Размерные эффекты при смачивании. Эффект лотоса

Рассмотрение особенностей контактного взаимодействия жидкостей с поверхностью твердых тел. Явление гидрофильности и гидрофобности; взаимодействие поверхности с жидкостями различной природы. "Жидкий" дисплей и видео на "бумаге"; капля в "нанотраве".

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 14.06.2015
Размер файла 1,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральная служба по надзору в сфере образования и науки

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

"Казанский национальный исследовательский технологический университет" (ФГБОУ ВПО КНИТУ)

Кафедра АХСМК

Курсовая работа

Размерные эффекты при смачивании. Эффект лотоса

Казань 2014

Содержание

жидкость гидрофильность дисплей капля

Введение

1. Основная часть

2. Явление гидрофильности и гидрофобности

3. Взаимодействие поверхности с жидкостями различной природы

4. Эффект лотоса

5. От "Наноковра" к "Наногазону"

6. Танцующая капля

7. "Жидкий" дисплей и видео на "бумаге"

8. Капля в "нанотраве"

Заключение

Список литературы

Введение

Явление смачивания играет огромную роль в жизни многих растений и животных, помогая им как добывать влагу, так и защищаться от ее излишков. Например, водоплавающие животные и птицы умеют в буквальном смысле выходить сухими из воды, а колючки некоторых кактусов способны поглощать влагу прямо из воздуха. Человек всегда старался не отставать от братьев своих меньших, с древнейших времен используя законы природы в своей хозяйственной деятельности. В последние годы появился целый ряд новых многообещающих технологий, основанных на эффекте смачивания.

Смачивание, поверхностное явление, наблюдаемое при контакте жидкости с твердым телом в присутствии третьей фазы-газа (пара) или другой жидкости, которая не смешивается с первой (так называемое избирательное смачивание). Характерная особенность смачивание-наличие линий контакта трех фаз (линии смачивание).

Основные термодинамические характеристики смачивания - равновесный краевой угол смачивания q0, работа адгезии Wa, теплота смачивания qW. Равновесный краевой угол смачивание определяется наклоном поверхности жидкости (например, капли) к смоченной ею поверхности твердого тела; вершина угла находится на линии смачивание Равновесный краевой угол определяется уравнением Юнга:

cosq0 = (ss-ssl)/ssl,

где ss и ssl-соответствующе удельные свободные поверхностные энергии твердого тела на границе с газом и в контакте со смачивающей жидкостью, sl-поверхностное натяжение жидкости. При наличии на поверхности твердого тела тонких смачивающих пленок толщиной h краевой угол смачивание определяется, согласно теории Фрумкина-Дерягина, уравнением:

где П - расклинивающее давление.

Работа адгезии

Wa = ss + sl - sls (уравнение Дюпре).

Она характеризует работу, необходимую для изотермического отделения слоя смачивающей жидкости с единицы поверхности твердого тела (см. Адгезия). Теплота смачивание

qW = Hsl -- Hs,

где Hsl и Нs-энтальпии, отнесенные к единице поверхностей раздела твердое тело-жидкость и твердое тело-газ. Она наз. также теплотой иммерсии (погружения).

1. Основная часть

Различают три случая контактного взаимодействия жидкостей с поверхностью твердых тел:

1) несмачивание, когда 180° > q0 > 90° (напр., ртуть на стекле, вода на парафине);

2) ограниченное смачивание, когда 90° > q0 > 0° (напр., вода на оксидах металлов);

3) полное смачивание, когда капля растекается в тонкую пленку (ртуть на свинце).

Измеряемые на практике краевые углы q часто отличаются от термодинамических равновесных значений q0. Эти расхождения обусловлены главным образом дефектами поверхности твердого тела: шероховатостями (микрорельеф), хим. неоднородностью (гетерогенность), наличием пор, локальными деформациями вблизи линий смачивание (они достаточно заметны при смачивании тел с малыми модулями упругости). Шероховатость и др. дефекты твердой поверхности приводят к тому, что краевой угол смачивание зависит от условии формирования, например при натекании жидкости на "сухую" подложку и при оттекании жидкости с предварительно смоченной поверхности; это-гистерезис смачивание Краевые углы смачивание изменяются также со скоростью натекания жидкости.

Смачивание оказывает значительное влияние на многие технологические и природные процессы. Смачивающие жидкости образуют в капиллярах вогнутые мениски, благодаря чему жидкость поднимается на высоту

L = 2sl cos q/rgr

(r - плотность жидкости, g - ускорение свободного падения, r-радиус капиллярной трубки).

При несмачивании образуется выпуклый мениск и имеет место капиллярная депрессия (опускание жидкости). Т. обр., от степени смачивание зависит пропитка и сушка пористых материалов.

Смачивание влияет также на степень перегрева и переохлаждения при фазовых переходах (кипении, конденсации, плавлении, кристаллизации). Это связано с тем, что работа гетерогенного образования критического зародыша новой фазы максимальна при полном несмачивании, а при полном смачивании она минимальна. В частности, для предотвращения образования тромбов в кровеносных сосудах материалы для протезирования сосудов не должны смачиваться кровью. Важную роль играет смачивание при флотационном обогащении и разделении горных пород, вытекании нефти из пластов, отмывании загрязнений, нанесении пленок и покрытий, шайке металлов и других материалов, спекании порошков, течении жидкости в условиях невесомости и др.

