Комплект лабораторного оборудования для углубленного изучения физики

Проведение цикла лабораторных работ, входящих в программу традиционного курса физики: движение электрических зарядов в электрическом и магнитном полях; кинематика и динамика колебательного движения; термометрия и калориметрия.

Рубрика Физика и энергетика
Вид методичка
Язык русский
Дата добавления 18.07.2007
Размер файла 32,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

КОМПЛЕКТ ЛАБОРАТОРНОГО ОБОРУДОВАНИЯ

ДЛЯ УГЛУБЛЕННОГО ИЗУЧЕНИЯ ФИЗИКИ

Комплект предназначен для использования в классах и группах, изучающих физику по углубленным программам. Наряду с закреплением теоретических знаний и первичных навыков экспериментальных наблюдений он призван формировать альтернативный, творческий образ мышления.

Комплект позволяет провести цикл лабораторных работ, входящих в программу традиционного курса физики. Но его главное отличие состоит в том, что предусмотрена возможность показать физические явления в более полном объеме и всесторонне исследовать и особенности их проявления. Каждая лабораторная работа построена по принципу укрупненных дидактических единиц - охватывает большой объем учебного материала, в том числе из разных разделов курса физики. Это открывает широкие возможности для укрепления внутрипредметных связей, для обобщения и систематизации теоретических знаний. Предлагаемые в большом количестве задания облегчают формирование прочных навыков экспериментальных наблюдения и измерений. Содержание и проблемная постановка заданий способствует воспитанию особого исследовательского образа мышления.

В соответствии со структурой и содержанием лабораторных работ их следует проводить на уроках, в форме практикума по завершении изучения входящих в них разделов. Второй вариант - выполнение работ во внеурочное время, на кружковых или факультативных занятиях.

Лабораторные работы собраны из современных широко распространенных и доступных и недорогих приборов и материалов, допускающих замену, ремонт, дальнейшее техническое и методическое совершенствование.

В состав комплекта входят следующие работы

1. Движение электрических зарядов в электрическом и магнитном полях. Осциллографическая трубка с соленоидами и блоком питания, обеспечивающим электростатическое и магнитное отклонение. Позволяет исследовать а) линейное, плоское и пространственное движение частиц в электрическом поле, б) действие на движущиеся заряды продольного и поперечного магнитного полей, в) удельный заряд электрона методом магнетрона, методом магнитной фокусировки и методом скрещенных полей.

2. Кинематика и динамика поступательного и вращательного движения твердого тела. Специальный учебно-лабораторный стенд, с модифицированными машиной Атвуда и маятником Обербека. Позволяет углублять представление о массе и моменте инерции, как мере инертности тела, об ускорениях в прямолинейном и вращательном движениях, о моменте силы и моменте инерции, об импульсе и моменте импульса, исследовать законы кинематики, второй и третий законы Ньютона,

3. Кинематика и динамика колебательного движения. Специальный учебно-лабораторный стенд с кронштейнами и набором оборудования для сборки «математического», физического и крутильного маятников. Позволяет исследовать законы колебаний маятников, а также особенности колебаний комбинированных маятников и системы связанных маятников.

4. Термометрия и калориметрия. В комплект входят материалы и приборы для сборки, исследования и градуировки термометров газовых, жидкостных, твердотельных (биметаллических), на сопротивлениях проводников и полупроводников, а также пирометров. Калориметрические измерения включают явления нагревания, агрегатных превращений, теплопроводности

5. Дифракция и интерференция света. Оптическая скамья, состоящая из осветителя с лампой накаливания и лазером, проекционной линзы, набора дифракционных структур (щели, решетки, круглые отверстия и экраны, зонные пластинки). Позволяет наблюдать и исследовать явление дифракции и некоторые применения этого явления.

6. Поляризация света. Оптическая скамья, состоящая из осветителя с лампой накаливания и лазером, проекционной линзы, набора поляроидов, оптически изотропных и анизотропных материалов, фотометра. Позволяет получать, наблюдать и исследовать анизотропию света (линейно и эллиптически поляризованный свет) и материалов (оптическую активность, фотопластичность и фотоупругость, интерференцию поляризованного света).

Цель работы: Углубить представления о температуре, изучить физические принципы и освоить некоторые методы измерения температуры.

Оборудование: Газовый и жидкостные термометры, термопара, термометр сопротивления, термистор, медная и константановая проволока, мультиметр, наноампервольтметр, электроплитка, металлический стакан с водой

1.Теоретическая часть

1.1. Понятие температуры .

