Технологический расчет магистрального газопровода и режимов работы компрессорной станции

Выбор рабочего давления газопровода. Расчет свойств транспортируемого газа. Плотность газа при стандартных условиях. Определение расстояния между компрессорными станциями и числа компрессорных станций. Расчет суточной производительности газопровода.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 25.03.2013
Размер файла 1,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В регуляторах давления газа, устанавливаемых в ГРП, в качестве чувствительного элемента и одновременно привода в основном используют мембраны (плоские и гофрированные).

Плоская мембрана представляет собой круглую плоскую пластину из эластичного материала.

Мембрана зажимается между фланцами верхней и нижней мембранных крышек. Центральная часть мембраны с обеих сторон зажата между двумя круглыми металлическими дисками (обжимными). Жесткие диски увеличивают перестановочную силу и уменьшают неравномерность регулирования. Перестановочное усилие, развиваемое мембраной, зависит от величины так называемой эффективной площади мембраны. Она изменяется в зависимости от прогиба мембраны.

Перестановочное усилие определяется по формуле:

,

где c -- коэффициент активности мембраны; F -- площадь мембраны (в проекции на плоскость ее заделки); P -- избыточное давление рабочей среды; cF -- активная площадь мембраны. Зависимость коэффициента активности мембраны c от величины ее относительного прогиба Дh.

В связи с тем, что при различном прогибе мембраны значения коэффициента активности изменяются, изменяется и перестановочное усилие мембраны. Это создает неравномерность регулирования. Поэтому для плоской мембраны с двумя обжимными металлическими дисками (диаметром 0,8 диаметра мембраны) оптимальным является участок на кривой при изменении Дh от 0 до 1/2, соответственно, коэффициент активности c изменяется в пределах от 1 до 2/3 (~ от 100 до 67 %).

Диаметр обжимных дисков принято выбирать не более 0,8 диаметра мембраны для обеспечения необходимой подвижности мембранного привода. Основным требованием при подборе регулятора давления является обеспечение устойчивости его работы на всех возможных режимах, что проще всего добиться правильным выбором регулятора для того или иного объекта. Для тупикового газопровода (с отбором газа в конце газопровода) следует применять статические регуляторы прямого действия. В случае больших расходов газа -- непрямого действия. Для кольцевых и разветвленных газовых сетей, учитывая их способность к самовыравниванию, в принципе можно использовать любые типы регуляторов, но так как эти сети имеют обычно большие расчетные расходы, то лучше применять астатические регуляторы непрямого действия (с пилотом). Эти регуляторы позволяют более точно поддерживать давление после себя.

Неравномерность регулирования у статических регуляторов давления прямого действия ±(0-20) %, статических непрямого действия (с пилотом) и астатических ±(5-10) %.

При подключении к сетям высокого давления, давление в которых имеет значительные колебания, а также учитывая практически существующие конструкции регуляторов, может оказаться, что одноступенчатое снижение давления не применимо. В этом случае следует либо выбирать двухступенчатый регулятор давления, либо применить двухступенчатое редуцирование, при котором первым регулятором давление снижается до промежуточного значения, а вторым -- до необходимого с высокой точностью.

При выборе регулятора давления необходимо учитывать явления, связанные с шумом работающего регулятора. Возникновение шумов вызвано газодинамическими колебательными процессами у дроссельных органов и стенок регуляторов. При совпадении частоты колебаний амплитуда колебаний клапана может резко возрасти, что приведет к износу и разрушению клапана, сильной вибрации регулятора. Наиболее эффективный метод снижения амплитуд колебаний -- установка гасителя шума (перфорированного патрубка) сразу после редуцирования газа. Пропускную способность регуляторов давления обычно определяют по аналогии с истечением газа через суживающееся сопло или сопло постоянного сечения, считая процесс адиабатическим. При постоянном входном давлении Р1 скорость истечения и объемный расход растут с уменьшением противодавления (выходного давления) Р2 только до достижения отношения Р2/Р1 определенного для данного газа значения, которое называют критическим (Р2 и Р1 -- абсолютные давления).

Для природного газа с показателем адиабаты К=1,31 критическое отношение можно принимать равным 0,5. То есть в регуляторе давления, который поддерживает низкое давление 2000 Па (200 мм вод. ст.), при входном избыточном давлении в 0,1 МПа и более наступает критический режим истечения газа. При этом скорость газа, проходящего через седло, постоянна и равна скорости звука в данном газе, достигнутой при критическом отношении давлений.

Объемный расход газа при рабочих условиях остается неизменным и при дальнейшем понижении давления Р2 и повышении Р1. Однако при этом изменяется массовый расход газа, а также объемный расход, приведенный к нормальным физическим условиям.

