Энергоснабжение промышленных предприятий

Назначение, схема и принцип действия конденсационной электростанции. Схема присоединения системы отопления с подмешивающим насосом на перемычке, достоинство и недостатки схемы. Расчет бойлерной установки для теплоснабжения промышленных предприятий.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 04.09.2011
Размер файла 516,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ РОССИЙСКОЙ

ФЕДЕРАЦИИ

КАМЫШИНСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ

ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ

УНИВЕРСИТЕТ (ВолгГТУ)

КАФЕДРА ОБЩЕТЕХНИЧЕСКИЕ НАУКИ

КОНТРОЛЬНАЯ РАБОТА

ПО ДИСЦИПЛИНЕ

«Энергоснабжение промышленных предприятий»

Камышин

2009

Содержание

1. Назначение, схема и принцип работы КЭС

2. Схема присоединения системы отопления с подмешивающим насосом на перемычке. Достоинство и недостатки схемы

3. Назначение и основные понятия системы водоотведения

4. Расчет бойлерной установки для теплоснабжения промышленных предприятий

5. Контрольные вопросы

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1. Назначение, схема и принцип действия КЭС

Конденсационная электростанция (КЭС) -- тепловая электростанция, производящая только электрическую энергию. Исторически получила наименование "ГРЭС" - государственная районная электростанция. С течением времени термин «ГРЭС» потерял свой первоначальный смысл («районная») и в современном понимании означает, как правило, конденсационную электростанцию (КЭС) большой мощности (тысячи МВт), работающую в объединённой энергосистеме наряду с другими крупными электростанциями. Однако следует учитывать, что не все станции, имеющие в своём названии аббревиатуру "ГРЭС", являются конденсационными, некоторые из них работают как теплоэлектроцентрали.

Принцип работы

Схема КЭС на угле: 1 -- градирня; 2 -- циркуляционный насос; 3 -- линия электропередачи; 4 -- повышающий трансформатор; 5 -- турбогенератор; 6 -- цилиндр низкого давления паровой турбины; 7 -- конденсатный насос; 8 -- поверхностный конденсатор; 9 -- цилиндр среднего давления паровой турбины; 10 -- стопорный клапан; 11 -- цилиндр высокого давления паровой турбины; 12 -- деаэратор; 13 -- регенеративный подогреватель; 14 -- транспортёр топливоподачи; 15 -- бункер угля; 16 -- мельница угля; 17 -- барабан котла; 18 -- система шлакоудаления; 19 -- пароперегреватель; 20 -- дутьевой вентилятор; 21 -- промежуточный пароперегреватель; 22 -- воздухозаборник; 23 -- экономайзер; 24 -- регенеративный воздухоподогреватель; 25 -- фильтр; 26 -- дымосос; 27 -- дымовая труба.

Вода, нагреваемая в паровом котле до состояния перегретого пара (520--565 градусов Цельсия), вращает паровую турбину, приводящую в движение турбогенератор.

Избыточное тепло выбрасывается в атмосферу (близлежащие водоёмы) через конденсационные установки в отличие от теплофикационных электростанций, отдающих избыточное тепло на нужды близлежащих объектов (например, отопление домов).

Конденсационная электростанция как правило работает по циклу Ренкина.

Основные системы

КЭС является сложным энергетическим комплексом, состоящим из зданий, сооружений, энергетического и иного оборудования, трубопроводов, арматуры, контрольно-измерительных приборов и автоматики. Основными системами КЭС являются:

· котельная установка;

· паротурбинная установка;

· топливное хозяйство;

· система золо- и шлакоудаления, очистки дымовых газов;

· электрическая часть;

· техническое водоснабжение (для отвода избыточного тепла);

· система химической очистки и подготовки воды.

При проектировании и строительстве КЭС ее системы размещаются в зданиях и сооружениях комплекса, в первую очередь в главном корпусе. При эксплуатации КЭС персонал, управляющий системами, как правило, объединяется в цеха (котлотурбинный, электрический, топливоподачи, химводоподготовки, тепловой автоматики и т. п.).

Котельная установка располагается в котельном отделении главного корпуса. В южных районах России котельная установка может быть открытой, то есть не иметь стен и крыши. Установка состоит из паровых котлов (парогенераторов) и паропроводов. Пар от котлов передается турбинам по паропроводам «острого» пара. Паропроводы различных котлов, как правило, не соединяются поперечными связями. Такая схема называется «блочной».

