Трение в машинах
Характеристики микрогеометрии поверхностного слоя. Фактическая площадь контакта. Шероховатости приработанных поверхностей. Фактическая площадь контакта. Приближенные формулы для расчета фактического давления. Микротвердость шероховатой поверхности.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 23.12.2013 |
Размер файла | 83,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Реферат
Трение в машинах
При эксплуатации трущихся деталей автомобиля изменяются их размеры и геометрические характеристики, структура, свойства и напряженное состояние поверхностных слоев. Эти изменения могут иметь монотонный, либо выраженный скачкообразный характер и охватывать макро-, микро и субмикроскопические объемы. Характер этих изменений в значительной степени зависит от рода трения, условий механического нагружения, наличия и состава жидкой, твердой или газообразной среды, вида смазки и свойств материала. Изменения могут быть полезными, нормализующими процесс трения и способствующими минимизации изнашивания, или приводить к недопустимым явлениям повреждаемости.
Внешнее трение является основной причиной разрушения поверхностей деталей. Оно приводит к износу, повреждению контактирующих поверхностей и потере мощности.
Трение является результатом сочетания различных видов взаимодействия механических, физических, химических, электрических и других процессов, возникающих при контактировании и относительном перемещении тел. Соотношение интенсивностей этих процессов может быть различным в зависимости от среды, механических воздействий, свойств трущихся материалов. В связи с этим процесс трения невозможно описать простым законом.
Трение классифицируют:
По кинематике движения:
Трение скольжения (трение 1-го рода).
Трение качения (трение 2-го рода).
Трение верчения.
По участию смазки:
Жидкостное трение.
Граничное трение.
Трение несмазанных поверхностей (сухое трение).
По динамическим условиям контакта:
Трение покоя (статическое трение).
Трение движения.
По области служебного использования:
Трение антифрикционных сопряжений.
Трение фрикционных пар.
По надежности сопряжений трущихся поверхностей:
Нормальный процесс.
Патологический процесс.
Характеристики микрогеометрии поверхностного слоя
Неровности поверхностей деталей разделяют на шероховатость, волнистость и макроотклонения формы.
К макроотклонениям относят единичные, регулярно не повторяющиеся отклонения поверхности Д от номинальной формы (выпуклость, вогнутость, конусность и т.д., рис. 1).
Размещено на http://www.allbest.ru/
Волнистость представляет собой совокупность периодических, регулярно повторяющихся, близких по размерам выступов и впадин, расстояние между которыми (шаг волны SВ) значительно больше их высоты НВ (SВ/НВ > 40).
Под шероховатостью поверхности понимают совокупность неровностей с относительно малым шагом (2_800 мкм) и высотой (0,03_400 мкм).
Схематически волнистость и шероховатость показаны на рис. 3.2, параметры шероховатости - на рис. 3.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Кроме того, наиболее часто для характеристики шероховатости используются такие параметры, как средние радиусы кривизны вершин выступов r и волн rВ, а также среднеарифметическое отклонение профиля Rа.
Параметры шероховатости во многом определяют состояние поверхности и происходящие на ней процессы во время трения, особенно в период первоначальной приработки.
В табл. 1 приведены некоторые сведения о шероховатости приработанных поверхностей.
Таблица 1
Ориентировочные значения параметров шероховатости, полученные опытным путем для некоторых приработанных поверхностей автомобильного ДВС (в скобках указаны значения параметров до приработки)
Исследуемый объект |
Класс шероховатости |
Rmax, мкм |
r, мкм |
Rа, мкм |
|
1 |
2 |
3 |
4 |
5 |
|
Поверхности стальных деталей в местах уплотнения резиновыми манжетами |
9 |
0,72(1,8) |
180 (100) |
0,13 |
|
Гильза цилиндрическая |
9 |
1,2(1,7) |
1000 (45) |
0,04 |
|
Поршневое кольцо |
10-11 |
0,48(1,0) |
270(50) |
0,02 |
|
Шейки коленчатого вала |
9 |
1,6(1,8) |
500(45) |
0,05 |
|
Вкладыши подшипников коленчатого вала |
8-9 |
2,6(3,0) |
300(25) |
0,42 |
|
Поршневой палец |
11 |
6,7(1,8) |
300(45) |
0,11 |
|
Втулка верхней головки шатуна |
10 |
7,0(1,0) |
250(50) |
0,11 |
|
Отверстие в бобышках поршня |
9 |
1,1(1,8) |
220(45) |
0,18 |
Из таблицы хорошо видно, что в процессе приработки происходит существенное уменьшение микровыступов шероховатой поверхности и их сглаживание.
