Динамика сетки водородных связей в воде и аморфном льде

Водородная связь в воде, ее основные критерии. Аномальные свойства воды. Понятие о электролизе и электролитах. Электрокристаллизация и ее закономерности. Динамика сетки водородных связей при электрокристаллизации воды. Кристаллические и аморфные льды.

Рубрика Физика и энергетика
Вид дипломная работа
Язык русский
Дата добавления 15.12.2013
Размер файла 1,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки РФ

Федеральное государственное автономное образовательное

учреждение высшего профессионального образования

«Казанский (Приволжский) федеральный университет»

ИНСТИТУТ ФИЗИКИ

КАФЕДРА ВЫЧИСЛИТЕЛЬНОЙ ФИЗИКИ И МОДЕЛИРОВАНИЯ ФИЗИЧЕСКИХ ПРОЦЕССОВ

Специальность: «050100.68 Педагогическое образование»

Тема:

Динамика сетки водородных связей в воде и аморфном льде

Работа завершена:

“___”_____________ 2013 г. __________________ Р.Р. Садыкова

Работа допущена к защите:

Научный руководитель

к.ф.-м.н., доцент

“___”_____________ 2013 г. __________________ Р.М.Хуснутдинов

Заведующий кафедрой

к.ф.-м.н., доцент

“___”_____________ 2013 г. __________________ А.В.Мокшин

Казань 2013

Содержание

ВВЕДЕНИЕ

ГЛАВА I. ФАЗОВАЯ ДИАГРАММА И АНОМАЛЬНЫЕ СВОЙСТВА ВОДЫ

§1.1 О воде.

§ 1.2 Водородная связь в воде. Критерий водородной связи

§ 1.3 Аномальные свойства воды

§ 1.4 Кристаллические льды

§ 1.5 Аморфные льды

ГЛАВА II.ЭЛЕКТРОКРИСТАЛЛИЗАЦИЯ ВОДЫ

§2.1 Понятие о электролизе и электролитах

§2.2 Электрокристаллизация и ее закономерности

§2.3 Динамика сетки водородных связей при электрокристаллизации воды

Результаты

ЗАКЛЮЧЕНИЕ ПО III ГЛАВЕ

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

Введение

Вода является одной из самых распространенных соединений в Природе. Несмотря на простоту ее химической структуры многие свойства этой жидкости и механизмы протекания ее физических процессов далеки от полного понимания. Вода обладает широким спектром аномальных свойств, проявляющихся в термодинамических, структурных, транспортных и др. характеристиках системы. Отчасти это может быть объяснено наличием, так называемой сетки водородных связей в воде. Водородные связи во многом определяют поведение воды и являются главной причиной существенного ее отличия от других жидкостей. Природа этих сильных анизотропных межмолекулярных взаимодействий способствуют проявлению специфических термодинамических и структурных свойств воды, а так же динамического поведения уникального по сравнению с другими веществами. Свойствами жидкой воды, которыми обусловленные такие важные процессы, как растворение различных веществ и транспорт протонов, является результатом движения воды в постоянно меняющейся структуре сетки водородных связей. Одними из методов, с помощью которого можно выполнить качественные и количественные оценки динамики сетки водородных связей являются методы компьютерного моделирования. В последнее время предложены различные критерии, позволяющие рассчитывать и анализировать водородные связи на основе данных моделирования молекулярной динамики.

Цель: исследовать динамику сетки водородных связей в воде методом молекулярной динамики

Задачи:

• выполнить компьютерное моделирование молекулярной динамики воды для температурной области от 200 до 400К при давлении 1.0 атм и аморфного льда для температурной области при этом же давлении;

• выполнить компьютерное моделирование молекулярной динамики воды для давления от 1.0 атм. до 10000 атм. При постоянной температуре 277К;

• рассчитать радиальную функцию распределения молекул воды в зависимости от давления;

• выполнить литературный обзор критериев водородной связи для воды;

• с помощью геометрического критерия водородной связи исследовать температурную зависимость количества водородных связей приходящихся на одну молекулу;

• рассчитать параметры порядка;

• показать, что наличие графеновых стенок существенно изменяет фазовую диаграмму воды

• обнаружить, что вода, заключенная между графеновыми слоями переходит в кубический лед Ic.

• Показать, что при электрокристаллизации воды существенно изменяется динамика сетки водородных связей.

ГЛАВА I. ФАЗОВАЯ ДИАГРАММА И АНОМАЛЬНЫЕ СВОЙСТВА ВОДЫ

§1.1 О воде

Вода (оксид водорода) -- химическое вещество в виде прозрачной жидкости, не имеющей цвета (в малом объёме), запаха и вкуса (при нормальных условиях). Химическая формула: Н2O.

В твёрдом состоянии называется льдом, снегом или инеем, а газообразном -- водяным паром. Около 71 % поверхности Земли покрыто водой (океаны, моря, озера, реки, льды).

Является хорошим сильнополярным растворителем. В природных условиях всегда содержит растворённые вещества (соли, газы).

Вода имеет ключевое значение в создании и поддержании жизни на Земле, в химическом строении живых организмов, в формировании климата и погоды.

Вода - это самое обычное и самое распространенное вещество. Однако с научной точки зрения это самая необычная, самая загадочная жидкость. Пожалуй, только жидкий гелий может соперничать с ней. Но необычные свойства жидкого гелия (такие, как сверхтекучесть) проявляются при очень низких температурах (вблизи абсолютного нуля) и обусловлены специфическими квантовыми законами. Поэтому жидкий гелий - это экзотическое вещество. Вода же в нашем сознании является прообразом всех жидкостей, и тем более удивительно, когда мы называем ее самой необычной. Но в чем же заключается необычность воды? Дело в том, что трудно назвать какое-либо ее свойство, которое не было бы аномальным, то есть ее поведение (в зависимости от изменения температуры, давления и других факторов) существенно отличается от такового у подавляющего большинства других жидкостей, у которых это поведение похоже и может быть объяснено из самых общих физических принципов. К таким обычным, нормальным жидкостям относятся, например, расплавленные металлы, сжиженные благородные газы (за исключением гелия), органические жидкости (бензин, являющийся их смесью, или спирты).

С формальной точки зрения вода имеет несколько различных корректных химических названий:

· Оксид водорода

· Гидроксид водорода

· Монооксид дигидрогена

· Гидроксильная кислота

· англ. hydroxic acid

· Оксидан

· Дигидромонооксид

§ 1.2 Водородная связь в воде. Критерий водородной связи

Согласно общему определению водородная связь - это особый тип связи между электроотрицательным атомом и атомом водорода, связанного с другим электроотрицательным атомом.

Рис.1.2.1. Образование ВС связи.