Температура в обычном понимании характеризует степень нагретости тела. Строгое определение температуры даётся в молекулярно-кинетической теории, где под температурой понимают меру средней кинетической энергии поступательного движения молекул идеального газа:

<е>=m<v>2/2 =(3/2)kT (1)

где k = 1.38·10-23Дж/К - постоянная Больцмана, m - масса молекулы, <v> - средняя квадратичная скорость её поступательного движения, Т - термодинамическая температура.

Из последнего определения ясно, что обычно измеряемая температура относится к огромному числу молекул и даёт представление об их средней кинетической энергии. Понятие температуры можно применять только к массиву молекул, поэтому температура является макроскопическим параметром состояния вещества.

1.2 Принципы термометрии .

1.2.1.Термометрические параметры.

Измерение температуры обычно производится косвенным путём, т. е. не сводится к измерению кинетической энергии молекул. Оно основывается на измерении таких физических параметров тел, которые зависят от температуры. Здесь важно, чтобы выбранный параметр существенно, непрерывно, однозначно и просто зависел от температуры и измерялся простыми средствами. Важно также, чтобы процедура измерения величины параметра не вносила значительных изменений в температурный режим исследуемой среды.

В термометрах можно выделить две главные составные части - термометрическое тело, и регистрирующее устройство с отсчетной шкалой. Термометрическое тело так называемых контактных термометров помещается непосредственно в исследуемую среду. В дистанционных термометрах термометрическое тело и регистрирующее устройство пространственно разнесены и бывают связаны электрическими проводами. В оптических термометрах (они называются пирометрами) термометрическим телом является сам исследуемый объект или его часть, а связь его с регистрирующим устройством производится оптическими средствами.

Приведем список наиболее употребляемых термометрических параметров:

объём тела (тепловое расширение, V=Vo(1+бt), жидкостные и газовые термометры);

электропроводность (сопротивление (R=R0(1+бt), проводники (терморезисторы) и полупроводники (термисторы);

термоЭДС ( Еt = еot, термопары или термоэлементы);

линейные размеры (линейное расширение L=L0(1+at), биметаллические пластины);

- спектр излучения (энергетическая светимость - закон Стефана-Больцмана Rэ=sT4 - или спектральный состав излучения - закон Вина lmin= b/T, - радиационный, яркостный и цветовой пирометры);

Могут применяться также скорость распространения звука, показатель преломления света веществом и многие другие параметры вещества, зависящие от температуры.

К важнейшим принципам методики термометрии относится строгое соблюдение следующего условия - показания считаются достоверными только тогда, когда термометрическое тело и среда вошли в состояние теплового равновесия друг с другом. Поэтому очень важно, чтобы тепловая «инертность» измерительного прибора была незначительной (тогда, он скорее примет температуру измеряемой среды), а собственная теплоёмкость - минимальной ( при этом он не внесёт искажений в состояние среды).

В отдельных случаях, при точечных и локальных измерениях геометрические размеры рабочей части термометра должны быть точечными.

1.2.2 Температурные шкалы.

В настоящее время применяются несколько температурных шкал, отличающихся выбором опорных (реперных) точек. В шкале Цельсия интервал между точкой плавления льда и точкой кипения воды при нормальном давлении (760 мм рт.ст.) делится на сто равных долей - градусов Цельсия (0С). В шкале Фаренгейта за нуль принимается температура смеси льда и соли ( -320С), а точка кипения воды принимается за 212 градусов.

Третья шкала - это наиболее употребляемая в научной литературе абсолютная шкала температур. Физический смысл нулевой температуры в этой шкале - полное отсутствие молекулярного движения (см. формулу (1).

Связь между температурными шкалами имеет вид:

tс = (5/9)'(tF -32); tF=32+(9/5)'tc; tc=t=Tk -273; Tk=T=tc +273

1.3 Виды термометров.

1.3.1 Газовые термометры.

Наиболее строго требованию существенной, непрерывной и линейной зависимости от температуры отвечают такие параметры идеального газа, как объём и давление. Поведение реального газа при небольших давлениях и достаточно высоких температурах практически не отличается от поведения идеального газа. По этой причине газовые термометры используются как эталонные, по ним градуируют и поверяют другие типы термометров.

