, например в парогазовых установках, газомазутных котлах с газотурбинными надстройками.
Парогазовые установки (в англоязычном мире используется название combined-cycle power plant) - сравнительно новый тип генерирующих станций, работающих на газе или на жидком топливе. Принцип работы самой экономичной и распространенной классической схемы таков. Устройство состоит из двух блоков: газотурбинной (ГТУ) и паросиловой (ПС) установок. В ГТУ вращение вала турбины обеспечивается образовавшимися в результате сжигания природного газа, мазута или солярки продуктами горения - газами. Образовавшиеся в камере сгорания газотурбинной установки продукты горения вращают ротор турбины, а та, в свою очередь, крутит вал первого генератора.
В первом, газотурбинном, цикле кпд редко превышает 38%. Отработавшие в ГТУ, но все еще сохраняющие высокую температуру продукты горения поступают в так называемый котел-утилизатор. Там они нагревают пар до температуры и давления (500 градусов по Цельсию и 80 атмосфер), достаточных для работы паровой турбины, к которой подсоединен еще один генератор. Во втором, паросиловом, цикле используется еще около 20% энергии сгоревшего топлива. В сумме кпд всей установки оказывается около 58%.
Список используемой литературы
1. Безлепкин В.П. Парогазовые и паротурбинные установки электростанций. СПб.: СПбГТУ, 2008 г., 317 с.
2. Замалеев М.М. Резервы повышения эффективности использования регенеративных отборов турбин ТЭЦ/М.М. Замалеев, В.И. Шарапов // Теплоэнергетика. - 2008. - № 4. - С.64-67.
3. Мастепанов А.М., Коган Ю.М. Повышение эффективности использования энергии, М.: Феникс, 2009 г., 211 с.
4. Рысаков С.А. Проблемы внедрения парогазовых турбин в России // Энергосистема, № 7, 2009 г., С.11-16
5. Цанаев С.В., Буров В.Д., Ремезов А.Н. Газотурбинные и парогазовые установки тепловых электростанций, М.: МЭИ, 2009 г., 581 с.
Подобные документы
Получение электроэнергии при сжигании различного топлива. Газотурбинная и паросиловая установки. Образование в камере сгорания продуктов горения. Сочетание паровых и газовых турбин. Повышение электрического КПД. Примеры парогазовых электростанций.
презентация [5,3 M], добавлен 03.04.2017Состав паротурбинной установки. Электрическая мощность паровых турбин. Конденсационные, теплофикационные и турбины специального назначения. Действие теплового двигателя. Использование внутренней энергии. Преимущества и недостатки различных видов турбин.
презентация [247,7 K], добавлен 23.03.2016История развития паровых турбин и современные достижения в данной области. Типовая конструкция современной паровой турбины, принцип действия, основные компоненты, возможности увеличения мощности. Особенности действия, устройства крупных паровых турбин.
реферат [196,1 K], добавлен 30.04.2010Применение турбин как привода электрического генератора на тепловых, атомных и гидро электростанциях, на морском, наземном и воздушном транспорте. Конструкция современных паровых турбин активного типа. Разница между активной и реактивной турбиной.
презентация [131,1 K], добавлен 16.02.2015Расчет тепловых нагрузок на отопление сетевой и подпиточной воды, добавочной воды в ТЭЦ. Загрузка турбин, котлов и составляется баланс пара различных параметров для подтверждения правильности подбора основного оборудования. Выбор паровых турбин.
курсовая работа [204,3 K], добавлен 21.08.2012Описание примитивной паровой турбины, сделанное Героном Александрийским. Патент на первую газовую турбину. Комплексная теория турбомашин. Основные виды современных турбин. Привод электрического генератора на тепловых, атомных и гидроэлектростанциях.
презентация [1,7 M], добавлен 23.09.2015Характеристика парогазовых установок. Выбор схемы и описание. Термодинамический расчет цикла газотурбинной установки. Технико-экономические показатели паротурбинной установки. Анализ результатов расчета по трем видам энергогенерирующих установок.
курсовая работа [2,2 M], добавлен 27.04.2015История изобретения турбин; реактивный и активный принципы создания усилия на роторе. Рассмотрение действия машины Бранке, построенной в 1629 г. Конструкция паровой турбины Лаваля. Создание Парсонсом реактивной турбины, которая вырабатывает электричество.
презентация [304,7 K], добавлен 08.04.2014Конструкция корпуса атомной турбины. Методы крепления корпуса к фундаментной плите. Материалы для отливки корпусов паровых турбин. Паровая конденсационная турбина типа К-800-130/3000 и ее назначение. Основные технические характеристики турбоустановки.
реферат [702,3 K], добавлен 24.05.2016Расчет тепловой нагрузки и построение графика. Предварительный выбор основного оборудования: паровых турбин и котлов. Суммарный расход сетевой воды на теплофикацию. Расчет тепловой схемы. Баланс пара. Анализ загрузки турбин и котлов, тепловой нагрузки.
курсовая работа [316,0 K], добавлен 03.03.2011