Водородная связь (ВС) сильнее вандерваальсова взаимодействия, но слабее ковалентной

В компьютерном эксперименте пару молекул считают связанной водородной связью, если они удовлетворяют некоторым заранее сформулированным условиям - критериям образования ВС. Один из простейших энергетических критериев водородной связи, позволяющий идентифицировать ее в рамках численного эксперимента, был предложен в 1972 году Стиллинжером и Рахманом [1]. Согласно данному определению, две молекулы являются связанными водородной связью, если энергия взаимодействия между молекулами меньше некоторого порогового значения т.е.

(1)

Другой критерий водородной связи основывается на геометрических параметрах, учитывающих углы и расстояния между атомами. Существуют различные модификации геометрического критерия водородной связи [2-5]:

водородный связь вода лед

Согласно определению (2), водородная связь существует, если расстояние между атомами кислорода в соседних молекулах меньше или равно значению . В определении (3) расстояние между атомами кислорода и водорода в молекулярных парах ограничивается пороговым расстоянием . Параметр определяет максимальное значение длины водородной связи. Пороговые значения и обычно определяются из парциальных радиальных функций распределений частиц, и , соответственно. Двухпараметрический геометрический критерий водородной связи (4) накладывает дополнительное условие на ориентацию взаимодействующих молекул. Параметр представляет допустимое отклонение водородной связи от линейности. Обычно оно имеет значение порядка 30о. Критерий, определяемый системой неравенств (5) включает условия (2) и (4). Недавно был введен модифицированный энергетический критерий водородной связи, определяемый следующими условиями:

(6)

Данный критерий фактически объединяет условия энергетического критерия Стиллинжера-Рахмана (1) и геометрического критерия (4).

§ 1.3 Аномальные свойства воды

Физические аномалии

Вода в нормальных атмосферных условиях сохраняет жидкое агрегатное состояние, тогда как аналогичные водородные соединения являются газами. Это объясняется особыми характеристиками слагающих молекулы атомов и присутствием связей между ними. Из-за большой разности электроотрицательностей атомов водорода и кислорода электронные облака сильно смещены в сторону кислорода. По этой причине молекула воды является активным диполем, где кислородная сторона отрицательна, а водородная положительна. В результате молекулы воды притягиваются своими противоположными полюсами, и образуют полярные связи, на разрыв которых требуется много энергии. В составе каждой молекулы ион водорода (протон) не имеет внутренних электронных слоев и обладает малыми размерами, в результате чего он может проникать в электронную оболочку отрицательно поляризованного атома кислорода соседней молекулы, образуя водородную связь с другой молекулой.

Каждая молекула связана с четырьмя другими посредством водородных связей -- две из них образует атом кислорода и две атомы водорода. Комбинация этих связей между молекулами воды -- полярной и водородной и определяет очень высокую температуру её кипения и удельную теплоты парообразования. В результате этих связей в водной среде возникает давление в 15-20 тыс. атмосфер, которое и объясняет причину трудносжимаемости воды, так при увеличении атмосферного давления на 1 бар, вода сжимается на 0,00005 доли её начального объёма.

Первое аномальное свойство воды - аномалия точек кипения и замерзания: Если бы вода - гидрид кислорода - Н2О была бы нормальным мономолекулярным соединением, таким, например, как ее аналоги по шестой группе Периодической системы элементов Д.И. Менделеева гидрид серы Н2S, гидрид селена Н2Se, гидрид теллура Н2Те, то в жидком состоянии вода существовала бы в диапазоне от минус 90°C до минус 70°C.

Рис.1.3.1 Аномалии точки кипения и замерзания воды по сравнению с другими соединениями.

Структуры воды и льда между собой очень похожи. В воде, как и во льду, молекулы стараются расположиться в определённом порядке образовать структуру, однако тепловое движение этому препятствует. При температуре перехода в твёрдое состояние тепловое движение молекул более не препятствует образованию структуры, и молекулы воды упорядочиваются, в процессе этого объёмы пустот между молекулами увеличиваются, и общая плотность воды падает, что и объясняет причину меньшей плотности воды в фазе льда. При испарении, напротив, рвутся все связи. Разрыв связей требует много энергии, отчего у воды самая большая удельная теплоёмкость среди прочих жидкостей и твёрдых веществ. Для того чтобы нагреть один литр воды на один градус, требуется затратить 4,1868 кДж энергии. Благодаря этому свойству вода нередко используется как теплоноситель. Однако удельная теплоёмкость воды, в отличие от других веществ непостоянна: при нагреве от 0 до 35°С её удельная теплоёмкость падает, в то время как у других веществ она постоянна при изменении температуры [5].

Вода обладает также высоким поверхностным натяжением среди жидкостей, уступая в этом только ртути. Относительно высокая вязкость воды обусловлена тем, что водородные связи мешают молекулам воды двигаться с разными скоростями.

По сходным причинам вода является хорошим растворителем полярных веществ. Каждая молекула растворяемого вещества окружается молекулами воды, причём положительно заряженные участки молекулы растворяемого вещества притягивают атомы кислорода, а отрицательно заряженные -- атомы водорода. Поскольку молекула воды мала по размерам, много молекул воды могут окружить каждую молекулу растворяемого вещества.

Это свойство воды используется живыми существами. В живой клетке и в межклеточном пространстве вступают во взаимодействие растворы различных веществ в воде. Вода необходима для жизни всех без исключения одноклеточных и многоклеточных живых существ на Земле.

Вода обладает отрицательным электрическим потенциалом поверхности.

Вода имеет показатель преломления n=1,33 в оптическом диапазоне. Однако она сильно поглощает инфракрасное излучение, и поэтому водяной пар является основным естественным парниковым газом, отвечающим более чем за 60 % парникового эффекта. Благодаря большому дипольному моменту молекул, вода также поглощает микроволновое излучение, на чём основан принцип действия микроволновой печи.

В атмосфере нашей планеты вода находится в виде капель малого размера, в облаках и тумане, а также в виде пара. При конденсации выводится из атмосферы в виде атмосферных осадков (дождь, снег, град, роса). В совокупности жидкая водная оболочка Земли называется гидросферой, а твёрдая криосферой. Вода является важнейшим веществом всех живых организмов на Земле. Предположительно, зарождение жизни на Земле произошло в водной среде.

На это особое свойство воды впервые обратил внимание еще Г. Галилей. При переходе любой жидкости (кроме галлия и висмута) в твердое состояние молекулы располагаются теснее, а само вещество, уменьшаясь в объеме, становится плотнее.

Рис.1.3.2. Зависимость удельного объема льда и воды от температуры

Любой жидкости, но не воды. Вода и здесь представляет собой исключение. При охлаждении вода сначала ведет себя, как и другие жидкости: постепенно уплотняясь, она уменьшает свой объем. Такое явление можно наблюдать до +4°С (точнее до +3,98°С).