Паротурбинная установка располагается в машинном зале и в деаэраторном (бункерно-деаэраторном) отделении главного корпуса. В нее входят:

· паровые турбины с электрическим генератором на одном валу;

· конденсатор, в котором пар, прошедший турбину, конденсируется с образованием воды (конденсата);

· конденсатные и питательные насосы, обеспечивающие возврат конденсата (питательной воды) к паровым котлам;

· рекуперативные подогреватели низкого и высокого давления (ПНД и ПВД) -- теплообменники, в которых питательная вода подогревается отборами пара от турбины;

· деаэратор (служащий также ПНД), в котором вода очищается от газообразных примесей;

· трубопроводы и вспомогательные системы.

Топливное хозяйство имеет различный состав в зависимости от основного топлива, на которое рассчитана КЭС. Для угольных КЭС в топливное хозяйство входят:

· размораживающее устройство (т. н. «тепляк», или «сарай») для оттаивания угля в открытых полувагонах;

· разгрузочное устройство (как правило, вагоноопрокидыватель);

· угольный склад, обслуживаемый краном-грейфером или специальной перегрузочной машиной;

· дробильная установка для предварительного измельчения угля;

· конвейеры для перемещения угля;

· системы аспирации, блокировки и другие вспомогательные системы;

· система пылеприготовления, включая шаровые, валковые, или молотковые углеразмольные мельницы.

Система пылеприготовления, а также бункера угля располагаются в бункерно-деаэраторном отделении главного корпуса, остальные устройства топливоподачи -- вне главного корпуса. Изредка устраивается центральный пылезавод. Угольный склад рассчитывается на 7-30 дней непрерывной работы КЭС. Часть устройств топливоподачи резервируется.

Топливное хозяйство КЭС на природном газе наиболее просто: в него входит газораспределительный пункт и газопроводы. Однако на таких электростанциях в качестве резервного или сезонного источника используется мазут, поэтому устраивается и мазутное хозяйство. Мазутное хозяйство сооружается и на угольных электростанциях, где мазут применяется для растопки котлов. В мазутное хозяйство входят:

· приемно-сливное устройство;

· мазутохранилище со стальными или железобетонными резервуарами;

· мазутная насосная станция с подогревателями и фильтрами мазута;

· трубопроводы с запорно-регулирующей арматурой;

· противопожарная и другие вспомогательные системы.

Система золошлакоудаления устраивается только на угольных электростанциях. И зола, и шлак -- негорючие остатки угля, но шлак образуется непосредственно в топке котла и удаляется через лётку (отверстие в шлаковой шахте), а зола уносится с дымовыми газами и улавливается уже на выходе из котла. Частицы золы имеют значительно меньшие размеры (порядка 0,1 мм), чем куски шлака (до 60 мм). Системы золошлакоудаления могут быть гидравлические, пневматические или механические. Наиболее распространённая система оборотного гидравлического золошлакоудаления состоит из смывных аппаратов, каналов, багерных насосов, пульпопроводов, золошлакоотвалов, насосных и водоводов осветлённой воды.

Выброс дымовых газов в атмосферу является наиболее опасным воздействием тепловой электростанции на окружающую природу. Для улавливания золы из дымовых газов после дутьевых вентиляторов устанавливают фильтры различных типов (циклоны, скрубберы, электрофильтры, рукавные тканевые фильтры), задерживающие 90--99 % твердых частиц. Однако для очистки дыма от вредных газов они непригодны. За рубежом, а в последнее время и на отечественных электростанциях (в том числе газо-мазутных), устанавливают системы десульфуризации газов известью или известняком (т. н. deSOx) и каталитического восстановления оксидов азота аммиаком (deNOx). Очищенный дымовой газ выбрасывается дымососом в дымовую трубу, высота которой определяется из условий рассеивания оставшихся вредных примесей в атмосфере.