При до критическом режиме истечения пропускная способность определяется квадратичной зависимостью разности входного и выходного давлений (перепада давления) ДР=Р1-Р2. При критическом и сверхкритическом режимах пропускная способность зависит только от входного давления и прямо пропорциональна ему. Выбор регулятора производят из условия, что его пропускная способность должна быть на 15-20 % больше максимального часового расхода газа потребителем. Это означает, что регулятор будет загружен при максимальном газопотреблении не более, чем на 80 %, а при минимальном газопотреблении -- не менее, чем на 10 %. Если это условие не будет выполняться, то при максимальном отборе газа регулирующий орган будет полностью открыт и не сможет выполнять функции регулирования. Регулирование обеспечивается только тогда, когда регулирующий орган и исполнительный механизм находятся в подвижном состоянии. При снижении отбора газа ниже предельного могут возникнуть автоколебания (пульсации, вибрации) клапана.

В системах газораспределения наиболее распространены следующие типы регуляторов давления (по виду нагрузки): регуляторы прямого действия с пружинной и рычажно-пружинной нагрузками и регуляторы непрямого действия с командным прибором (пилотом).

К первой группе относятся регуляторы РДГД-20 и РДСК-50 в которых усилие рабочей мембраны передается непосредственно на клапан, находящийся на штоке и закрепленный в центре мембраны. В целях разгрузки клапана от влияния входного давления используется дополнительная разгрузочная мембрана.

Вторая группа -- это беспилотные регуляторы типа РД-32М, РД-50М, РДНК-400. Для них характерно наличие рычажной системы передачи усилия от рабочей мембраны на регулирующий клапан. За счет различия в длинах плеч коленчатого рычага уменьшается сила воздействия входного давления на клапан регулятора. Усилие мембранного привода на клапан при этом увеличивается, что обеспечивает более высокое уплотняющее усилие на клапан. Для РД-32М соотношение плеч рычага равно 6. У беспилотных регуляторов первой и второй групп органом настройки регулируемого выходного давления является настоечная пружина, воздействующая на рабочую мембрану.

Третья группа регуляторов -- устройства типа РДУК2, РДБК1, РДГ. Их характерная особенность -- наличие регулятора управления (пилота). Процесс регулирования определяется взаимодействием выходного давления на рабочую мембрану, силы так называемого управляющего давления, подаваемого из пилота в под мембранное пространство, грузом подвижных частей, силами трений в соединениях.

Газ входного давления поступает в пилот. Пилот поддерживает постоянное давление под рабочей мембраной регулятора. По импульсному трубопроводу газ выходного давления поступает на мембрану. Через дроссель избыток газа после пилота постоянно сбрасывается.

Настройка регуляторов на требуемое выходное давление производится изменением усилия сжатия регулировочной пружины пилота, а также открытием или закрытием проходного сечения регулируемых дросселей . Под мембранная полость пилота сообщена с атмосферой.

Если Рвых уменьшилось, то уменьшится и давление над рабочей мембраной, клапан вместе с мембраной поднимается, расход газа через регулятор увеличивается, Pвых возрастает вновь до заданного значения. Пилотные регуляторы имеют достаточно широкие интервалы входного и выходного давления и пропускной способности. Эти факторы обеспечиваются воздействием на рабочую мембрану регулятора под мембранного управляющего давления, создаваемого пилотом, вместо непосредственного воздействия настоечной пружины на мембрану.

По сравнению с пружинными регуляторами прямого действия, пилотные имеют следующие преимущества:

* возможность обеспечения достаточно широких интервалов выходного регулируемого давления 0,01-0,06 МПа и 0,06-0,6 МПа;

* обеспечение достаточно большой пропускной способности;

* возможность в ряде случаев перенастройки регуляторов на рабочие параметры без прекращения подачи газа к потребителям.

Заключение

В данном курсовом проекте был произведен технологический расчёт магистрального газопровода и расчет режимов работы компрессорной станции. Плановый объем транспортируемого газа Qг=21,7 млрд. м3/год; протяженность газопровода составляет L=805 км. В ходе расчета были получены следующие результаты:

1. Рабочее давление в газопроводе Р=7,35 МПа. Для строительства газопровода приняли трубы Dн=1200 мм с толщиной стенки трубы д=15 мм ХТЗ, изготовленные по ТУ 14-3р-04-94 из стали 12ГСБ.

2. Суточная производительность компрессорной станции Q=62,85 млн.м3/сут.

3. Расчетное число компрессорных станций n=7, расстояние между ними l=115 км.

4. На компрессорных станциях газопровода предполагается установка газоперекачивающих агрегатов Коберра-182. Плотность газа при условиях всасывания свс=40,8 кг/м3; требуемое количество нагнетателей mн=3; производительность нагнетателя при условиях всасывания Qвс=259,949 м3/мин; расчетная частота вращения вала нагнетателя n=4261 об/мин; мощность на муфте привода Ne=9851 кВт; температура газа на выходе ЦН Тнаг=315,9 К.