Именно при температуре +3,98°С вода имеет наибольшую плотность и наименьший объем. Дальнейшее охлаждение воды постепенно приводит уже не к уменьшению, а к увеличению объема. Плавность этого процесса вдруг прерывается и при 0°С происходит резкий скачок увеличения объема почти на 10%! В это мгновение вода превращается в лед [6].

Уникальная особенность поведения воды при охлаждении и образовании льда играет исключительно важную роль в природе и жизни. Именно эта особенность воды предохраняет от сплошного промерзания в зимний период все водоемы земли - реки, озера, моря и тем самым спасает жизнь.

В отличие от пресной воды морская вода при охлаждении ведет себя иначе. Замерзает она не при 0°С, а при минус 1,8-2,1°С - в зависимости от концентрации растворенных в ней солей. Имеет максимальную плотность не при + 4°С, а при -3,5°С. Таким образом она превращается в лед, не достигая наибольшей плотности. Если вертикальное перемешивание в пресных водоемах прекращается при охлаждении всей массы воды до +4°С, то в морской воде вертикальная циркуляция происходит даже при температуре ниже 0°С. Процесс обмена между верхними и нижними слоями идет непрерывно, создавая благоприятные условия для развития животных и растительных организмов.

Особенно благоприятной средой для обитателей морей и океанов являются талые воды, образующиеся при таянии ледников и айсбергов. В безбрежных просторах океанов плавающие горы-айсберги в основном скрыты под водой, однако могут представлять серьезную опасность для судоходства. Трагедией века была названа гибель "Титаника", которая произошла в результате столкновения суперлайнера с огромным айсбергом 14 апреля 1912 года.

Все термодинамические свойства воды заметно или резко отличаются от других веществ.

Вода чрезвычайно распространённое вещество в космосе, однако из-за высокого внутри жидкостного давления вода не может существовать в жидком состоянии в условиях вакуума космоса, отчего она представлена только в виде пара или льда.

Одним из наиболее важных вопросов, связанных с освоением космоса человеком и возможности возникновения жизни на других планетах, является вопрос о наличии воды за пределами Земли в достаточно большой концентрации. Известно, что некоторые кометы более чем на 50 % состоят из водяного льда. Не стоит, впрочем, забывать, что не любая водная среда пригодна для жизни -- в частности, аккумуляторная батарея содержит 25 % раствор серной кислоты в воде (но жизнь в нем, очевидно, маловероятна, тем более, её возникновение).

Вода широко распространена в Солнечной системе, она есть почти везде, даже в атмосфере Венеры присутствует небольшое количество водяного пара. Наличие воды (в основном в виде льда) подтверждено на многих спутниках Юпитера и Сатурна: Энцеладе, Тефии, Европе, Ганимеде и др. Вода присутствует в составе всех комет и многих астероидов. Учёными предполагается, что многие транснептуновые объекты имеют в своём составе воду.

Жидкая вода, предположительно, имеется под поверхностью некоторых спутников планет, наиболее вероятно, на Европе -- спутнике Юпитера.

Вода играет уникальную роль как вещество, определяющее возможность существования и саму жизнь всех существ на Земле. Она выполняет роль универсального растворителя, в котором происходят основные биохимические процессы живых организмов. Уникальность воды состоит в том, что она достаточно хорошо растворяет как органические, так и неорганические вещества, обеспечивая высокую скорость протекания химических реакций и в то же время -- достаточную сложность образующихся комплексных соединений. Благодаря водородной связи, вода остаётся жидкой в широком диапазоне температур, причем именно в том, который широко представлен на планете Земля в настоящее время.

Аномалия теплоёмкости. Она заключается в следующем: При нагревании любого вещества теплоемкость неизменно повышается. Для любого вещества, но не воды. Вода - исключение, она и здесь не упускает возможности быть оригинальной: с повышением температуры изменение теплоемкости воды аномально; от 0 до 37°С она понижается и только от 37 до 100°С теплоемкость все время растет [7-9].

Рис.1.3.3. Температурная зависимость воды от удельной теплоёмкости

В пределах температур, близких к 37°С, теплоемкость воды минимальна. Именно эти температуры - область температур человеческого тела, область нашей жизни. Физика воды в области температур 35-41°С (пределы возможных, нормально протекающих физиологических процессов в организме человека) констатирует вероятность достижения уникального состояния воды, когда массы квазикристаллической и объемной воды равны друг другу и способность одной структуры переходить в другую - вариабельность - максимальная. Это замечательное свойство воды предопределяет равную вероятность течения обратимых и необратимых биохимических реакций в организме человека и обеспечивает "легкое управление" ими.

Другая общеизвестная исключительная способность воды растворять любые вещества. И здесь вода демонстрирует необычные для жидкости аномалии, и в первую очередь аномалии диэлектрической постоянной воды. Это связано с тем, что ее диэлектрическая постоянная (или диэлектрическая проницаемость) очень велика и составляет 81, в то время как для других жидкостей она не превышает 10. В соответствии с законом Кулона сила взаимодействия двух заряженных частиц в воде будет в 81 раз меньше, чем, например, в воздухе, где эта характеристика равна единице. В этом случае прочность внутримолекулярных связей уменьшается в 81 раз и под действием теплового движения молекулы диссоциируют с образованием ионов. Необходимо отметить, что из-за исключительной способности растворять другие вещества вода никогда не бывает идеально чистой.

Аномальные свойства воды, определяющие, в том числе, и наличие жизни на Земле - её переменная плотность, высокая теплоемкость и большое поверхностное натяжение, объясняются двумя типами структур, в которые самоорганизуются молекулы жидкости, уверены авторы нового исследования.

Ученым давно были известны 66 необъяснимых свойств воды, отличающих её от большинства других химических веществ, встречающихся в жидком состоянии. Так, в отличие от всех известных жидкостей, плотность которых монотонно увеличивается с понижением температуры, плотность воды максимальна при 4 градусах Цельсия, а при дальнейшем понижении температуры вновь начинает убывать. Это уникальное свойство воды делает возможной жизнь в реках и озерах - в противном случае эти относительно мелкие водоемы неизбежно промерзали бы до дна в зимний период и были бы лишены всех живых организмов, за исключением, может быть, простейших бактерий экстремофилов.

Объяснить эти свойства на основании лишь строения и химических параметров молекул воды ученые до последнего времени не могли. Секрет крылся в структуре, в которую самоорганизуются молекулы жидкой воды. Он долгое время оставался неразгаданным, так как изучить эту структуру теми же методами, что применяются для изучения строения твердых тел, практически невозможно.