Простейший газовый термометр может представлять собой укрепленную на линейке колбу с газом, завершающуюся отогнутой в сторону стеклянной трубкой (рис.1). Находящаяся в трубке капля ртути отделяет газ колбы от атмосферы. При нагревании газ расширяется, а его давление остаётся равным атмосферному. В соответствии с уравнением Клапейрона-Менделеева

pV=mRT/M

его объём и температура находятся в соотношении: V=(mRТ/Мр) =(mR/Мр)Т = бТ . Для конкретного термометра выражение (mR/Мр) играет роль постоянного коэффициента б, зависящего от количества газа, его состава и от атмосферного давления.

Процедура измерения температуры газовым термометром сводится к тому, что его термометрическое тело (колбу) помещают в исследуемую среду, затем, дождавшись установления равновесия, определяют объём V и по графику T = f(V) находят температуру Т. На практике после предварительной градуировки линейка Л становится шкалой термометра.

1.3.2. Жидкостные термометры.

Если ёмкость газового термометра заполнить жидкостью с достаточно большим коэффициентом теплового объёмного расширения, то полученный прибор станет жидкостным термометром. В настоящее время такими жидкостями является ртуть или другие вещества, например, подкрашенные спирт, толуол, пентан.

Для повышения чувствительности и точности измерений жидкостный термометр состоит из двух сообщающихся объёмов, один из которых содержит основную массу жидкости, а второй служит индикатором изменения объёма (см. рис.2), для чего ему придаётся форма цилиндра капиллярных размеров.

Жидкостные термометры запаяны с обоих концов, поэтому более удобны в обращении, что послужило причиной их широкого распространения.

К их недостатком можно отнести нелинейность температурной зависимости объёмов, что делает необходимым калибровать их по газовым термометрам. Они отличаются также инерционностью (время вхождения в равновесное состояние с исследуемой средой не менее 10 минут), большой собственной теплоёмкостью (до 10 Дж/К) и размерами термометрического тела, что препятствует точечным, локальным измерениям. Диапазон их работы ограничен с одной стороны температурой кристаллизации, а с другой - температурой кипения жидкости.

1.3.3. Твердотельные термометры.

1.3.3.1. Биметаллические термометры - используют различие в коэффициентах теплового линейного расширения разных металлов. Скреплённые вместе, как показано на рис.3, пластинки при изменении температуры изгибаются или закручиваются. Величина деформации зависит от температуры, поэтому, снабдив пластины механизмами и шкалами, такой термометр можно проградуировать и снимать с него прямые показания температуры.

Достоинства биметаллических термометров - простота изготовления, механическая прочность, возможность встраивания в системы автоматики и телемеханики. Недостатки - низкая чувствительность, проявление «усталости» металлов и отсюда - необходимость частой проверки и калибровки по эталонными термометрами.

1.3.3.2. Термопары. В основе их работы лежит явление контактной разности потенциалов - при соединении двух разнородных материалов из-за различия в их электрических свойствах на свободных концах обнаруживается напряжение. Термопары представляют собой два проводника из разных металлов (а и в на рис.4), концы которых соединены сваркой или пайкой. Металлы должны иметь как можно большую разницу в работе выхода электронов, тогда между ними устанавливается легко регистрируемая контактная разность потенциалов (десятые доли вольта), величина которой зависит от температуры в зоне контакта. Для термопары используют обычно хорошо изученные пары металлов, например, медь- константан, хромель-алюмель, платина-родий и другие.

Для измерения температуры термопарой её спай (обозначен цифрой 1 на рис.4) вводится в исследуемую среду, разность потенциалов её свободных концов измеряется каким либо потенциометром и переводится в градусы посредством градуировочного графика или переводного коэффициента a, получаемого из формулы ЭДС=aТ. Для абсолютных измерений термопару калибруют по газовому или иному эталонному термометру.

Значительно чаще приходится измерять разность температур, тогда применяют дифференциальную термопару. Она представляет собой две одинаковые термопары, включённые навстречу друг другу (рис.5). Спаи помещают в те места, разность температур которых необходимо измерить. Если один спай поместить в среду с известной и стабильной температурой, например, в тающий лёд, то после соответствующей градуировки такой термопарой можно производить абсолютные температурные измерения по шкале Цельсия.

Достоинства термопар - малые, практически, точечные размеры рабочего тела, малая инерционность и теплоемкость, возможность дистанционных измерений, большой диапазон измеряемых температур - от сверхнизких до точки плавления применяемых металлов. Недостаток - нелинейности шкалы обусловленная тем, что зависимость термоЭДС от температуры носит нелинейный характер.