Электрическая часть КЭС предназначена для производства электрической энергии и её распределения потребителям. В генераторах КЭС создается трехфазный электрический ток напряжением обычно 6--24 кВ. Так как с повышением напряжения потери энергии в сетях существенно уменьшаются, то сразу после генераторов устанавливаются трансформаторы, повышающие напряжение до 35, 110, 220, 500 и более кВ. Трансформаторы устанавливаются на открытом воздухе. Часть электрической энергии расходуется на собственные нужды электростанции. Подключение и отключение отходящих к подстанциям и потребителям линий электропередачи производится на открытых или закрытых распределительных устройствах (ОРУ, ЗРУ), оснащенных выключателями, способными соединять и разрывать электрическую цепь высокого напряжения без образования электрической дуги.

Система технического водоснабжения обеспечивает подачу большого количества холодной воды для охлаждения конденсаторов турбин. Системы разделяются на прямоточные, оборотные и смешанные. В прямоточных системах вода забирается насосами из естественного источника (обычно из реки) и после прохождения конденсатора сбрасывается обратно. При этом вода нагревается примерно на 8--12 °С, что в ряде случаев изменяет биологическое состояние водоёмов. В оборотных системах вода циркулирует под воздействием циркуляционных насосов и охлаждается воздухом. Охлаждение может производиться на поверхности водохранилищ-охладителей или в искусственных сооружениях: брызгальных бассейнах или градирнях.

В маловодных районах вместо системы технического водоснабжения применяются воздушно-конденсационные системы (сухие градирни), представляющие собой воздушный радиатор с естественной или искусственной тягой. Это решение обычно вынужденное, так как они дороже и менее эффективны с точки зрения охлаждения.

Система химводоподготовки обеспечивает химическую очистку и глубокое обессоливание воды, поступающей в паровые котлы и паровые турбины, во избежание отложений на внутренних поверхностях оборудования. Обычно фильтры, ёмкости и реагентное хозяйство водоподготовки размещается во вспомогательном корпусе КЭС. Кроме того, на тепловых электростанциях создаются многоступенчатые системы очистки сточных вод, загрязненных нефтепродуктами, маслами, водами обмывки и промывки оборудования, ливневыми и талыми стоками.

КЭС сооружают непосредственно у источников водоснабжения (река, озеро, море); часто рядом с КЭС создают пруд-водохранилище. На территории КЭС, кроме главного корпуса, размещают сооружения и устройства технического водоснабжения и химводоочистки, топливного хозяйства, электрические трансформаторы, распределительные устройства, лаборатории и мастерские, материальные склады, служебные помещения для персонала, обслуживающего КЭС. Топливо на территорию КЭС подаётся обычно ж.-д. составами. Золу и шлаки из топочной камеры и золоуловителей удаляют гидравлическим способом. На территории КЭС прокладывают ж.-д. пути и автомобильные дороги, сооружают выводы линий электропередачи, инженерные наземные и подземные коммуникации. Площадь территории, занимаемой сооружениями КЭС, составляет, в зависимости от мощности электростанции, вида топлива и др. условий, 25-70 га.

2. Схема присоединения системы отопления с подмешивающим насосом на перемычке. Достоинство и недостатки схемы

конденсационная электростанция бойлер теплоснабжение

Системы отопления присоединяются к водяным тепловым сетям по одной из следующих принципиальных схем:

а) по зависимой схеме - с элеватором; с насосным подмешиванием (рис. 1-3) и непосредственно без подмешивания обратной воды;

б) по независимой схеме - через водяные подогреватели .

Системы отопления жилых и общественных зданий, школ и детских учреждений, а также помещения промышленных предприятий можно присоединять к тепловым сетям по зависимой схеме, если избыточное давление в обратном трубопроводе сети при нормальном или аварийном режимах не превышает 0,6 МПа.

Равномерность прогрева системы отопления зависит главным образом от расхода воды в системе. Для равномерного прогрева всех нагревательных приборов абонентской сети необходимо обеспечить в системе расчетную циркуляцию теплоносителя (воды), что возможно лишь при нормальной рабо- те подмешивающих устройств на тепловых пунктах (элеваторов или насосов). В двухтрубной системе отопления (отопительные приборы включены параллельно), присоединенной к тепловой сети через элеваторный узел, для этого необходимо, во-первых, снизить до минимума сопротивление самой системы и, во-вторых, использовать весь располагаемый напор на тепловом пункте в сопле для получения максимального коэффициента смешения, равного отношению количества подъмешиваемой воды из обратного трубопровода к расходу воды из подающего трубопровода тепловой сети.