Команда Андерса Нильсона (Anders Nilsson), ведущего специалиста Стенфордского центра синхротронного излучения (Stanford Synchrotron Radiation Lightsource), сумела преодолеть эти трудности благодаря новейшим методам изучения строения жидкостей с использованием мощного рентгеновского излучения, получаемого с помощью больших ускорителей элементарных частиц, называемых синхротронами. Один из использованных в работе синхротронов находится в Японии, а второй в США.

Ученые выяснили, что существовавшие до сих пор представления о молекулярной структуре воды были неверными - оказалось, что её молекулы формируют не одну структуру, а одновременно два типа структур, сосуществующих в жидкости вне зависимости от температуры. Один тип структуры формируется в виде сгустков примерно по 100 молекул, структура которых напоминает структуру льда. Второй тип структуры, окружающей сгустки, гораздо менее упорядочен.

Увеличение температуры вплоть до точки кипения воды приводит к некоторому искажению структуры сгустков и уменьшению их количества и доминированию разупорядоченной структуры.

§ 1.4 Кристаллические льды

Лёд - кристаллическая форма воды, обладающая по последним данным четырнадцатью структурными модификациями. Среди них имеются и кристаллические (природный лед) и аморфные (кубический лед) и метастабильные модификации, различающиеся друг от друга взаимным расположением и физическими свойствами молекул воды, связанные водородными связями, формирующими кристаллическую решетку льда.

Рис.1.4.1. Кристаллическая структура льда.

Все они кроме привычного нам природного льда Ih, кристаллизующего в гексагональной решетке, образуются в условиях экзотических -- при очень низких температурах сухого льда и жидкого азота и высоких давлениях в тысячи атмосфер, когда углы водородных связей в молекуле воды изменяются и образуются кристаллические системы, отличные от гексагональной. Такие условия напоминают космические и не встречаются на Земле.

В природе лёд представлен главным образом, одной кристаллической разновидностью, кристаллизующейся в гексагональной решётке, напоминающей структуру алмаза, где каждая молекула воды окружена четырьмя ближайшими к ней молекулами, находящимися на одинаковых расстояниях от нее, равных 2,76 ангстрем и размещенных в вершинах правильного тетраэдра . В связи с низким координационным числом структура льда является сетчатой, что влияет на его невысокую плотность, составляющая 0,931 г/см3.

Самое необычное свойство льда -- это удивительное многообразие внешних проявлений. При одной и той же кристаллической структуре он может выглядеть совершенно по-разному, принимая форму прозрачных градин и сосулек, хлопьев пушистого снега, плотной блестящей корки льда или гигантских ледниковых масс. Лёд встречается в природе в виде материкового, плавающего и подземного льда, а также в виде снега и инея. Он распространён во всех областях обитания человека. Собираясь в больших количествах, снег и лед формируют особые структуры с принципиально иными, чем у отдельных кристаллов или снежинок, свойствами. Природный лед сформирован в основном льдом осадочно-метаморфического происхождения, образовавшийся из твердых атмосферных осадков в результате последующего уплотнения и перекристаллизации. Характерная особенность природного льда -- зернистость и полосчатость. Зернистость обусловлена процессами рекристаллизации; каждое зерно ледникового льда представляет собой кристалл неправильной формы, тесно примыкающий к другим кристаллам в ледяной толще таким образом, что выступы одного кристалла плотно входят в углубления другого. Такой лед получил название поликристаллического. В нем каждый кристалл льда представляет собой слой тончайших листочков, налегающих друг на друга в базисной плоскости, перпендикулярной к направлению оптической оси кристалла.

Общие запасы льда на Земле составляют согласно расчетам около 30 млн. км3 (табл. 1). Больше всего льда сосредоточено в Антарктиде, где толщина его слоя достигает 4 км. Также имеются данные о наличии льда на планетах Солнечной системы и в кометах. Лед имеет столь большое значение для климата нашей планеты и обитания на ней живых существ, что ученые обозначили для льда особую среду -- криосферу, границы которой простираются высоко в атмосферу и глубоко в земную кору.

Табл. 1. Количество, распространение и время жизни льда.

Вид льда

Масса

Площадь распространения

Средняя концентрация,

г/см2

Скорость прироста массы, г/год

Среднее время жизни,

год

г

%

млн. км2

%

Ледники

2.4·1022

98.95

16.1

10.9

суши

1.48·105

2.5·1018

9580

Подземный лёд

2·1020

0.83

21

14.1

суши

9.52·103

6·1018

30--75

Морской лёд

3.5·1019

0.14

26

7.2

океана

1.34·102

3.3·1019

1.05

Снежный покров

1.0·1019

0.04

72.4

14.2

Земли

14.5

2·1019

0.3--0.5

Айсберги

7.6·1018

0.03

63.5

18.7

океана

14.3

1.9·1018

4.07

Атмосферный лёд

1.7·1018

0.01

510.1

100

Земли

3.3·10--1

3.9·1020

4·10--3

Кристаллы льда неповторимы по своей форме и пропорциям. Любой растущий природный кристалл, включая кристалл льда, всегда стремится создать идеальную правильную кристаллическую решетку, поскольку это выгодно с точки зрения минимума его внутренней энергии. Любые примеси, как известно, искажают форму кристалла, поэтому при кристаллизации воды в первую очередь в решётку встраиваются молекулы воды, а посторонние атомы и молекулы примесей вытесняются в жидкость. И только когда примесям деваться уже некуда, кристалл льда начинает встраивать их в свою структуру или оставляет в виде полых капсул с концентрированной незамерзающей жидкостью - рассолом. Поэтому морской лёд пресный и даже самые грязные водоемы покрываются прозрачным и чистым льдом. При плавлении льда он вытесняет примеси в рассол. В планетарном масштабе феномен замерзания и таяния воды, наряду с испарением и конденсацией воды, играет роль гигантского очистительного процесса, в котором вода на Земле постоянно очищает сама себя.

Табл. 2. Некоторые физические свойства льда I.