Методы регулирования смачивание основаны главным образом на изменении удельных поверхностных энергий ss и ssl, а также поверхностного натяжения жидкости sl. Физический метод основан на электрической поляризации, связанной с зависимостью поверхностного натяжения электрода от его электрического потенциала (электрокапиллярность), воздействии электрических и магнитных полей, изменении температуры, обработки поверхности твердых тел ионизирующими излучениями. Наиболее универсальный метод регулирования смачивание состоит в использовании поверхностно-активных веществ (ПАВ). Растворение ПАВ в жидкости уменьшает ее поверхностное натяжение; вместе с тем возможна адсорбция ПАВ на границе твердое тело-жидкость с соответствующим изменением поверхностной энергии ssl. Предварительная выдержка образцов данного твердого материала в растворе ПАВ приводит к образованию на его поверхности адсорбционных слоев, которые могут частично или полностью "экранировать" ее. Такое модифицирующее действие позволяет качественно менять характер контактного взаимодействия жидкости с твердым телом. Можно, например, гидрофобизировать гидрофильные материалы или, напротив, гидрофилизировать гидрофобные подложки. Основные закономерности изменения смачивание с помощью ПАВ и использования этих эффектов в различных технологическх процессах (флотации, полиграфии, моющем действии и др.) обоснованы в трудах П.А. Ребиндера.

Панафобные покрытия на смену гидрофобных

Несмачиваемые природные поверхности можно наблюдать у растений и насекомых. Это, например, листья настурции, аквилегии, крылья бабочек, волоски на теле водных жуков, ткани шёлковых гнёзд некоторых пауков. Однако хрестоматийным считается "эффект лотоса".

Рисунок 1. "Шипы" на замороженных и высушенных листьях лотоса под электронным микроскопом.

Высокая плотность "шипов" на поверхности и небольшой диаметр обеспечивают супергидрофобные свойства растения. Фото Вильгельма Бартлотта (W. Barthlott).

Понятие "эффект лотоса" ввёл немецкий ботаник Вильгельм Бартлотт в 1990-х годах, впервые описавший микроструктуру поверхности листьев цветка.

Поверхность листа лотоса содержит своеобразные шипы размером в несколько микрометров, состоящие из гидрофобных веществ (воска и др.). Благодаря такому удивительному строению поверхности вода, попадающая на листья, не растекается, а "садится" на шипы в виде шарообразных капель. Тем самым обеспечивается существенное снижение площади контакта жидкости с поверхностью листа. Она составляет менее одного процента всей площади капли, а краевой угол смачивания может достигать 170°. В итоге при малейшем наклоне вода скатывается с листа, захватывая при этом частички пыли и грязи. Удивительно, но даже если погрузить лист лотоса в замутнённую воду, а затем вынуть, он останется без единого пятнышка.

Рисунок 2. Краевой угол смачивания (г) гидрофобной (не смачиваемой водой) поверхности более 90°, гидрофильной (смачиваемой водой) -- меньше или равен 90°

На основе "эффекта лотоса" созданы материалы с крайне низкой смачиваемостью водой -- супергидрофобные материалы. Их разработкой занялись ещё в семидесятых годах прошлого века. Первые появились в 1986 году -- это были перфторалкильные и перфторполиэфирные материалы, предназначенные для работы с химическими и биологическими жидкостями. Позже были созданы и другие материалы с крайне низкой смачиваемостью.

В 2007 году С. Ванг и Л. Янг из Института химии Китайской академии наук (Пекин) в статье "Definition of superhydrophobic states" ("Определение супергидрофобного состояния"), вышедшей в журнале "Advanced Materials", уточнили это понятие. Формально материалы-супергидрофобы отличаются от гидрофобных значениями угла контакта капли воды с поверхностью (он же краевой угол смачивания) и угла скатывания. К супергидрофобным относят материалы, у которых контактный угол превышает 150°, а капля скатывается при наклоне поверхности менее чем на 10°.

Варьируя условия получения и химический состав материала, исследователи разработали покрытия с различными степенями смачивания. Тем самым были решены некоторые важные прикладные задачи. В качестве примеров можно назвать защиту городских зданий от загрязнений и разрушения с помощью водоотталкивающих покрытий, защиту одежды и обуви от воды, защиту металлов в условиях влажной атмосферы.

Одно из самых забавных применений супергидрофобных покрытий предложили сотрудники группы Сирила Дуэса из Лионского университета. Наверняка каждый сталкивался с тем, что струйка чая или воды льётся, скользя вдоль носика, и вместо чашки оказывается на скатерти. Французские материаловеды продемонстрировали прототип супергидрофобного чайника, лишённого этого распространённого недостатка. "Чудо" чайника объясняется наличием наноструктурированной гидрофобной внешней поверхности носика. Её краевой угол смачивания близок к 180°, что заставляет проливающиеся капли буквально отскакивать от сосуда.

Струя воды из чайника с гидрофильной поверхностью стекает по носику (фото вверху). Супергидрофобный носик решает неприятную для любой хозяйки проблему (фото внизу). Фото Лидерика Боке (Lyderic Bocquet et. al., Лионский университет)

Рисунок 3. Гидрофильная поверхность

Стоит отметить, что все новейшие разработки в области создания супергидрофобных поверхностей тесно связаны с развитием новых методов получения микро- и наноструктурированных покрытий -- предмета активной работы многих исследовательских центров и университетов. Однако большинство этих работ пока остаются на стадиях лабораторных испытаний и создания прототипов. Их успешной коммерциализации препятствуют неудовлетворительная олеофобность (способность к "отталкиванию" молекул жиров и масел), непригодность к работе в условиях повышенных механических нагрузок и температур, а также высокая себестоимость. Но недавно исследователи из Виссеновского института биоинженерии при Гарвардском университете (Wyss Institute for Biologically Inspired Engineering, США) под руководством профессора Джоанны Айзенберг создали супергидрофобные покрытия, лишённые этих недостатков.