Рис. 1. Схема узла присоединения системы отопления с насосом на перемычке при статическом давлении системы, превышающем давление в обратном трубопроводе тепловой сети. FE - теплосчётчик, РР - регулятор расхода прямого действия, РН - регулятор напора прямого действия, М - манометр, ТС - термометр сопротивления, Т - термометр, Н - насос

Равномерность прогрева нагревательных приборов однотрубных отопительных систем (отопительные приборы включены последовательно) достигается созданием гидравлического режима, не допускающего значительного отклонения расхода воды в системе от расчетного. Рекомендуемое для двухтрубных отопительных систем использование избыточного напора на повышение коэффициента смешения элеватора в однотрубных системах недопустимо, так как повышение расхода воды в однотрубной системе сверх расчетного приводит к поэтажной тепловой разрегулировке.

Рис. 2. Схема узла насосного присоединения системы отопления со статическим давлением, превышающем давление в подающем трубопроводе. FE - теплосчётчик, РР - регулятор расхода прямого действия, РН - регулятор напора прямого действия, РДН - регулятор давления непрямого действия, М - манометр, ТС - термометр сопротивления, Т - термометр, Н - насос

Фактический коэффициент смешения a определяется по показаниям термометров Т1, Т2 и Т3 (см. рис. 1) на тепловом пункте по формуле:

(1)

Расход сетевой воды через отопительную систему должен регулироваться таким образом, чтобы температура воды после системы не превышала заданного значения.

Рис. 4. Схема узла присоединения системы отопления к тепловой сети с подмешивающим насосом на обратном трубопроводе. FE - теплосчётчик, РН - регулятор напора прямого действия, М - манометр, ТС - термометр сопротивления, Т - термометр

Это достигается соответствующей настройкой регулятора расхода, при которой обеспечивается заданный перепад давлений до и после системы, как это показано на рис. 1. или до и после специальной дроссельной диафрагмы, установленной на подающем или обратном трубопроводах.

В случаях, когда на подающем трубопроводе теплового пункта установлен регулятор давления расход воды через систему теплопотребления регулируется настройкой указанных регуляторов на соответствующий перепад давлений в подающем и обратном трубопроводах.

Температура смешанной воды, поступающей в систему отопления, должна выдерживаться на требуемом уровне в соответствии с температурой наружного воздуха при расчетном расходе сетевой воды. Отклонение этой температуры от нормативной величины при расчетных температуре и расходе сетевой воды свидетельствует о несоответствии коэффициента смешения заданному значению.

При заданном коэффициенте смешения б температура смешанной воды T3 должна быть равна:

3=(T1+ б T2)/(1+ б), ° С (2)

где T1 и T2 -- температура воды соответственно в подающем и обратном трубопроводах, °С.

При элеваторных присоединениях величина коэффициента смешения зависит от размеров камеры смешения (горловины) элеватора и диаметра выходного отверстия сопла.

Примерное значение оптимального диаметра камеры смешения определяется формулой

, мм (3)

где G1 -- расчетный расход сетевой воды, т/ч;

--расчетный коэффициент смешения, определяемый по формуле (1) путем подстановки значений расчетных температур;

h -- потери напора в системе отопления, м, при расчетном расходе смешанной воды.

Диаметр выходного сечения сопла элеватора при расчетном располагаемом напоре перед ним с достаточной степенью точности может быть определен по формуле

, мм (4)

Диаметр камеры смешения элеватора не должен превышать расчетной величины, определяемой по формуле (3), так как завышенный диаметр приводит к резкому снижению к. п. д. элеватора, вызывает необходимость в больших напорах перед элеватором и обычно приводит к снижению коэффициента смешения.

Присоединение систем отопления по схемам с насосным подмешиванием производится в следующих случаях:

а) с насосом на перемычке между обратным и подающим трубопроводами -- при недостаточном для работы элеватора располагаемом напоре на тепловом вводе и давлении в подающем трубопроводе, превышающем статическое давление отопительной системы не менее чем на 0,5--1,0 кгс/см2, но не выше допустимого для этой системы предела;

б) с насосом на подающем трубопроводе после подмешивающей перемычки между подающим и обратным трубопроводами -- при статическом давлении системы, равном или превышающем давление в подающем трубопроводе тепловой сети, или при необходимости увеличения располагаемого напора;

в) с насосом на обратном трубопроводе от системы отопления до (по ходу обратной воды) подмешивающей перемычки-- при давлении в обратном трубопроводе, превышающем допустимый предел для данной системы.