Свойство

Значение

Примечание

Теплоемкость, кал/(г·°C)

Теплота таяния, кал/г

Теплота парообразования, кал/г

0.51 (0 °C)

79.69

677

Сильно уменьшается с понижением температуры

Коэффициент термического расширения, 1/°C

9.1·10-5 (0 °C)

Поликристаллический лёд

Теплопроводность, кал/(см·сек·°C)

4.99·10 -3

Поликристаллический лёд

Показатель преломления:

1.309 (-3 °C)

Поликристаллический лёд

Удельная электрическая проводимость, ом-1·см-1

10-9 (0 °C)

Кажущаяся энергия активации 11 ккал/моль

Поверхностная электропроводность, ом-1

10-10 (-11°C)

Кажущаяся энергия активации 32 ккал/моль

Модуль упругости Юнга, дин/см2

9·1010 (-5 °C)

Поликристаллический лёд

Сопротивление, МН/м2 :

раздавливанию

разрыву

срезу

2.5

1.11

0.57

Поликристаллический лёд

Поликристаллический лёд

Поликристаллический лёд

Динамическая вязкость, пуаз

1014

Поликристаллический лёд

Энергия активации при деформировании и механической релаксации, ккал/моль

11.44-21.3

Линейно растет на 0.0361 ккал/(моль·°C) от 0 до 273.16 К

В связи с широким распространением льда на Земле, отличие физических свойств льда (табл. 2) от свойств других веществ играет важную роль во многих природных процессах. Лёд обладает многими другими полезными для поддержания жизни свойствами и аномалиями - аномалиями плотности, давления, объема, теплопроводности. Если бы не было водородных связей, сцепляющих молекулы воды в кристалл, лед плавился бы при -90 °С. Но этого не происходит из-за наличия водородных связей между молекулами воды. Вследствие меньшей, чем у воды, плотности лёд образует на поверхности воды плавучий покров, предохраняющий реки и водоёмы от донного замерзания, поскольку его теплопроводность намного меньше, чем воды. При этом наименьшая плотность и объем наблюдается при +3,98 °С . Дальнейшее охлаждение воды до 0 0С постепенно приводит не к уменьшению, а к увеличению ее объема почти на 10%, когда вода превращается в лед. Такое поведение воды свидетельствует об одновременном существовании в воде двух равновесных фаз - жидкой и квазикристаллической по аналогии с квазикристаллами, кристаллическая решетка которых имеет не только периодическое строение, но и обладает осями симметрии разных порядков, существование которых ранее противоречило представлениям кристаллографов. Эта теория, впервые выдвинутая известным отечественным физиком-теоретиком Я. И. Френкелем, основана на предположении, что часть молекул жидкости образует квазикристаллическую структуру, тогда как остальные молекулы являются газоподобными, свободно движущимися по объему. Распределение молекул в малой окрестности любой фиксированной молекулы воды имеет определенную упорядоченность, несколько напоминающую кристаллическую, хотя и более рыхлую . По этой причине структуру воды иногда называют квазикристаллической или кристаллоподобной, т. е. обладающей симметрией и наличием упорядоченности во взаимном расположении атомов или молекул.

Другое свойство состоит в том, что скорость течения льда прямо пропорциональна энергии активации и обратно пропорциональна абсолютной температуре, так что с понижением температуры лёд приближается по своим свойствам к абсолютно твёрдому телу. В среднем при близкой к таянию температуре текучесть льда в 106 раз выше, чем у горных пород . Благодаря своей текучести лёд не накопляется в одном месте, а в виде ледников постоянно перемещается. Зависимость между скоростью течения и напряжением у поликристаллического льда гиперболическая; при приближённом описании её степенным уравнением показатель степени увеличивается по мере роста напряжения.

Видимый свет льдом практически не поглощается, поскольку световые лучи проходят кристалл льда насквозь, но задерживает ультрафиолетовое излучение и большую часть инфракрасного излучения Солнца. В этих областях спектра лёд выглядит абсолютно чёрным, поскольку коэффициент поглощения света в этих областях спектра очень велик. В отличие от кристаллов льда, белый свет, падающий на снег, не поглощается, а многократно преломляется в ледяных кристаллах и отражается от их граней. Поэтому снег выглядит белым.

Вследствие очень высокой отражательной способности льда (0,45) и снега (до 0,95) покрытая ими площадь -- в среднем за год около 72 млн. км2 в высоких и средних широтах обоих полушарий -- получает солнечного тепла на 65% меньше нормы и является мощным источником охлаждения земной поверхности, чем в значительной мере обусловлена современная широтная климатическая зональность. Летом в полярных областях солнечная радиация больше, чем в экваториальном поясе, тем не менее, температура остаётся низкой, т. к. значительная часть поглощаемого тепла затрачивается на таяние льда, имеющего очень высокую теплоту таяния.

Самое удивительное в структуре льда заключается в том, что молекулы воды при низких температурах и высоких давлениях внутри углеродных нанотрубок могут кристаллизоваться в форме двойной спирали, напоминающей молекулы ДНК. Это было доказано недавними компьютерными экспериментами американских учёных под руководством Сяо Чэн Цзэна из Университете штата Небраска (США). Чтобы вода сформировала спираль в моделируемом эксперименте она помещалась в нанотрубки диаметром от 1,35 до 1,90 нм под высоким давлением, варьирующимися от 10 до 40000 атмосфер и задавалась температура -23 °C . Ожидалось увидеть, что вода во всех случаях образует тонкую трубчатую структуру. Однако, модель показала, что при диаметре нанотрубки в 1,35 нм и внешнем давлении 40000 атмосфер водородные связи в структуре льда искривились, что привело к образованию спирали с двойной стенкой - внутренней и внешней. Внутренняя стенка в этих условиях оказалась скрученной в четверо спиралью, а внешняя стенка состояла из четырёх двойных спиралей, похожих на молекулу ДНК . Данный факт может служить подтверждением связи структуры жизненно-важной молекулы ДНК со структурой самой воды и что вода служила матрицей для синтеза молекул ДНК.

В настоящее время известны три аморфных разновидности и 15 кристаллических модификаций льда. Фазовая диаграмма на рисунке справа показывает при каких температурах и давлениях существуют некоторые из этих модификаций (более полное описаниесм.ниже).

В природных условиях Земли лёд представлен, главным образом, одной кристаллической модификацией, кристаллизующейся вгексагональной сингонии (лёд Ih). Во льду Ih каждая молекула Н2O окружена четырьмя ближайшими к ней молекулами, находящимися на одинаковых расстояниях от неё, равных 2,76 Е и размещённых в вершинах правильного тетраэдра.

Ажурная кристаллическая структура такого льда приводит к тому, что его плотность, равная 916,7 кг/мі при 0 °C, ниже плотности воды (999,8 кг/мі) при той же температуре. Поэтому вода, превращаясь в лёд, увеличивает свой объём примерно на 9 %. Лёд, будучи легче жидкой воды, образуется на поверхности водоёмов, что препятствует дальнейшему замерзанию воды.

Высокая удельная теплота плавления льда, равная 330 кДж/кг, (для сравнения -- удельная теплоты плавления железа равна 270 кДж/кг), служит важным фактором в обороте тепла на Земле. Так, чтобы растопить 1 кг льда или снега, нужно столько же тепла, сколько требуется, чтобы нагреть литр воды от 0 до 80 °C.