Панафобные материалы

Как и раньше, идея нового материала была заимствована у природы -- на сей раз у непентеса кувшинчикового, известного своим хищническим характером. Благодаря уникальным свойствам "цветка" этого растения -- ловчего кувшина, образованного пластинкой листа, севшее на него насекомое мгновенно соскальзывает внутрь, попадая в смертельную ловушку.

Непентес относится к насекомоядным растениям, приспособившимся к ловле и перевариванию насекомых. Так они добывают себе дополнительный азот для синтеза собственных белков.

Перистом -- структура, расположенная вокруг входа в ловушку растения (ловчего листа)

Рисунок 4. Непентес (ловчий лист)

Технология, разработанная группой Джоанны Айзенберг, получила название SLIPS* (Slippery Liquid-Infused Porous Surfaces -- несмачиваемые пористые поверхности, пропитанные жидкостью). Пористые покрытия, создаваемые с её помощью, -- настоящие панафобы (от англ. рanphobia -- боязнь всего), поскольку плохо смачиваются практически любой жидкостью -- водой, солевыми растворами, нефтью и др.

В названии присутствует игра слов: с английского SLIPS переводится как "скользить".

Рисунок 5. SLIPS-материал

Демонстрация олеофобности SLIPS-материала: даже при очень маленьком наклоне капля нефти скатывается с покрытия. Вверху показано поведение капли нефти на повреждённой поверхности SLIPS-материала.

Какая именно особенность непентеса кувшинчикового реализована в инновационных покрытиях, авторы подробно не описывают, но можно предположить, что она связана со специфическим строением ловушки. Согласно недавним исследованиям, основную роль в захвате насекомых цветком играет его перистом -- структура у входа в кувшинообразную ловушку.

Поверхность перистома содержит микроскопические впадины между соседними эпидермальными клетками -- своеобразные поры, в которых находится смазочная жидкость -- вода или нектар. Вода может попадать туда во время дождя или вследствие конденсации влаги из воздуха. Нектар выделяют многочисленные железы цветка. Такое строение приводит к эффекту, подобному аквапланированию -- возникновению гидродинамического клина в пятне контакта шины автомобиля. При большой скорости на дороге, покрытой слоем воды, шина не успевает продавить водяную плёнку и может полностью потерять контакт с дорогой. Так и здесь: -- небольшой слой жидкости на растении приводит к тому, что лапки насекомого теряют сцепление с его поверхностью.

Эффект аквапланирования более всего известен автомобилистам. Водяной слой отделяет шины движущегося авто от дорожной поверхности, что приводит к полной или частичной потере сцепления. Иллюстрация Дэйва Индеча (Dave Indech)

Рисунок 6. Движущая шина

Полученные образцы SLIPS-материалов могут работать в экстремальных условиях высоких давлений, мгновенно самовосстанавливаться, оптически прозрачны и химически инертны. Кроме того, они имеют низкую адгезию к таким материалам, как лёд и воск.

Свойства SLIPS-покрытий определяют множество их потенциальных приложений, под каждое из которых материал может быть соответствующим образом оптимизирован.

Например, стабильность SLIPS-материалов при различных температурах и давлениях делает их идеальными для использования в качестве покрытий нефте- и водопроводов, антиобледенительных покрытий для приборов, работающих при отрицательных температурах, и даже материалов для глубоководных исследований.

Оптическая прозрачность (в видимом и ближнем ИК-диапазонах) и способность к самоочищению открывают перспективы их применения в качестве покрытий для оптических поверхностей солнечных батарей, линз, сенсорных датчиков, приборов ночного видения. Несмачиваемость биологическими жидкостями (такими как кровь или лимфа) пригодится в борьбе с биозагрязнением поверхности медицинских приборов и инструментов.

Рисунок 7

Панафобная натура SLIPS-материалов предопределяет их применение и в качестве защитных покрытий на порогах жилищ от насекомых, а также корпусов морских судов -- от биообрастания.

Процесс получения SLIPS-покрытий представлят собой нанесение пористой структуры на подложку и её дальнейшее "наполнение" специальным раствором, создающим мультифобную плёнку на поверхности. Как именно это происходит, составляет ноу-хау авторов разработки.

Как утверждают исследователи из Виссеновского института, покрытия SLIPS можно создавать из простых и недорогих материалов без специализированного оборудования, что, несомненно, очень привлекательно. Детали процесса не раскрываются, но, согласно публикации в журнале "NanoToday", можно предположить, что в качестве пористой структуры предлагается использовать недорогие полимеры на основе полидиметилсилоксана. Эти полимеры доступны, нетоксичны, гидрофобны, работают в широком диапазоне температур (от -60о до +300оС). Конечно, большой интерес представляют как составы растворов, которыми наполняют пористые структуры, так и условия их нанесения. Однако об этом можно только догадываться. Так или иначе, видимо, уже в недалёком будущем на смену супергидрофобным материалам придут панафобные.