3. Назначение и основные понятия системы водоотведения

Система водоотведения - это комплекс инженерных сооружений, предназначенных для отвода сточных вод от потребителя и их последующей доставки к очистным системам. Водоотведение играет не меньшую роль в обеспечении необходимых условий проживания, нежели водоснабжение. Для организации системы водоотведения используют так называемые насосы грязной воды, а именно, дренажные насосы и канализационные насосы.

Водоотводящие системы и сооружения -- это один из видов инженерного оборудования и благоустройства населенных пунктов, жилых, общественных и производственных зданий, обеспечивающих необходимый санитарно-гигиенические условия труда, быта и отдыха населения. Системы водоотведения и очистки состоят из комплекса оборудования, сетей и сооружений, предназначенных для приема и удаления по трубопроводам бытовых производственных и атмосферных сточных вод, а также для их очистки и обезвреживания перед сбросом в водоем или утилизацией.

Объектами водоотведения являются здания различного назначения, а также вновь строящиеся, существующие и реконструируемые города, поселки, промышленные предприятия, санитарно-курортные комплексы и т.п.

Сточные воды - это воды, использованные на бытовые, производственные или другие нужды и загрязненные различными примесями, изменившими их первоначальный химический состав и физические свойства, а также воды, стекающие с территории населенных пунктов и промышленных предприятий в результате выпадения атмосферных осадков или поливки улиц.

В зависимости от происхождения вида и состава сточные воды подразделяются на три основные категории: бытовые (от туалетных комнат, душевых, кухонь, бань, прачечных, столовых, больниц; они поступают от жилых и общественных зданий, а также от бытовых помещений и промышленных предприятий); производственные (воды, использованные в технологических процессах, не отвечающие более требованиям, предъявляемым к их качеству; к этой категории вод относят воды, откачиваемые на поверхность земли при добыче полезных ископаемых); атмосферные (дождевые и талые; вместе с атмосферными отводятся воды от полива улиц, от фонтанов и дренажей).

В практике используется также понятие городские сточные воды, которые представляют собой смесь бытовых и производственных сточных вод. Бытовые, производственные и атмосферные сточные воды отводятся как совместно, так и раздельно.

Наиболее широкое распространение получили общесплавные и раздельные системы водоотведения. При общесплавной системе все три категории сточных вод отводятся по одной общей сети труб и каналов за пределы городской территории на очистные сооружения. Раздельные системы состоят из нескольких сетей труб и каналов: по одной из них отводятся дождевые и незагрязненные производственные сточные воды, а по другой или по нескольким сетям - бытовые и загрязненные производственные сточные воды.

Сточные воды представляют собой сложные гетерогенные смеси, содержащие примеси органического и минерального происхождения, которые находятся в нерастворенном, коллоидном и растворенном состоянии. Степень загрязнения сточных вод оценивается концентрацией, т.е. массой примесей в единицу объема мг/л или г/куб. м. Состав сточных вод регулярно анализируется.

Проводятся санитарно-химические анализы по определению: величины ХПК (общая концентрация органических веществ); БПК (концентрация органических соединений, окисляемых биологическим путем); концентрация взвешенных веществ; активной реакции среды; интенсивности окраски; степени минерализации; концентрации биогенных элементов (азота, фосфора, калия) и др. Наиболее сложны по составы сточные воды промышленных предприятий. На формирование производственных сточных вод влияет вид перерабатываемого сырья, технологический процесс производства, применяемые реагенты, промежуточные изделия и продукты, состав исходной воды, местные условия и др. Для разработки рациональной схемы водоотведения и оценки возможности повторного использования сточных вод изучается состав и режим водоотведения не только общего стока промышленного предприятия, но также сточных вод от отдельных цехов и аппаратов. Помимо определения основных санитарно-химических показателей в производственных сточных водах определяются концентрации специфических компонентов, содержание которых предопределяется технологическим регламентом производства и номенклатурой применяемых веществ. Поскольку производственные сточные воды представляют собой наибольшую опасность для водоемов, мы рассмотрим их более подробно.

Производственные сточные воды делятся на две основные категории: загрязненные и незагрязненные (условно чистые). Загрязненные производственные сточные воды подразделяются на три группы.