Лёд встречается в природе в виде собственно льда (материкового, плавающего,подземного), а также в виде снега, инея и т. д. Под действием собственного веса лёд приобретает пластические свойства и текучесть.

Природный лёд обычно значительно чище, чем вода, так как при кристаллизации воды в первую очередь в решётку встают молекулы воды. Лёд может содержать механические примеси -- твёрдые частицы, капельки концентрированных растворов, пузырьки газа. Наличием кристалликов соли и капелек рассола объясняется солоноватость морского льда.

Табл. 3 Фазы льда

Фаза

Характеристики

Аморфный лёд

Аморфный лёд не обладает кристаллической структурой. Он существует в трех формах: аморфный лёд низкой плотности (LDA), образующийся при атмосферном давлении и ниже, аморфный лёд высокой плотности (HDA) и аморфный лёд очень высокой плотности (VHDA), образующийся при высоких давлениях. Лёд LDA получают очень быстрым охлаждением жидкой воды («сверхохлаждённая стекловидная вода», HGW), или конденсацией водяного пара на очень холодной подложке («аморфная твёрдая вода», ASW), или путём нагрева высокоплотностных форм льда при нормальном давлении («LDA»).

Лёд Ih

Обычный гексагональный кристаллический лёд. Практически весь лёд на Земле относится ко льду Ih, и только очень малая часть -- ко льду Ic.

Лёд Ic

Метастабильный кубический кристаллический лёд. Атомы кислорода расположены как в кристаллической решётке алмаза. Его получают при температуре в диапазоне от ?133 °C до ?123 °C, он остаётся устойчивым до ?73 °C, а при дальнейшем нагреве переходит в лёд Ih. Он изредка встречается в верхних слоях атмосферы.

Лёд II

Тригональный кристаллический лёд с высокоупорядоченной структурой. Образуется изо льда Ih при сжатии и температурах от ?83 °C до ?63 °C. При нагреве он преобразуется в лёд III.

Лёд III

Тетрагональный кристаллический лёд, который возникает при охлаждении воды до ?23 °C и давлении 300 МПа. Его плотность больше, чем у воды, но он наименее плотный из всех разновидностей льда в зоне высоких давлений.

Лёд IV

Метастабильный тригональный лёд. Его трудно получить без нуклеирующей затравки.

Лёд V

Моноклинный кристаллический лёд. Возникает при охлажении воды до ?20 °C и давлении 500 МПа. Обладает самой сложной структурой по сравнению со всеми другими модификациями.

Лёд VI

Тетрагональный кристаллический лёд. Образуется при охлажении воды до ?3 °C и давлении 1.1 ГПа. В нём проявляется дебаевская релаксация.

Лёд VII

Кубическая модификация. Нарушено расположение атомов водорода; в веществе проявляется дебаевская релаксация. Водородные связи образуют две взаимопроникающие решётки.

Лёд VIII

Более упорядоченный вариант льда VII, где атомы водорода занимают, очевидно, фиксированные положения. Образуется изо льда VII при его охлаждении ниже 5 °C.

Лёд IX

Тетрагональная метастабильная модификация. Постепенно образуется изо льда III при его охлаждении от ?65 °C до ?108 °C, стабилен при температуре ниже ?133 °C и давлениях между 200 и 400 МПа. Его плотность 1.16 г/смі, то есть, несколько выше, чем у обычного льда.

Лёд X

Симметричный лёд с упорядоченным расположением протонов. Образуется при давлениях около 70 ГПа.

Лёд XI

Ромбическая низкотемпературная равновесная форма гексагонального льда. Является сегнетоэлектриком.

Лёд XII

Тетрагональная метастабильная плотная кристаллическая модификация. Наблюдается в фазовом пространстве льда V и льда VI. Можно получить нагреванием аморфного льда высокой плотности от ?196 °C до примерно ?90 °C и при давлении 810 МПа.

Лёд XIII

Моноклинная кристаллическая разновидность. Получается при охлаждении воды ниже ?143 °C и давлении 500 МПа. Разновидность льда V с упорядоченным расположением протонов.

Лёд XIV

Ромбическая кристаллическая разновидность. Получается при температуре ниже ?155 °C и давлении 1.2 ГПа. Разновидность льда XII с упорядоченным расположением протонов.

Лёд XV

Псевдоромбическая кристаллическая разновидность льда VI с упорядоченным расположением протонов. Можно получить путём медленного охлаждения льда VI примерно до ?143 °C и давлении 0.8-1.5 ГПа.[5]

§ 1.5 Аморфные льды

Аморфный лёд -- вода в форме твердого аморфного вещества, у которого молекулы воды расположены случайным образом, наподобие атомов в обычном стекле. Чаще всего в природе лёд находится в поликристаллическом состоянии. Аморфный лед отличается тем, что у него отсутствует дальний порядок кристаллической структуры.

Аморфный лед получают путем чрезвычайно быстрого охлаждения жидкой воды (со скоростью порядка 1 000 000 К в секунду), так что молекулы не успевают сформировать кристаллическую решётку.

Точно так же, как существует много кристаллических форм льда (в настоящее время известны пятнадцать модификаций), есть также разные формы аморфного льда, отличающихся главным образом плотностью.

Способы получения

Почти любое кристаллическое вещество можно быстрым охлаждением из расплава перевести в метастабильное аморфное состояние. Поэтому ключом к получению аморфного льда являются темпы охлаждения. Жидкую воду надо охладить до температуры её стеклования (около 136 К или ?137 °C) в течение нескольких миллисекунд, чтобы избежать спонтанного зарождения кристаллов.

Давление служит ещё одним важным фактором в получении аморфного льда. Кроме того, меняя давление, можно превращать одну разновидность аморфного льда в другую.

К воде можно добавлять специальные химические вещества -- криопротекторы, которые понижают температуру её замерзания и увеличивают вязкость, что препятствует образованию кристаллов. Стеклование без добавления криопротекторов достигается при очень быстром охлаждении. Эти методы используют в биологии для криоконсервации клеток и тканей.

Разновидности аморфного льда

Аморфный лёд существует в трех главных формах: аморфный лёд низкой плотности (АЛНП или LDA), который образуется при атмосферном давлении и ниже, аморфный лёд высокой плотности (АЛВП или HDA) и аморфный лёд очень высокой плотности (АЛОВП или VHDA).

Аморфный лёд низкой плотности

При осаждении водяного пара на медную пластинку, охлаждённую ниже 163К, впервые был получен аморфный лёд с плотностью 0,93 г/смі, он же аморфная твёрдая вода, или стеклообразная вода. Сейчас в лабораториях получают АЛНП тем же методом при температуре ниже 120 К. Очевидно, в космосе такой лёд возникает подобным же способом на разных холодных поверхностях, например, частицах пыли. Предполагают, что этот лёд вполне обычен для состава комет и присутствует на внешних планетах.