1.3.3.3. Термометры сопротивления используют свойство чистых металлов, их сплавов и полупроводников менять своё сопротивление при изменении температуры. Для металлов это свойство описывается выражением R=R0'(1+at), где R0 - сопротивление при 0 С, a - температурный коэффициент сопротивления данного металла, t - температура по шкале Цельсия. Для металлов коэффициент a положителен и составляет 0.4-0.6 % при изменении температуры на один градус. Для полупроводников зависимость иная - с ростом температуры сопротивление убывает (a<0), причём, более существенно - в 8-10 раз быстрее, чем у металлов.

Термометры сопротивления уступают термопарам размерами, инерционностью, собственной теплоёмкостью. Нелинейность зависимости R = f(t) у них больше, поэтому точность измерения ниже. К достоинствам можно отнести измерительную схему (рис.6), где за счёт использования внешнего источника можно повысить чувствительность измерений. Как правило, измерения производятся мостовым методом.

1.3.4. Оптическая термометрия.

При наличии теплового движения молекул вещества, т.е. практически всегда, тело является источником электромагнитного излучения. Интенсивность этого излучения и его спектральный состав связаны с температурой. Для идеализированного абсолютного чёрного тела энергия, излучаемая с единицы поверхности в единицу времени определяется законом Стефана-Больцмана: Rэ=sT4 , где s=5.67•10-8 Вт/м2К4 - постоянная величина, Т - абсолютная температура. Основанные на этом законе термометры носят название радиационных пирометров (рис.7). Строго рассчитанная доля излучения исследуемого тела выделяется входной линзой прибора и регистрируется чувствительным колориметром. Затем производится перерасчет к полному излучению со всей поверхности исследуемого тела и вносится поправка на степень «серости» тела.

Измерить величину R технически очень трудно, поэтому такие термометры не дают точных измерений.

Более распространены яркостные пирометры, в которых яркость Яркость - физическая величина, применяемая для оценки энергии, излучаемой единицей поверхности тела в единицу времени в заданном направлении свечения исследуемого тела сравнивается с яркостью тела, температура которого известна. Схематически устройство яркостного пирометра показывает рис.8. Обычно в качестве тела сравнения берут вольфрамовую нить Н специальной электролампы, питаемой от стабильного источника тока E. Меняя ток этой лампы при помощи реостата R можно выровнять её яркость с яркостью исследуемого тела, в этом состоянии температуры тел одинаковы. Температуру нити лампы сравнения определяют по току миллиамперметра А, при этом шкалу миллиамперметра заранее градуируют непосредственно в градусах.

Пирометр представляет собой зрительную трубу Т, позволяющую рассматривать удаленные объекты. Нить лампы сравнения устанавливается в фокальной плоскости окуляра. В эту же плоскость вращением объектива проецируется изображение объекта. При правильной настройке оптической части нить лампы сравнения наблюдается на фоне объекта.

Нить лампы сравнения нельзя нагревать выше определенной температуры (14000С), поэтому для расширения предела измеряемых температур в оптическую схему пирометра включают светофильтры, ослабляющие яркость исследуемого тела с точно известной кратностью.

Яркостный пирометр показывает действительную температуру лишь тогда, когда тело и нить лампы одинаково близки по оптическим свойствам к абсолютно черному телу. Дело в том, что показатель этой близости - «коэффициент серости» - зависит от температуры; чем она выше, тем он ближе к единице. Поэтому для получения истинного значения температуры в полученный результат вводят поправку, зависящую от материала излучающего тела и от его температуры.

В отдельных случаях применяют так называемый цветовой пирометр, когда температуру определяют на основании закона Вина (лмах=b/T) , связывающего температуру излучающего тела с длиной волны, на которую приходится максимум его излучательной способности. Цветовой пирометр состоит из прибора, разлагающий излучение нагретого тела в спектр, и фотоэлектрической приставки, измеряющей распределение интенсивности в этом спектре.

Оптические пирометры имеют невысокую точность, но позволяют производить дистанционные измерения, что во многих процессах металлургии, в химии, физике и астрономии очень актуально.

2. Практическая часть.

Задание 1. Температурные шкалы. Произведите перерасчет температуры и запишите результаты в свободной форме.

а) Какова температура человеческого тела в шкалах Цельсия, Кельвина и Фаренгейта?

б) Сколько градусов Цельсия в одном градусе Фаренгейта?

в) Переведите 500F в градусы Кельвина.

Задание 2. Градуировка термометра сопротивления.