Фактическая площадь контакта
При контактировании сопрягающихся поверхностей вследствие их волнистости и макроотклонений формы на значительной части номинальной площади АН соприкосновения поверхностей они не касаются друг друга.
В результате волнистости пятна контакта группируются на вершинах волн в отдельных зонах, совокупность которых составляет контурную площадь контакта АС. То есть контурная площадь - это площадь, на которой имеет место контакт групп микронеровностей (рис. 4).
Размещено на http://www.allbest.ru/
Фактической площадью контакта Аr называют площадь, на которой осуществляется контакт отдельных микронеровностей, образующих шероховатую поверхность. Эта площадь очень мала и составляет для твердых металлических поверхностей около 1 % от номинальной. Контурная площадь составляет примерно от 5 до 15 % от номинальной.
Нормальная нагрузка, отнесенная к единице фактической площади контакта, характеризует фактическое давление в контакте Pr.
При пластическом контакте выступов, когда происходит смятие материала, это давление приближается к его твердости, а при упругом контакте имеет место значительно меньшее давление.
Если волнистость невелика, то можно считать, что контурная площадь примерно равна номинальной, и нормальная нагрузка, отнесенная к контурной площади, характеризует контурное давление РС.
Фактическую площадь контакта определяют по формуле:
(1)
где N - нормальная сила.
На рис. 5 показаны зависимости контурного и фактического давления от номинального давления РН , из которых видно, что с увеличением нагрузки происходит в основном рост контурного давления. Очевидно, что при этом все большее число микронеровностей включается в работу, фактическая площадь контакта растет быстрее контурной, что и определяет незначительное увеличение фактического давления по сравнению с контурным.
Размещено на http://www.allbest.ru/
Фактическое давление в контакте между шероховатыми поверхностями в первом приближении можно определить по выражениям, приведенным в табл. 2.
поверхностный слой шероховатость микротвердость
Таблица 2
Приближенные формулы для расчета фактического давления в контакте
Деформация |
Поверхности и давление |
Расчетная формула |
Примечания |
|
Упругая |
Две шероховатые |
|||
Шероховатая с гладкой |
||||
Пластическая |
При контакте поверхностей из разных материалов для расчета принимается меньшее значение микротвердости |
|||
Здесь _ коэффициент Пуассона, Е _ модуль упругости первого рода, Н _ микротвердость шероховатой поверхности, в первом приближении можно принять Н = НВ.
При анализе условий смазки трущихся поверхностей большое значение имеет знание объема VП и средней ширины зазора hm между ними.
При контакте двух шероховатых поверхностей можно использовать уравнения:
, (2)
, (3)
а при контакте шероховатой поверхности с гладкой:
, (4)
. (5)
Следует отметить, что при выборе технологического процесса обработки сопрягающихся трущихся поверхностей возникает противоречие, связанное, с одной стороны с желанием получить как можно более точный размер поверхности и ее высокие геометрические показатели (овал, конусность, огранка и т.д.), и с другой стороны - создать поверхность, хорошо удерживающую смазку.
В первом случае обязательным условием является высокая чистота получаемой в результате обработки поверхности. Кроме того, чем меньше высота макро- и микронеровностей, тем быстрее происходит приработка, и тем быстрее увеличивается фактическая площадь контакта, соответственно уменьшаются контактные напряжения и износ трущихся поверхностей.