Если менять температуру подложки и скорость осаждения, то можно получать лёд другой плотности. Так, при 77 К и скорости осаждения 10 мг в час получается лёд плотности 0,94 г/смі, а при 10К и скорости 4 мг в час -- 1,1 г/смі, причём его структура, хоть и лишённая дальнего порядка, оказывается гораздо сложнее, чем у предыдущего аморфного льда. До сих пор неясно: одна и та же модификация аморфного льда (с плотностью 0,94 г/смі) образуется при нагревании АЛВП и при осаждении из пара или они различаются.

Аморфный лёд высокой плотности

Аморфный лёд высокой плотности можно получить, сдавливая лёд Ih при температурах ниже ~140 К. При температуре 77 K, АЛВП образуется из обычного природного льда Ih при давлениях около 1,6 ГПа, а из АЛНП при давлении около 0,5 ГПа. При температуре 77 К и давлении 1 ГПа плотность АЛВП равна 1,3 г/смі. Если сбрость давление до атмосферного, плотность АЛВП уменьшится с 1,3 г/смі до 1,17 г/смі, но при температуре 77 К он сохраняется сколь угодно долго.

Если же лёд высокой плотности нагреть при нормальном давлении, он не превратится в исходный лёд Ih, а вместо этого станет ещё одной модификацией аморфного льда, на сей раз с низкой плотностью, 0,94 г/смі. Этот лёд при дальнейшем нагревании в районе 150 К закристаллизуется, но опять не в исходный лёд Ih, a примет кубическую сингонию льда Ic.

Аморфный лёд очень высокой плотности

АЛОВП был открыт в 1996 г., когда обнаружили, что если нагреть АЛВП до 160 К при давлении в диапазоне от 1 до 2 ГПа, то он становится плотнее, и при атмосферном давлении его плотность равна 1,26 г/смі.

Некоторые особенности

Тяжёлые аморфные льды вполне могли бы утонуть в обычной воде, но этого не случается: слегка нагревшись, они превратятся в кристаллический лёд, плотность которого окажется меньше водяной, и тот, не успев растаять, всплывёт вверх. Строго говоря, слово «плавление» к аморфному льду неприменимо, поскольку этот процесс происходит в интервале температур, что по-английски называется «softening» (размягчение).

С таянием аморфных льдов связана одна из нерешенных проблем. На фазовой диаграмме состояния льда граница между аморфными льдами низкой и высокой плотностей протягивается и в область жидкой фазы. Из этого следует, что при плавлении каждого из этих льдов должна получаться соответственно менее и более плотная вода, причём разница удельных объёмов у этих двух вод может достигать 20 %. Температура же этого плавления лежит в интервале от 130 до 200 К (в зависимости от давления). Можно предположить, что есть ещё точка, где сосуществуют три жидких фазы: две соответствуют размягчённым АЛНП и АЛВП, и одна -- обычной жидкой. Её координаты на фазовой диаграмме -- 0,1 ГПа и 200 К. К сожалению, довести аморфные льды до прямого превращения в жидкость не удаётся; при нагреве до примерно 150 К они становятся кристаллическим льдом. А он тает при гораздо более высокой температуре.

Применение. Аморфный лед используют в некоторых научных экспериментах, особенно электронной криомикроскопии, которая позволяет исследовать биологические молекулы в том состоянии, которое близко к их естественному состоянию в жидкой воде [10].

ГЛАВА II. ЭЛЕКТРОКРИСТАЛЛИЗАЦИЯ ВОДЫ

§2.1 Понятие о электролизе и электролитах

При подключении к полюсам источника постоянного тока, например, двух металлических пластин, погруженных в раствор кислоты или щелочи, в гальванической батарее наблюдается появление электрического тока. Одновременно на металлических пластинах происходят определенные реакции. Так, в случае применения платиновых пластинок и растворов щелочей или кислот на пластинке, присоединенной к положительному (отрицательному) полюсу, выделяется кислород (водород). Этот процесс получил название электролиза, а раствор -- электролита.

Находящиеся в электролите ионы под действием электрического тока принимают строго направленное движение: катионы -- к катоду, анионы -- к аноду, т. е. ионы служат переносчиками электрического тока в электролитах и называются электропроводниками II класса.

В транспортировке электричества через раствор участвуют все ионы, но в передаче его от раствора к металлу (электродам) -- лишь некоторые анионы и катионы. Следовательно, электропроводность электролитов и переход электричества от раствора к металлу и от металла к раствору являются отдельными процессами. Например, на катоде могут разряжаться нейтральные молекулы (NO2 + з -> NO-2; Ag(CN) + з -> Ag + CN-), которые остаются в электрическом поле неподвижными и в переносе электричества участия не принимают, в то время как приходящие к катоду (аноду) положительно (отрицательно) заряженные катионы (анионы) могут совершенно не разряжаться на электродах.

Количество проходящего через электролит электричества определяется числом кулонов, т. е. произведением силы тока (в амперах) на время (в секундах). Сила тока I, как правило, выражается законом Ома: I = Е/R, где Е -- напряжение или разность потенциалов.

(15)

Где l-расстояние между электродами; g -- площадь сечения столбика электролита.

Величина "и" есть электропроводность столбика электролита длиной 1 см и сечением 1 см2. Однако эта величина не пригодна для сравнения электропроводности разных электролитов, так как зависит от концентрации раствора. Для этой цели пользуются электропроводностью электролита, приведенной к 1 гэкв/л или 1 г моль/л называемой эквивалентной л или молярной Л:

(16)

где Сэ и См -- концентрации соли, кислоты или основания

С помощью этих величин легко вычислить степень диссоциации электролита б-- полный или частичный распад веществ, входящих в раствор.

Соотношение между количеством прошедшего через раствор электричества во время электролиза и количеством прореагировавших веществ на электродах определяется законами Фарадея, которые составляют основу гальваностегии. Первый закон гласит о том, что между количеством прошедшего через электролит электричества Q и количеством прореагировавшего в электрохимической реакции вещества или количества выделившихся на электродах продуктов реакции Дm существует зависимость:

Дm = qQ = qIt,

где q -- коэффициент пропорциональности; I -- сила тока; t -- время.

При I = 1А и t = 1 с Дm = q. Коэффициент q называют электрохимическим эквивалентом или количеством вещества, выделившегося на электродах, при прохождении через систему 1 Кл электричества.

Второй закон говорит о том, что при прохождении через электролиты одного и того же количества электричества массы прореагировавших веществ на электродах прямо пропорциональны их химическим эквивалентам:

(17)

где F - константа Фарадея. Ее значение, например, для серебра равно 96 500 Кл.