Термометр сопротивления изготовлен из тонкой медной проволоки, намотанной на бумажный каркас, помещенный в защитный стеклянный футляр (в пробирку). В холодном состоянии сопротивление провода близко к 80 Ом.

Для градуировки термометра сопротивления соберите установку, показанную на рис.8. Жидкостный термометр (ЖТ) вставьте в отверстие в крышке пробирки. Пробирку, укрепленную в лапке штатива, опустите сосуд. Величина сопротивления медной проволоки термометра в данной работе измеряется при помощи мультиметра М. Подключите термометр сопротивления к входу мультиметра. Поставьте переключатель диапазона в положение 200 Ом. На шкале прибора высветится величина сопротивления.

Влейте в стакан горячую воду и по мере нагревания термометрического тела через каждые 50 измеряйте и записывайте величину сопротивления. Результаты занесите в таблицу 1. Чтобы исключить ошибку на тепловую инертность термометрического тела измерения следует повторить при охлаждении жидкости. Измерения проделайте по тем же температурным точкам, что и при нагревании. После этого усредните значения сопротивлений и заполните всю таблицу 1.

По полученным данным постройте градуировочный график данного термометра сопротивления, откладывая по горизонтальной оси температуру, а по вертикальной - величину сопротивления. Если экспериментальные точки все-таки имеют некоторый разброс, следует «не глаза» сгладить линию. Такой градуировочный график позволяет в дальнейшем измерять температуру среды, в которую может быть помещен этот термометр сопротивления.

По градуировочному графику определите температурный коэффициент сопротивления меди: ( град-1).

Значения t1и t2 и соответствующие им значения сопротивлений R1 и R2 выбираются по графику произвольно.

Задание 3. Градуировка термистора.

Термистор - это полупроводниковый элемент, сопротивление которого зависит от температуры. В работе используется термистор марки ММТ - 4. В холодном состоянии его сопротивление приблизительно равно 1 кОм. Градуировка выполняется на установке, описанной в задании 1.

По полученным экспериментальным точкам (таб. 2 отчета) постройте градуировочную кривую. Следует учитывать, что зависимость сопротивления термистора от температуры имеет нелинейный характер и соединять точки следует не прямой линией, а плавной кривой. Рассчитайте величину температурного коэффициента сопротивления термистора. Сравните чувствительность термометров сопротивления по результатам заданий 2 и 3.

Задание 4. Изготовление и градуировка термопары.

В работе используется два материала - медь и константан. Последний снят с обмотки реостата, где он применяется в связи с низкой зависимостью его сопротивления от температуры. Зачистите от окислов концы проводов и плотно соедините их путем скручивания и одинарная термопара готова. Свободные концы соедините с чувствительным гальванометром, поставленным в позицию 1 мкВ. Место скрутки термопары закрепите скотчем на колбе жидкостного термометра и проградуируйте по методике предыдущих упражнений. Результаты занесите в таблицу 3. Постройте график Е(Т) и рассчитайте величину удельной термоЭДС этой термопары. Е=aТ. a=ДЕ/ДТ. Из-за низкой чувствительности термопары градуировку следует проводить в более широком температурном интервале. Поэтому предпочтительно использовать электронагреватель, а в качестве эталонного термометра термопару заводского изготовления, входящую в комплект мультиметра.

Задание 5. Изготовление и градуировка дифференциальной термопары.

По схеме, ясной из рисунка 5, соберите методом скрутки дифференциальную термопару. Медные провода лучше сделать наружными. Поместив один спай в сосуд со снегом, а второй, прикрепленный к жидкостному термометру, в нагреватель, произведите градуировку. Заполните таблицу 4 и постройте график зависимости Е(Т).

Поскольку «холодный» спай имеет температуру 0о С, то горячий при такой градуировке показывает температуру именно по шкале Цельсия. Прижав «горячий» спай к мочке своего уха, измерьте её температуру.

Дополнительное задание. Изготовление термобатареи.

Придумайте и рассчитай схему термоэлектрогенератора, который при разности температур горячих и холодных спаев 1000 вырабатывает ЭДС величиной 1 мВ.

ОТЧЕТ

…………………………………………………………………………….

о выполнении лабораторной работы № 2

«ТЕРМОМЕТРИЯ»

Задание 1. Температурные шкалы. Произведите перерасчет температуры и запишите результаты в свободной форме.

а) Какова температура человеческого тела в шкалах Цельсия, Кельвина и Фаренгейта?

б) Сколько градусов Цельсия в одном градусе Фаренгейта?

в) Переведите 500F в градусы Кельвина.