С другой стороны, чем выше чистота поверхностей, тем меньше образующийся между ними после приработки зазор и тем хуже проникает и задерживается смазка. Это особенно важно для подвижных соединений автомобиля, поскольку автомобиль является априори периодически действующим устройством. При его остановке жидкие смазки вытекают из зазоров, и начало работы осуществляется в условиях почти сухого трения. В то же время использование грубо обработанных поверхностей в ответственных соединениях силовых агрегатов и трансмиссии невозможно, так как у таких поверхностей слишком большой дефектный слой, который быстро разрушается и может служить причиной возникновения микротрещин и других отрицательных явлений.
В связи с этим в последнее время все шире применяется технология финишной обработки, при которой на рабочих поверхностях сопрягающихся деталей наносится специальный микрорельеф, который способствует дополнительному упрочнению поверхностного слоя и содержит профилированные углубления, хорошо удерживающие смазку (так называемая «виброобкатка»).
Эта технология применяется как при изготовлении новых деталей, так и при ремонте и восстановлении изношенных. При ее осуществлении в окончательно обработанную поверхность на глубину несколько десятых долей микрометра вдавливают шарообразный наконечник, твердость которого выше твердости поверхностного слоя детали, и затем поверхность детали перемещают (например, круглую - вращают), а наконечнику придают осциллирующее движение поперек траектории движения обрабатываемой поверхности. Таким образом на ней создается упрочненная ячеистая структура, хорошо удерживающая смазку.
Само явление трения обусловлено рядом причин: природой материалов, протяженностью поверхности трения, давлением в контакте, его продолжительностью и скоростью скольжения.
Двойственная природа трения выражается законом Кулона:
(6)
где F - сила трения, А - константа, характеризующая способность контактирующих тел к взаимному сцеплению, fТР _ коэффициент пропорциональности, называемый коэффициентом трения, N _ нормальная сила (сила, действующая по нормали к поверхности трения).
Для грубо обработанных поверхностей константа А имеет малые значения, и поэтому долгое время ее не принимали во внимание, выражая закон Кулона упрощенно:
(7)
Для характеристики процесса трения необходимо рассмотрение различных взаимодействий поверхностей: подъема по микронеровностям абсолютно твердого тала, упругого и пластического деформирования микронеровностей, преодоления ими сил межмолекулярного взаимодействия, схватывания металлов, образования различных пленок и т.д. Использование во всех случаях для описания процесса трения только коэффициента трения принципиально неприменимо.
В зависимости от чистоты поверхности, наличия или отсутствия пленок окислов и смазочной пленки коэффициент трения может изменяться на два порядка при одной и той же нагрузке. Так, например, увеличение чистоты поверхности от 7_го класса до 14_го снижает коэффициент трения в паре сталь_сталь более чем в 1,5 раза, при образовании окисной пленки - еще в 1,5 раза, а при нанесении смазки - еще более чем в 10 раз.
В зависимости от того, какой процесс при трении является основным, при трении меняются не только средние значения силы трения, но и характер изменения ее во времени. То есть силы трения являются не функцией нормальной нагрузки, а функцией процессов, возникающих при том или ином сочетании нормальной нагрузки N, скорости скольжения v и вектора параметров трения (материалов, условий среды и т.д.). В общем случае силы трения и нормальная нагрузка в условиях механического, теплового и материального контакта поверхностей трения и среды связаны некоторым оператором щ:
(8)
Иногда при одинаковых условиях трения в одной и той же кинематической паре для оценки характера трения (коэффициент трения, износ, температура и т.д.) используют параметр N*v (произведение нагрузки на скорость).
Список литературы
1.Артоболевский И.И. Теория механизмов и машин: [Учеб. для втузов]. - 4-е изд., перераб. и доп. - М.: Наука, 2009. - 639 с.: ил.; 22 см.
2.Кожевников С.Н. «Теория механизмов и машин». Учебное пособие для студентов вузов Изд. 4-е М., «Машиностроение». 2006 г. ? 592с.