Список использованной литературы

1. Козаченко А.Н., Никишин В.И., Поршаков Б.П. Энергетика трубопроводного транспорта газа. - М.: ГУП Издательство «Нефть и газ» РГУ нефти и газа им. Губкина, 2001. - 400 с.

2. Мустафин Ф.М., Коновалов Н.И., Гильметдинов Р.Ф. и др. Машины и оборудование газонефтепроводов. - Уфа: Монография, 2002.- 384 с.

3. Проектирование и эксплуатация насосных и компрессорных станций: Учебник для вузов / Шаммазов А.М., Александров В.Н., Гольянов А.И. и др. - М.: ООО «Недра - Бизнесцентр», 2003. - 404 с.

4. Ульшина К.Ф. Технологический расчет магистрального газопровода. Методические указания по выполнению курсового проекта для студентов, обучающихся по специальности 130501.65 «Проектирование, сооружение и эксплуатация газонефтепроводов и газонефтехранилищ», очной и заочной форм обучения. - Альметьевск: Альметьевский государственный нефтяной институт, 2009. - 68 с.

5. СНиП 2.05.06-85*. Магистральные трубопроводы // Госстрой России. М.: ГУП ЦПП, 2001. - 60 с.

6. СНиП 2.01.01-82*. Строительная климатология и геофизика // Госстрой России. М.: ГУП ЦПП, 1984. - 184 с.

7. СТО Газпром 2 - 3.5.051 - 2006. Нормы технологического проектирования магистральных газопроводов. - М.: ООО «ИРЦ» Газпром, 2006. - 192 с.

8. ГОСТ 30319.1-96. Газ природный. Методы расчета физических свойств. Определение физических свойств природного газа, его компонентов и продуктов его переработки.

Размещено на Allbest.ru


Подобные документы

  • Физические свойства газа. Подбор рабочего давления, диаметра магистрального газопровода. Определение числа и расстояния между компрессорными станциями. Экономическое обоснование выбора диаметра газопровода. Расчет режима работы компрессорных станций.

    курсовая работа [1,3 M], добавлен 01.03.2015

  • Выбор рабочего и избыточного давления в газопроводе. Определение числа компрессорных станции (КС) и расстояния между станциями. Уточненный тепловой и гидравлический расчеты участка газопровода между двумя компрессорными станциями. Расчет режима работы КС.

    курсовая работа [251,8 K], добавлен 16.03.2015

  • Выбор рабочего давления и типа газоперекачивающего агрегата. Расчет теплофизических свойств транспортируемого газа. Тепловой и гидравлический расчет участка газопровода. Расчет режима работы компрессорной станции. Капитальные и эксплуатационные затраты.

    курсовая работа [1,2 M], добавлен 16.12.2014

  • Подача газа потребителям с определенным давлением, степенью очистки и одоризации из магистрального газопровода в газовые сети. Компримирование газа центробежными нагнетателями с приводом газотурбинной установки. Режим работы компрессорной станции.

    отчет по практике [4,3 M], добавлен 15.02.2012

  • Участок газопровода между двумя компрессорными станциями, по которому подается природный газ (термодинамическая система). Принципиальная схема газопровода. Термодинамическая модель процесса течения. Изотермический процесс течения газа в трубопроводе.

    контрольная работа [3,5 M], добавлен 14.06.2010

  • Инженерно-геологическая и гидрогеологическая характеристика участка строительства. Расчет потребности природного газа. Подбор котла и его обоснование. Расчет газопровода на прочность, а также проверка устойчивости его положения в водонасыщенных грунтах.

    дипломная работа [513,7 K], добавлен 20.03.2017

  • Общая характеристика газопровода "Джубга-Лазаревское-Сочи", анализ схемы прокладки. Особенности уточненного теплового и гидравлического расчета участка газопровода. Способы определения толщины стенки трубопровода и расстановки компрессорных станций.

    дипломная работа [2,3 M], добавлен 09.05.2013

  • Применение средств малой теплоэнергетики для повышения эффективности систем теплоснабжения. Гидравлический расчет газопровода. Максимальные часовые расходы газа. Технико-экономическая оценка инвестиций на замену котельной, работающей на газовом топливе.

    дипломная работа [1,9 M], добавлен 10.04.2017

  • Отношения между Россией и Европейским Союзом в энергетической сфере: сотрудничество и конкуренция. Анализ состояния экспорта российского природного газа. Изучение стратегии развития проекта "Алтай". Схема прохождения трассы магистрального газопровода.

    курсовая работа [47,0 K], добавлен 06.03.2014

  • Расчёт пропускной способности сложного газопровода. Построение зависимости давления в эквивалентном газопроводе от продольной координаты. Распределение давления по участкам трубопроводной системы. Определение диаметра участков распределительной сети.

    курсовая работа [2,4 M], добавлен 23.03.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.