1. Загрязненные преимущественно минеральными примесями (предприятия металлургической, машиностроительной, рудо- и угледобывающей промышленности; заводы по производству кислот, строительных изделий и материалов, минеральных удобрений и др.).

2. Загрязненные преимущественно органическими примесями (предприятия мясной, рыбной, молочной, пищевой, целлюлозно-бумажной, микробиологической, химической промышленности; заводы по производству каучука, пластмасс и др.).

3. Загрязненные минеральными и органическими примесями (предприятия нефтедобывающей, нефтеперерабатывающей, текстильной, легкой, фармацевтической промышленности; заводы по производству сахара, консервов, продуктов органического синтеза и др.). Кроме вышеуказанных 3 групп загрязненных производственных сточных вод имеет место сброс нагретых вод в водоем, что является причиной так называемых тепловых загрязнений.

Производственные сточные воды могут различаться по концентрации загрязняющих веществ, по степени агрессивности и т.д.

Состав производственных сточных вод колеблется в значительных пределах, что вызывает необходимость тщательного обоснования выбора надежного и эффективного метода очистки в каждом конкретном случае. Получение расчетных параметров и технологических регламентов обработки сточных вод и осадка требуют весьма продолжительных научных исследований как в лабораторных, так и полупроизводственных условиях.

Количество производственных сточных вод определяется в зависимости от производительности предприятия по укрупненным нормам водопотребления и водоотведения для различных отраслей промышленности. Норма водопотребления -- это целесообразное количество воды, необходимого для производственного процесса, установленная на основании научно обоснованного расчета или передового опыта. В укрупненную норму водопотребления входят все расходы воды на предприятии. Нормы расхода производственных сточных вод применяют при проектировании вновь строящихся и реконструкции действующих систем водоотведения промышленных предприятий. Укрупненные нормы позволяют дать оценку рациональности использования воды на любом действующем предприятии.

В составе инженерных коммуникаций промышленного предприятия, как правило, имеется несколько водоотводящих сетей. Незагрязненные нагретые сточные воды поступают на охладительные установки (брызгальные бассейны, градирни, охладительные пруды) , а затем возвращаются в систему оборотного водообеспечения. Загрязненные сточные воды поступают на очистные сооружения, а после очистки часть обработанных сточных вод подается в систему оборотного водообеспечения в те цеха, где ее состав удовлетворяет нормативным требованиям.

Эффективность использования воды на промышленных предприятиях оценивается такими показателями, как количество использованной оборотной воды, коэффициентом ее использования и процентом ее потерь. Для промышленных предприятий составляется баланс воды, включающий расходы на различные виды потерь, сбросы и добавление компенсирующих расходов воды в систему. Проектирование вновь строящихся и реконструируемых систем водоотведения населенных пунктов и промышленных предприятий должно осуществляться на основе утвержденных в установленном порядке схем развития и размещения отрасли народного хозяйства, отраслей промышленности и схем развития и размещения производительных сил по экономическим районам. При выборе систем и схем водоотведения должна учитываться техническая, экономическая и санитарная оценки существующих сетей и сооружений, предусматриваться возможность интенсификации их работы.

При выборе системы и схемы водоотведения промышленных предприятий необходимо учитывать:

1) требования к качеству воды, используемой в различных технологических процессах;

2) количество, состав и свойства сточных вод отдельных производственных цехов и предприятия в целом, а также режимы водоотведения;

3) возможность сокращения количества загрязненных производственных сточных вод путем рационализации технологических процессов производства;

4) возможность повторного использования производственных сточных вод в системе оборотного водообеспечения или для технологических нужд другого производства, где допустимо применять воды более низкого качества;

5) целесообразность извлечения и использования веществ, содержащихся в сточных водах;

6) возможность и целесообразность совместного отведения и очистки сточных вод нескольких близко расположенных промышленных предприятий, а также возможность комплексного решения очистки сточных вод промышленных предприятий и населенных пунктов;

7) возможность использования в технологическом процессе очищенных бытовых сточных вод;

8) возможность и целесообразность использования бытовых и производственных сточных вод для орошения сельскохозяйственных и технических культур;

9) целесообразность локальной очистки сточных вод отдельных цехов предприятия;

10) самоочищающую способность водоема, условия сброса в него сточных вод и необходимую степень их очистки;

11) целесообразность применения того или иного метода очистки.