3.Кореняко А.С. «Курсовое проектирование по теории механизмов и машин», Издательство «Вища школа», 2007 г. ? 326с.
4.Решетов Д.Н. «Детали машин» учебник для вузов. Р47 Изд. 3-е М., «Машиностроение», 2008.
5.Теория механизмов и машин. Терминология: Учеб. пособие / Н.И.Левитский, Ю.Я.Гуревич, В.Д.Плахтин и др.; Под ред. К.Ф.Фролова. - М.: Изд-во МГТУ им. Н.Э.Баумана, 2007.- 80 с.
6.Теория механизмов и механика машин: Учеб. для втузов / [К.В. Фролов, С.А. Попов, А.К. Мусатов и др.; Под ред. К.В. Фролова. - 2-е изд., перераб. и доп. - М.: Высш. школа, 2008. - 496 с.: ил.
Размещено на Allbest.ru
Подобные документы
Определение температуры в зоне контакта плиты, слоя. Напряженно–деформированное состояние слоя. Условие термосиловой устойчивости покрытия. Вычисление контактного давления. Нахождение закона изменения толщины покрытия вследствие износа, численные расчеты.
дипломная работа [526,7 K], добавлен 09.10.2013Сущность трения, износа и изнашивания в современной механике. Разновидности трения и их отличительные признаки. Оценка влияния скорости скольжения и температуры на свойства контакта и фрикционные колебания. Инерционные и упругие свойства узлов трения.
курсовая работа [2,7 M], добавлен 29.08.2008Плотность обратного тока диода Шотки на основе структуры "алюминий-кремний" при обратном смещении. Концентрация электронов в кремнии при заданной температуре. Потенциальный барьер за счет эффекта Шотки, его высота. Ток насыщения и площадь контакта.
контрольная работа [286,0 K], добавлен 15.04.2014Описание классических задач механики контактного взаимодействия. Определение контакта между шаром и упругим полупространством, двумя шарами, двумя скрещивающимися цилиндрами, индентором и упругим полупространством. Учет шероховатости поверхности.
реферат [376,0 K], добавлен 23.12.2015Трение как процесс взаимодействия твердых тел при относительном движении либо при движении твердого тела в газообразной или жидкой среде. Виды трения, расчет трения покоя, скольжения и качения. Расчет коэффициентов трения для различных пар поверхностей.
практическая работа [92,5 K], добавлен 10.05.2010Описание конструкции камерной топки парового котла, краткая характеристика топлива. Расчет необходимого объема воздуха и объема продуктов сгорания топлива. Площадь поверхностей топки и камеры догорания. Расчет температуры газов на выходе из топки.
курсовая работа [3,9 M], добавлен 07.04.2018Теплотехнические характеристики в номинальном режиме и конструкция парогенератора ПГВ-10006 тепловая мощность, расход теплоносителя; выбор материалов. Тепловой расчет экономайзерного участка; площадь теплопередающей поверхности; гидравлический расчет.
курсовая работа [675,8 K], добавлен 05.08.2012Взаимодействие атмосферного пограничного слоя с океаном как важнейший фактор, определяющий динамику тропических ураганов и полярных мезоциклонов над морем. Методика и анализ результатов измерений поля поверхностного волнения в ветро-волновом канале.
курсовая работа [2,4 M], добавлен 13.07.2012Сила поверхностного натяжения, это сила, обусловленная взаимным притяжением молекул жидкости, направленная по касательной к ее поверхности. Действие сил поверхностного натяжения. Метод проволочной рамки. Роль и проявления поверхностного натяжения в жизни.
реферат [572,8 K], добавлен 23.04.2009Потери напора на трение в горизонтальных трубопроводах. Полная потеря напора как сумма сопротивления на трение и местные сопротивления. Потери давления при движении жидкости в аппаратах. Сила сопротивления среды при движении шарообразной частицы.
презентация [54,9 K], добавлен 29.09.2013