2. Явление гидрофильности и гидрофобности

Всем известно, что, если поместить каплю жидкости на плоскую поверхность, она либо растечется по ней, либо примет округлую форму. Причем размер и выпуклость (величина так называемого краевого угла) лежащей капли определяется тем, насколько хорошо она смачивает данную поверхность. Явление смачивания можно объяснить следующим образом. Если молекулы жидкости притягиваются друг к другу сильнее, чем к молекулам твердого тела, жидкость стремится собраться в капельку. Так ведет себя ртуть на стекле, вода на парафине или на "жирной" поверхности. Если же, наоборот, молекулы жидкости притягиваются друг к другу слабее, чем к молекулам твердого тела, жидкость "прижимается" к поверхности, расплывается по ней. Это происходит с каплей ртути на цинковой пластине или с каплей воды на чистом стекле. В первом случае говорят, что жидкость не смачивает поверхность (краевой угол больше 90°), а во втором -- смачивает ее (краевой угол меньше 90°). Иначе говорят, что в первом случае поверхность по отношению к данной жидкости лиофобна (от греч. лио -- растворяю, фобио - бояться), а во втором -- лиофильна (филио -- любить).

3. Взаимодействие поверхности с жидкостями различной природы

Таким образом, все определяется силой взаимного притяжения молекул жидкости и твердого тела, которая в свою очередь зависит как от природы жидкости, так и от свойств поверхности. Можно ли управлять этими свойствами? Оказывается, да. Растения и животные в процессе эволюции придумали для этого множество остроумных способов. Из них самый очевидный -- смазать поверхность тонким слоем вещества, "любящего" или "не любящего" данную жидкость. В случае воды говорят о гидрофильных и гидрофобных покрытиях. Легко проверить, что, если намазать поверхность стекла маслом, ее водоотталкивающие свойства возрастут, а если вместо масла взять мыло - наоборот, уменьшатся.

Именно водоотталкивающая смазка помогает многим животным спасаться от излишнего намокания. Например, исследования морских животных и птиц - котиков, тюленей, пингвинов, гагар - показали, что их пуховые волосы и перья обладают гидрофобными свойствами, тогда как остевые волосы зверей и верхняя часть контурных перьев птиц хорошо смачиваются водой. В результате между телом животного и водой создается воздушная прослойка, играющая значительную роль в терморегуляции и теплоизоляции.

4. Эффект лотоса

Но смазка это еще не все. Немалую роль в явлении смачивания играет и структура поверхности. Шероховатый, бугристый или пористый рельеф может улучшить смачивание. Вспомним, к примеру, губки и махровые полотенца, прекрасно впитывающие воду. Но если поверхность изначально "боится" воды, то развитый рельеф лишь усугубит ситуацию: капельки воды будут собираться на выступах и скатываться.

Очевидно, что лотос является одним из важнейших символов Востока и не только. Например, во времена фараонов лотос был символом Нижнего Египта и царской власти: цветок лотоса носила Нефертити. Бог растительности, Нефертум, также олицетворял первозданный лотос и поэтому именовался "молодым солнцем, что возникает из раскрывающегося лотоса". В индуизме и буддизме лотос фактически один из основных символов космогонии, он олицетворяет чистоту, мудрость, нирвану и многое другое. Кстати, главная буддистская словесная формула (ом-мане-падме-хум) означает просто восхваление сокровища в виде цветка лотоса. В Китае цветок лотоса обожествлялся ещё со времён даосизма, а затем его культ прочно вошёл в буддистскую религию и в национальную культуру. История почитания лотоса очень интересна, но для современности важнее то, что он действительно обладает необычными физико-химическими свойствами. Благодаря особому строению и очень высокой гидрофобности его листьев и лепестков цветы лотоса остаются удивительно чистыми -- именно это поражало наших далёких предков. Цветок, возникший в грязном болоте и оставшийся чистым, незапятнанным, просто не мог не стать символом. Стихотворение средневекового корейского поэта Сон Кана (Чон Чхоля), написанное в форме классического трёхстишия сичжо (в переводе А. Ахматовой), прямо описывает эффект сверхгидрофобности лотоса:

Вот почему многие химики и материаловеды называют технологии получения сверхгидрофобных покрытий "лотосовыми".

Но как ему удается добиться такой сверхгидрофобности. "Эффект Лотоса" был открыт в 1990-е гг. немецким ботаником, профессором Вильгельмом Бартлоттом. Он показал, что лепестки цветка покрыты крошечными шишечками или "наночастицами". Но лист в добавок как бы намазан воском. Он вырабатывается в железах растения, что делает его совершенно неуязвимым для воды.

Как же повторить уникальное свойство. Над этим работают ученые многих стран мира. Пока создано несколько покрытий, отвечающих подобными свойствами.

Первое из них создано в Японии - это тончайшая пленка с выступами и впадинами:

Рисунок 9. Поверхность лотоса под электронным микроскопом.

Секрет метода создания пленки в том, что в среду вводят микрочастицы органокремниевых соединений (полиорганосиланы), причём они могут содержать фтор (фторалкилсилан), а могут и не содержать.

Регулируя условия, в которых проходит процесс, авторы получили прочную, износостойкую и одновременно прозрачную гидрофобную плёнку для многих систем. Углы смачивания микрокапель воды на таких плёнках -- от 150 до 160°. Такой подход позволяет покрыть сверхгидрофобной плёнкой многие поверхности: стекло, пластик, бумагу, словом, любое покрытие, способное выдержать условия осаждения.