Задание 2. Градуировка термометра сопротивления.

Таблица 1.

toC

R, Ом

toC

R, Ом

Внимание!!! Графики выполняются попарно (2 с 3 и 4 с 5 заданиями)

на двух листах миллиметровой бумаги размером 9х9 см и прилагаются к отчету

Термический коэффициент сопротивления, рассчитанный по графику

R1= ; R2= ; t1= ; t2= ; б= ± град-1.

(Соответствует ли эта величина табличному значению для меди?)

Задание 3. Градуировка термистора.

Таблица 2.

toC

R, Ом

toC

R, Ом

Термический коэффициент сопротивления, рассчитанный по графику

R1= ; R2= ; t1= ; t2= ; б= ± град-1.

Сравните полученный результат с термометром сопротивления.

Задание 4. Изготовление и градуировка термопары.

Таблица 3.

toC

U, мкВ

Рассчитанное по графику значение удельной термоэЭДС исследуемой термопары:

a=ДЕ/ДТ. ДЕ = мкВ; ДТ = град. a= град--1

(Соответствует ли эта величина табличным значением для пары меди-константан?)

Задание 5. Изготовление и градуировка дифференциальной термопары.

Таблица 4

toC

U, мкВ

Измерение температуры тела:

1. мочка уха: показания гальванометра - мкВ; температура по графику Со.

2. пальцы рук: показания гальванометра - мкВ; температура по графику Со

Дополнительное задание.

1. Схема термоэлектрогенератора:

2. Расчет размеров и параметров:

3. Предложения по практическому применению.


Подобные документы

  • Движение электронов в вакууме в электрическом и магнитном полях, между плоскопараллельными электродами в однородном электрическом поле. Особенности движения в ускоряющем, тормозящем полях. Применение метода тормозящего поля для анализа энергии электронов.

    курсовая работа [922,1 K], добавлен 28.12.2014

  • Ознакомление с основами движения электрона в однородном электрическом поле, ускоряющем, тормозящем, однородном поперечном, а также в магнитном поле. Анализ энергии электронов методом тормозящего поля. Рассмотрение основных опытов Дж. Франка и Г. Герца.

    лекция [894,8 K], добавлен 19.10.2014

  • Характеристика движения электронов: в вакууме, в однородном электрическом, ускоряющем, тормозящем, поперечном, магнитном полях. Использование уравнения Лапласа для описания аналитической картины электрического поля в пространстве, свободном от зарядов.

    курсовая работа [883,5 K], добавлен 27.10.2011

  • Развитие физики. Материя и движение. Отражение объективной реальности в физических теориях. Цель физики - содействовать покорению природы человеком и в связи с этим раскрывать истинное строение материи и законы её движения.

    реферат [34,2 K], добавлен 26.04.2007

  • Поиск эффективных методов преподавания теории вращательного движения в профильных классах с углубленным изучением физики. Изучение движения материальной точки по окружности. Понятие динамики вращательного движения твердого тела вокруг неподвижной оси.

    курсовая работа [1,7 M], добавлен 04.05.2011

  • История развития кинематики как науки. Основные понятия этого раздела физики. Сущность материальной точки, способы задания ее движения. Описание частных случаев движения в зависимости от ускорения. Формулы равномерного и равноускоренного движения.

    презентация [1,4 M], добавлен 03.04.2014

  • Изложение физических основ классической механики, элементы теории относительности. Основы молекулярной физики и термодинамики. Электростатика и электромагнетизм, теория колебаний и волн, основы квантовой физики, физики атомного ядра, элементарных частиц.

    учебное пособие [7,9 M], добавлен 03.04.2010

  • Изучение основных задач динамики твердого тела: свободное движение и вращение вокруг оси и неподвижной точки. Уравнение Эйлера и порядок вычисления момента количества движения. Кинематика и условия совпадения динамических и статических реакций движения.

    лекция [1,2 M], добавлен 30.07.2013

  • Сущность физики как науки о формах движения материи и их взаимных превращениях. Теснейшая связь физики с другими отраслями естествознания, ее методы исследований. Основные величины, используемые в механике, молекулярной физике, термодинамике и оптике.

    лекция [339,3 K], добавлен 28.06.2013

  • Механика твёрдого тела, динамика поступательного и вращательного движения. Определение момента инерции тела с помощью маятника Обербека. Сущность кинематики и динамики колебательного движения. Зависимость углового ускорения от момента внешней силы.

    контрольная работа [1,7 M], добавлен 28.01.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.