Следовательно, для превращения 1 г*экв любого вещества необходимо пропустить через электролит 96 500 Кл электричества.

Для определения влияния побочных электрических реакций применяется понятие выхода по току, которое выражается уравнением:

(18)

где mп -- практически прореагировавшее количество вещества; mт -- теоретически подсчитанное количество вещества, которое должно было прореагировать в соответствии с законом Фарадея: Qт-- количество прошедшего электричества, вычисленное по закону Фарадея; Qп -- практически израсходованное количество электричества.

Толщину покрытия, продолжительность электролиза и плотность тока вычисляют по формуле

(19)

где A -- электрохимический эквивалент; з -- выход по току.

Так как масса m= Vс (где V-- объем выделившегося металла; с -- плотность металла), a V= gd, где g -- общая площадь гальванопокрытия; d - его толщина, толщину (в мкм) находят по формуле

(20)

По этой же формуле можно определить катодную плотность тока (вА/дм2) и t (в мин).

Во время электродных реакций, вызываемых электрическим током, электроны на аноде освобождаются, а на катоде связываются. Вследствие этого на аноде происходят электрохимические реакции окисления, а на катоде -- восстановления.

При погружении металла в электролит, содержащий ионы данного металла, на границе фаз металл -- электролит возникает разность потенциалов, называемая электродным потенциалом. Этот потенциал обусловлен зарядами ионов, которые имеются как в электролите, так и в металле.

При отсутствии внешнего электрического поля переход ионов из металла в электролит и обратно быстро достигается равновесие ионов и устанавливается постоянный потенциал (гальвани-потенциал). Абсолютное значение гальвани-потенциала любого электрода определяется относительно другого, вспомогательного электрода, например относительно нормального водородного электрода, гальвани-потенциал которого условно обозначен 0,0000 В (при активности водородных ионов 1 и давлении газа 1 кгс/см2). Электродный потенциал зависит от температуры, валентности и концентрации (или активности) ионов металла в электролите.

При переходе ионов на электрод изменяется свободная энергия системы металл-электролит ДF. Эта энергия определяется осмотической работой, получаемой при переходе иона от активного состояния а0 к состоянию активности а:

(21)

где R -- газовая постоянная; Т-- абсолютная температура.

Значение ДF можно приравнять к максимальной электрической работе при постоянном объеме -ДF=zFц (где z -- валентность иона; F -- константа Фарадея). Тогда получим

(21)

При R = 8,31 Дж. F = 96 500 Кл, Т=298 К это уравнение примет следующий вид:

(22)

Первый член правой стороны уравнения состоит из постоянных величин, и его можно обозначить константой ц0, тогда

(23)

Эта формула называется уравнением Нерста и выражает потенциал любого металла, погруженного в раствор своих ионов, активность которых равна а (при а = 1 ц = ц0). Величину ц0 называют нормальным, или стандартным, потенциалом электрода.

При динамическом равновесии между металлом и электролитом основные ионы, определяющие потенциал электрода, с одинаковой скоростью переходят к электроду и от него, поэтому скорость анодного и катодного процессов равна iк = iа = i0, где i0 -- ток обмена, характеризующий скорость процессов на электроде при равновесном значении электродного потенциала, т. е. при отсутствии внешнего тока.

Ток обмена зависит от вида, состава и концентрации электролита. При поляризации электрода (пропускание внешнего тока, например плотностью i) его потенциал приобретает значение цi, отличное от потенциала це (без тока). Отклонение электродного потенциала от него равновесного значения называется перенапряжением з = цiе.


Подобные документы

  • Водородная связь в воде. Абсолютно чистой воды на Земле нет как следствие и проблема. Плотность воды и льда. Грубодисперсные, коллоидные, молекулярные, ионные примеси в воде, их опасность и последствия отложений. Вода как сильный полярный растворитель.

    лекция [5,9 M], добавлен 10.12.2013

  • Исторические сведения о воде. Круговорот воды в природе. Виды образования от разных изменений. Скорость обновления воды, ее типы и свойства. Вода как диполь и растворитель. Вязкость, теплоемкость, электропроводность воды. Влияние музыки на кристаллы воды.

    реферат [4,6 M], добавлен 13.11.2014

  • Структура кристаллов. Роль, предмет и задачи физики твердого тела. Кристаллические и аморфные тела. Типы кристаллических решеток. Типы связей в кристаллах. Кристаллические структуры твердых тел. Жидкие кристаллы. Дефекты кристаллов.

    лекция [2,0 M], добавлен 13.03.2007

  • Виды водородной связи, ее энергия и влияние на физические свойства вещества. Свойства воды, обусловленные водородной связью: плотность, температура плавления и кипения, теплоемкость. Сорбенты: целлюлоза, декстран, агароза, сефакрил, полистирольные смолы.

    реферат [46,3 K], добавлен 18.12.2013

  • Распространенность, физическая характеристика и свойства воды, ее агрегатные состояния, поверхностное натяжение. Схема образования молекулы воды. Теплоёмкость водоёмов и их роль в природе. Фотографии замороженной воды. Преломление изображения в ней.

    презентация [2,7 M], добавлен 28.02.2011

  • Физические и химические свойства воды. Распространенность воды на Земле. Вода и живые организмы. Экспериментальное исследование зависимости времени закипания воды от ее качества. Определение наиболее экономически выгодного способа нагревания воды.

    курсовая работа [1,4 M], добавлен 18.01.2011

  • Солнечно-водородная энергетика. Фотокатализ и фотосенсибилизация. Биофотолиз воды. Основные принципы работы солнечных батарей. Фотокаталитические системы разложения воды. Солнечное теплоснабжение. Перспективы развития фотоэлектрических технологий.

    реферат [66,3 K], добавлен 10.07.2008

  • Понятие и основные черты конденсированного состояния вещества, характерные процессы. Кристаллические и аморфные тела. Сущность и особенности анизотропии кристаллов. Отличительные черты поликристаллов и полимеров. Тепловые свойства и структура кристаллов.

    курс лекций [950,2 K], добавлен 21.02.2009

  • Исследование структурных свойств воды при быстром переохлаждении. Разработка алгоритмов моделирования молекулярной динамики воды на основе модельного mW-потенциала. Расчет температурной зависимости поверхностного натяжения капель воды водяного пара.

    дипломная работа [1,8 M], добавлен 09.06.2013

  • Физические свойства воды, температура ее кипения, таяние льда. Занимательные опыты с водой, познавательные и интересные факты. Измерение коэффициента поверхностного натяжения воды, удельной теплоты плавления льда, температуры воды при наличии примесей.

    творческая работа [466,5 K], добавлен 12.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.