Другой метод основан на использовании электрохимического способа. Используются при этом никель и тефлон. Процесс напоминает никелирование, но с электролитом, содержащим тефлон. Тефлон -- электрически нейтральное соединение, поэтому, для того чтобы он участвовал в электролизе, его частицы перед добавлением в никельсодержащий электролит предварительно обрабатывают катионным поверхностно-активным веществом (ПАВ). Это помогает смешивать тефлон с электролитом. На втором этапе соосаждающиеся с ионами никеля частицы тефлона за счёт так называемого якорного эффекта закрепляются на поверхности. На покрытии возникают локальные очаги повышенной плотности и прочности, т.к. ток распределяется неравномерно. С другой стороны, именно на таких участках выделяется больше атомов водорода, которые стабилизируют процесс, то есть создают дополнительное экранирование, снижающее скорость осаждения. Наконец, на последнем этапе окончательно формируется сетчатая структура из частиц тефлона, однородно распределённых в слое осаждённого никеля. Кроме того, на поверхности остаётся тонкая плёнка молекул ПАВ, а внутри формирующегося покрытия остаются многочисленные микропоры.

С помощью такого метода можно получать покрытия с очень маленькими частицами тефлона (в диапазоне 1-100 нм). Гидрофобность такой поверхности быстро увеличивается с ростом содержания тефлона -- уже при 10-15 вес. % угол смачивания капли воды на таком покрытии достигает 160°. Этот метод был бы удобен для создания электрических батарей, т.к. такие покрытия не только сверхгидрофобны, но и способны катализировать некоторые реакции.

Сейчас продукция на основе нанотехнологий, использующая "эффект лотоса" уже поступила в продажу. Это, в первую очередь, очистительные и полировочные аэрозоли.

Зачем нужны лотосовые покрытия. Лотосовые покрытия были бы незаменимы во многих сферах жизни человека. Создание стекол, с которых бы стекали мельчайшие капельки воды с растворенными частичками грязи. Создание плащей и другой специальной одежды. Создание самоочищающихся фасадов зданий. Это только единичные примеры использования уникального свойства лотоса.

"Эффект лотоса" - уникальное природное свойство цветка. Оно может быть использовано и в быту, и в промышленности, и, возможно, в медицине. Ученые в который раз пытаются копировать природу и не безуспешно. Возможно, вскоре такие покрытия заменят множество известных и привычных, а, может быть, даже наши зонтики уйдут в прошлое.

5. От "Наноковра" к "Наногазону"

Вы когда-нибудь наблюдали капли после дождя на траве или на листьях деревьев? Они лежат блестящими на солнце жемчужинами. Особенно красивы капли на ворсистых поверхностях листьев: поддерживаемые ворсинками, они как бы висят в воздухе в виде отдельных шариков, не касаясь поверхности листа и не смачивая его. Наклоните лист -- и капля скатится, оставив после себя совершенно сухую поверхность.

В последнее время ученые проявляют большой интерес к "нановорсистым" покрытиям, состоящим из множества "волосков" нанометровых размеров (в десятки -- сотни тысяч раз тоньше человеческого волоса). Такие поверхностные структуры благодаря сильно развитому рельефу способны многократно усиливать как гидрофобные, так и гидрофильные свойства материалов.

К примеру, китайские ученые недавно смастерили "наноковер" -- материал, поверхность которого образована густо расположенными "ворсинками" диаметром всего 50--150 нанометров. Известно, что оксид цинка, из которого "соткан" чудо-ковер, обладает способностью переходить из гидрофобного в гидрофильное состояние под действием ультрафиолета. Эффект связан с накоплением заряда в поверхностном слое полупроводника под действием облучения. (Заряжение поверхности -- еще один из способов изменения ее смачиваемости.) В темноте поверхностный заряд постепенно стекает (примерно за неделю), и оксид цинка восстанавливает присущую ему "водобоязнь". Наличие "нановорсинок" многократно усилило свойства полупроводника, расширив диапазон переключений "наноковра" от супергидрофобного до супергидрофильного (краевой угол близок к нулю) состояния. Такое покрытие могло бы найти массу применений в промышленности и хозяйстве, если бы не один недостаток -- слишком большое время обратного переключения. Впрочем, китайцы надеются в скором времени от этого недостатка избавиться.

А вот ученые из Bell Labs (исследовательского отделения американской фирмы "Lucent Technologies") пошли несколько иным путем, вырастив ворсистую наноструктуру, названную ими "нанотрава", на пластинке кремния. Если в китайском "наноковре" ворсинки расположены совершенно хаотически, немного отличаются по размерам и торчат в разные стороны, то американский "наногазон" потрясает воображение своей строго регулярной структурой. В опытных образцах "нанотравинки" кремния представляли собой аккуратные столбики диаметром 350 нм и высотой 7 микрон (0,007 мм). Расстояние между столбиками было строго фиксировано и составляло на разных образцах от 1 до 4 микрон. Такую упорядоченную структуру приготовляли путем травления кремния в плазме через маску из фоторезиста, затем на ней выращивали путем окисления тонкий слой диэлектрика (оксида кремния), а сверху покрывали всю наноструктуру тончайшим слоем гидрофобного полимера. Легко догадаться, что материал оказался супергидрофобным: капли жидкости, упавшие в "нанотраву", буквально повисают в воздухе, подпираемые "нанотравинками". Площадь касания шариков жидкости с "нанотравой" очень мала (контактный угол близок к 1800), поэтому они чрезвычайно подвижны -- малейший наклон поверхности приводит к их быстрому скатыванию. "Наногазон" пригодится не только для создания супергидрофобных самоочищающихся покрытий. Оказалось, что его смачиваемостью можно легко управлять.

6. Танцующая капля

До сих пор мы говорили об изменении смачиваемости путем модификации поверхности. А можно ли как-то менять свойства жидкости, а именно ее поверхностное натяжение? Можно, например, подмешав к ней вещества, способные менять силу взаимного притяжения молекул в поверхностном слое. Достаточно влить в воду немного этилового спирта или мыльного раствора, чтобы заметно снизить ее поверхностное натяжение. А вот добавление глицерина, наоборот, приведет к увеличению краевого угла. Однако замена воды раствором глицерина, мыла и тем более спирта не всегда желательна. Повышая температуру или давление, можно ослабить поверхностное натяжение, а понижая - усилить. Но что делать, если температура и давление фиксированы? На помощь приходит электричество. Еще в конце XIX века было обнаружено, что величина разности потенциалов между поверхностью и каплей проводящей жидкости влияет на смачивание: краевой угол уменьшается пропорционально квадрату напряжения. Это так называемый эффект электросмачивания.

Поместим каплю воды на супергидрофобную поверхность -- она образует почти идеальный шарик. Затем приложим между поверхностью и каплей напряжение -- капля как бы прижмется к поверхности, краевой угол уменьшится. Плавно увеличивая и уменьшая напряжение, можно заставить каплю "танцевать". Поскольку вода преломляет свет иначе, чем воздух, то лежащая капля -- это своего рода линза, только жидкая. В ходе "танца" кривизна поверхности капли меняется, следовательно, меняется и преломляющая способность линзы, ее фокусное расстояние. Эффективно и предельно просто! Нет никаких подвижных механических деталей. Работа жидкой линзы очень напоминает человеческий глаз, который фокусируется путем изменения кривизны хрусталика.

В последние годы "жидкими линзами" заинтересовались сразу несколько крупных компаний, занимающихся информационными технологиями и видеотехникой. В частности, год назад компания "Philips" анонсировала оптическую систему FluidFocus, работающую по принципу "жидкой линзы". Устройство состоит из небольшой трубки с прозрачными торцами, заполненной двумя несмешивающимися жидкостями с различными коэффициентами преломления. Одна представляет собой проводящий электричество водный раствор, а другая -- масло, изолятор. Внутренняя поверхность трубки и один из торцов покрыты гидрофобным покрытием, в результате чего водный раствор, скапливающийся у противоположного торца, принимает полусферическую форму. Фокусное расстояние (кривизна линзы) изменяется увеличением или уменьшением электрического потенциала, приложенного к гидрофобному покрытию. При этом поверхность может стать совершенно плоской и даже вогнутой - линза из собирающей превратится в рассеивающую или наоборот. Размеры опытного образца FluidFocus составили всего несколько миллиметров, его фокусное расстояние меняется от 5 сантиметров до бесконечности, и, что особенно важно, скорость переключения между двумя крайними режимами работы менее 10 миллисекунд, а энергопотребление крайне мало. Последнее обстоятельство открывает возможности применения "жидких линз" в портативных устройствах, работающих от аккумуляторов: цифровых фотоаппаратах, встроенных в мобильный телефон видеокамерах и прочей технике. Системы, подобные FluidFocus, разрабатывают и другие компании. "Bell Labs", например, сконструировала свой вариант "жидкой линзы".

7. "Жидкий" дисплей и видео на "бумаге"

Капля, управляемая с помощью эффекта электросмачивания, -- это не только "жидкая линза", но и своего рода переключатель, сочетающий миниатюрность и простоту устройства с высокой скоростью и эффективностью. Он может найти множество самых неожиданных применений - например, для нового поколения дисплеев, к созданию которых уже предложено два подхода.

Исследователи из фирмы "Philips" предлагают использовать в качестве основного рабочего вещества новых дисплеев водно-масляную эмульсию. Пиксель монохромного дисплея представляет собой ячейку, на дно которой нанесены хорошо отражающее белое покрытие и прозрачный электрод с водоотталкивающим изолятором. Ячейка заполнена смесью воды с маслом, подкрашенным черной краской. В отсутствие напряжения вода, отталкиваемая гидрофобным электродом, располагается вверху ячейки, масло растекается по электроду, полностью закрывая белую подложку, и пиксель выглядит черным. При подаче напряжения (порядка 20 вольт) на электрод вода за счет эффекта электросмачивания устремляется к нему, вытесняя масло в угол ячейки и открывая большую часть белой подложки. Благодаря миниатюрным размерам ячейки (500x500 микрон) и высокой отражательной способности подложки черная капля в углу незаметна, и пиксель становится белым. Плавно меняя напряжение от нуля до максимума, можно частично открывать подложку, получая нужный тон серого цвета. Процесс переключения пикселя занимает порядка 10 миллисекунд.

Чтобы получить цветное изображение, предлагается разделить пиксель на три подпикселя, каждый из которых состоит из двух управляемых независимо разноцветных масляных слоев и светофильтра. Такая сложная структура позволяет использовать две трети общей площади экрана для воспроизведения какого-то одного цвета (а не треть, как в обычных дисплеях). В результате достигается беспрецедентная яркость изображения: по заявлению "Philips", она должна возрасти в четыре раза по сравнению с жидко-кристаллическими панелями.

Принципиально другой вариант дисплея, работающего на эффекте электросмачивания, придумали исследователи из Университета Британской Колумбии (Канада). Их идея состоит в том, чтобы использовать капли жидкости в качестве отражателей света. Пока напряжения нет, капля на прозрачной гидрофобной подложке имеет почти сферическую форму, ее контакт с подложкой минимален. Подавая напряжение и увеличивая тем самым площадь контакта, можно придать капле форму полусферы. Теперь падающий снизу свет будет проходить сквозь прозрачную подложку и каплю, пока не достигнет границы жидкость -- воздух, где он испытает эффект полного внутреннего отражения, и после серии таких отражений вернется назад, к наблюдателю. Таким образом, при подаче напряжения капля превращается в обратный отражатель и яркость пикселя многократно возрастает. Поскольку полное внутреннее отражение возможно лишь при углах падения света на границу раздела меньших определенного, так называемого критического, световое пятно, отраженное пикселем, будет иметь форму кольца (но наблюдатель этого не заметит в силу крайней малости его диаметра).

Обе предложенные технологии позволяют создавать дисплеи с высокой яркостью и контрастностью, низким потреблением энергии и малым рабочим напряжением. Это открывает широкие возможности их применения не только в стационарных, но и в мобильных устройствах. Новые дисплеи можно сделать очень тонкими и гибкими, а их пиксели способны переключаться достаточно быстро, чтобы предавать видеоизображения, -- ну чем не "электронная бумага"! Книги и газеты из такой "бумаги" смогут воспроизводить не только текст и картинки, но и видео.

Возникает законный вопрос: а как же сила тяжести? Казалось бы, если "жидкий" дисплей, лежавший сначала горизонтально, поставить вертикально, жидкость внутри ячеек-пикселей начнет перетекать в новое положение и при этом, естественно, устройство перестанет работать. Однако ничего подобного не происходит, как ни крути. Дело в том, что в миниатюрном пикселе силы поверхностного натяжения на границах сред значительно превышают силу тяжести, поскольку масса жидкости внутри него очень мала. Так что в пикселях именно поверхностное натяжение, а не гравитация, "правит бал".

Рисунок 10. Острый краевой угол возникает на смачиваемой (лиофильной) поверхности, тупой - на несмачиваемой (лиофобной).

Рисунок 11. Крылья бабочек не намокают - их поверхность отталкивает воду.

Рисунок 12. Кремниевая "нанотрава", "выращенная" американскими исследователями на подложке из чистого кремния. Густота "газона" определяется условиями травления. Снимок этой удивительно правильной структуры сделан при помощи сканирующего электронного микроскопа.

Рисунок 13. "Наноковер", "сотканный" китайскими исследователями, образуют густо, но хаотично расположенные нити из оксида цинка диаметром от 50 до 150 нанометров. Внизу -- вид на "ковер" сбоку.

Рисунок 14. "Нанотравинки" переходят из гидрофобного состояния в гидрофильное под действием накопленных ими зарядов, которые создает поток ультрафиолета или источник тока.

Рисунок 15. "Жидкая линза".

Рисунок 16. Пиксель дисплея, работающий на принципе электросмачивания.

Рисунок 17. На цветном дисплее каждый пиксель разделен на три под пикселя.

8. Капля в "нанотраве"

Вернемся вновь к "нанотраве" и лежащей на ней капле воды. Что произойдет, если применить к ним эффект электросмачивания? После приложения достаточного напряжения капля не просто уменьшит свой краевой угол -- она частично "всосется" в "нановорсистое" покрытие, смочив "травинки" до самого основания. При этом она потеряет не только свою форму, но и подвижность, прочно "застряв" в "нанотраве". Уменьшим напряжение -- и капля мгновенно отпрянет назад, на кончики "нанотравинок", вновь обретя и почти сферическую форму, и свободу передвижения. Как показали исследования, проведенные в Bell Labs, переход между двумя состояниями происходит скачком при определенном пороговом значении напряжения (порядка 20 вольт), тогда как на обычных гидрофобных поверхностях краевой угол плавно уменьшается с ростом напряжения. Уникальные свойства "нанотравяного" переключателя могут найти массу интересных применений.

Так, компания "Lucent Technologies" уже анонсировала прототип нового энергосберегающего аккумулятора на "нанотраве". Идея состоит в том, чтобы заставить аккумулятор вырабатывать электроэнергию только тогда, когда это действительно необходимо, а не постоянно, как происходит в обычных батареях, отчего они и садятся так быстро. Управляя подвижностью жидких реагентов с помощью "нанотравы", можно управлять ходом электрохимической реакции, останавливая ее или запуская вновь.

Другое любопытное применение "нанотравы" -- охлаждение элементов микросхем. Здесь используется эффект повышения смачиваемости с ростом температуры (об этом уже шла речь выше). Вместо того чтобы охлаждать всю микросхему целиком с помощью громоздкого вентилятора и тратить на это массу энергии, как это принято сегодня, можно поручить дело "нанотраве". Для этого достаточно протравить на поверхности чипа сеть микроканалов, по которым будет двигаться охлаждающая жидкость, а на верху чипа разместить что-то вроде радиатора, или теплоотвода. Стенки микроканалов нужно покрыть "наногазоном" -- тогда жидкость будет легко передвигаться по ним, всасываясь в "нанотраву" только на перегретых участках и тем самым охлаждая поверхность чипа только там, где это необходимо.

"Нанотрава" может быть очень полезна в микрофлюидике - новой науке и технологии создания "жидкостных" чипов, микроустройств, позволяющих управлять движением и перемешиванием микроколичеств жидкостей с целью анализа, диагностики и проведения различных экспериментов. Такие устройства применяются, например, для проведения генетического анализа. Есть также идеи использования "нанотравы" в оптических переключателях оптоволоконных сетей и во многих других устройствах.

Заключение

Сейчас продукция на основе нанотехнологий, использующая "эффект лотоса" и другие размерные эффекты при смачивании уже поступила в продажу.

Это, в первую очередь, очистительные и полировочные аэрозоли.

Список литературы

1. Бучаченко А.Л. Нанохимия - прямой путь к высоким технологиям нового века [Текст] / А.Л. Бучаченко // Успехи химии. - 2003. -- Т. 72. -- №5. -- С. 419.

2. Минько Н.И. Методы получения и свойства нанообъектов [Текст]: учебное пособие / Н.И. Минько, В.В. Строкова, И.В. Жерновский. - М.: Издательство: Флинта, Наука, 2009. - 168 с.

3. Еремин В.В. Материалы курса "Нанохимия и нанотехнология": лекции 1-4 [Текст]: Учебно-методическое пособие - М.: Педагогический университет "Первое сентября", 2009. - 92 с.

4. Бозорт P. Ферромагнетизм [Текст] / Р. Бозорт. - М.: Иностранная литература, 1956. -- 784 с.

5. Ремпель А.А. Нанотехнологии, свойства и применение наноструктурированных материалов [Текст] / А.А. Ремпель // Успехи химии. - 2007. - Т. 76. - №5. - С. 476-500.

6. Алфимов С.М. Развитие в России работ в области нанотехнологий [Текст] / С.М. Алфимов, В.А. Быков, Е.П. Гребенников и др. // Нано- и микросистемная техника. - 2004. - №8. - С. 2-8.

7. Бухтияров В.И. Наноструктурированные катализаторы: синтез, исследование и применение [Электронный ресурс] / В.И. Бухтияров // Сибирское отделение РАН (Институт катализа им. Г.К. Борескова). - Новосибирск.

8. Еремин В.В. Нанохимия и нанотехнология [Текст]: лекции 5-8 / В.В. Еремин. - М.: Педагогический университет "Первое сентября", 2009 года - 96 с.

9. Губин С.П. Магнитные наночастицы: методы получения, строение и свойства [Текст] / С.П. Губин, Ю.А. Кокшаров, Г.Б. Хомутов, Г.Ю. Юрков // Успехи Химии. -- 2005. -- Т. 74. -- №6. -- С. 539-574.

10. Губин С.П. Что такое наночастица? Тенденции развития нанохимии и нанотехнологии [Текст] / С.П. Губин // Российский химический журнал. -- 2000. -- Т. XLIV. -- №6. -- С. 23-31.

Размещено на Allbest.ru


Подобные документы

  • Описание классических задач механики контактного взаимодействия. Определение контакта между шаром и упругим полупространством, двумя шарами, двумя скрещивающимися цилиндрами, индентором и упругим полупространством. Учет шероховатости поверхности.

    реферат [376,0 K], добавлен 23.12.2015

  • Математическая модель и решение задачи очистки технических жидкостей от твердых частиц в роторной круговой центрифуге. Система дифференциальных уравнений, описывающих моделирование процесса движения твердой частицы. Физические характеристики жидкости.

    презентация [139,6 K], добавлен 18.10.2015

  • Кристаллическое и аморфное состояния твердых тел, причины точечных и линейных дефектов. Зарождение и рост кристаллов. Искусственное получение драгоценных камней, твердые растворы и жидкие кристаллы. Оптические свойства холестерических жидких кристаллов.

    реферат [1,1 M], добавлен 26.04.2010

  • Кинематическое предположение Ньютона. Понятие упругого и неупругого удара. Соударение точки с гладкой поверхностью. Изменение кинематического момента и количества движения. Нахождение ударного импульса. Прямой центральный удар двух твердых тел.

    лекция [399,6 K], добавлен 02.10.2013

  • Назначение контактного водонагревателя, принцип его действия, особенности конструкции и составные элементы, их внутреннее взаимодействие. Тепловой, аэродинамический расчет контактного теплообменного аппарата. Выбор центробежного насоса, его критерии.

    курсовая работа [255,1 K], добавлен 05.10.2011

  • Магнитно-силовая микроскопия как инструмент для исследования микро- и наномагнитных структур. Определение рельефа с использованием контактного или прерывисто-контатного методов. Магнитное взаимодействие, явление парамагнетизма и ферромагнетизма.

    реферат [592,7 K], добавлен 18.10.2013

  • Квантование магнитного потока. Термодинамическая теория сверхпроводимости. Эффект Джозефсона как сверхпроводящее квантовое явление. Сверхпроводящие квантовые интерференционные детекторы, их применение. Прибор для измерения слабых магнитных полей.

    контрольная работа [156,0 K], добавлен 09.02.2012

  • В реальных жидкостях присутствует не один, а множество пузырьков и свойства жидкостей зависят от особенностей взаимодействия между пузырьками. Взаимодействия двух радиально пульсирующих пузырьков газа в жидкости ранние выведенной математической модели.

    курсовая работа [608,7 K], добавлен 05.03.2008

  • Определение понятия "газ" как агрегатного состояния вещества, характеризующегося очень слабыми связями между молекулами, атомами и ионами. Основные состояния жидкостей: испарение, конденсация, кипение, смачивание и смешиваемость. Свойства твердых тел.

    презентация [711,7 K], добавлен 31.03.2012

  • Понятие фундаментального физического взаимодействия. Гравитация, электромагнетизм, слабое взаимодействие, сильное взаимодействие. Ньютоновская теория всемирного тяготения. Учения об электричестве и магнетизме в единой теории электромагнитного поля.

    презентация [214,9 K], добавлен 23.02.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.