При вариантном проектировании водоотводящих систем и очистных сооружений на основании технико-экономических показателей принимается оптимальный вариант.

4. Расчет бойлерной установки для теплоснабжения промышленных предприятий

Задание. Произвести тепловой расчет, подобрать тип и количество секций пароводяного вертикального двухходового подогревателя для бойлерной установки промышленного предприятия.

Исходные данные: расход и параметры нагреваемой воды для нужд промышленного предприятия составляют Gн= 70 т/ч, =8оС, =90оС. Горячий теплоноситель водяной пар с параметрами P=0,6 МПа.

Определяем площадь живого сечения трубок подогревателя:

=,

где: - скорость течения воды в трубах, величина которой принимается в пределах: =1,0 - 3,0 м/с.

По табл. П-3 подбираем тип стандартного подогревателя по ближайшему значению расчетной величины . Выбираем подогреватель №2, который имеет технические характеристики:

· площадь живого сечения трубок, ;

· площадь поверхности нагревателя, ;

· диаметр корпуса, ;

· диаметр подсоединительных патрубков, ;

· общая длина корпуса, ;

· материал трубок - латунь;

· диаметр трубок ;

· длина трубок, ;

· общее количество, ;

· приведенное число в вертикальном ряду, ;

· площадь живого сечения межтрубного пространства, .

Определяем истинную скорость воды в трубках:

Гидродинамический режим течения воды в трубках определяется следующим образом:

где: - внутренний диаметр трубок, принимается по техническим характеристикам стандартного подогревателя, как ; ;

- толщина стенки трубки, принимается по техническим характеристикам подогревателя, мм;

V - коэффициент кинематической вязкости воды, принимается по табл. П-1, как .

Находим среднюю температуру нагреваемой воды в трубках:

Сравнивая фактическое число Рейнольдса с критериальным числом , устанавливаем, что в трубках режим течения воды турбулентный, т.к. 51115 2320. Поэтому для определения коэффициента теплоотдачи от стенки трубок к нагреваемому теплоносителю, протекающему внутри трубок, используем следующую формулу:

Определим среднюю температуру стенки трубок:

,

где: - температура насыщения (кипения) воды, принимается по табл. П-2, как

Определим температуру пленки конденсата:

Разность температур насыщенного пара и стенки трубок:

Коэффициент теплоотдачи от греющей среды (водяного пара) к стенкам трубок:

где: Н - высота трубки, равная её длине Н=L, м.

Определяем коэффициент теплоотдачи от греющей среды к нагреваемой:

,

где: - толщина стенки трубы, принимается по техническим характеристикам подогревателя, м;

- коэффициент теплопроводности стенки трубы, для латуни ;

- толщина слоя накипи, ;

- коэффициент теплопроводности накипи, .

Теплопроизводительность подогревателя:

,

где: - теплоемкость воды, .

Изобразим схему изменения температуры теплоносителей.

Рис. 2. Изменение температуры теплоносителей для пароводяного теплоносителя

Определяем изменения температур в подогревателе:

Определяем средний логарифмический температурный напор:

где: - большая и меньшая величина разности температур между греющей и нагреваемой средой, оС.

Определяем поверхность нагрева:

Определяем количество секций подогревателя для бойлерной установки:

Для бойлерной установки принимаем 3 секции подогревателя типа 426х3630-124х2 ОСТ 34-588-68. подогреватель двухходовой диаметром Dн=426 мм, длиной L=3630 мм, с числом трубок 124 шт.

5. Контрольные вопросы

1) Дайте определение регенеративного теплообменника?

Регенеративными называются теплообменники, в которых одна и та же поверхность нагрева через определенные промежутки времени омывается то горячим, то холодным теплоносителем. В период контакта стенки с горячим теплоносителем она нагревается, а в период подачи холодной среды охлаждается, нагревая среду за счет аккумулированной теплоты. К таким аппаратам относятся воздухонагреватели газотурбинных установок, мартеновских и доменных печей.

2) Для чего в кожухотрубчатых теплообменниках устанавливают перегородки?

Трубное и межтрубное пространство в аппаратах могут быть разделены перегородками на несколько ходов. Перегородки предназначены для увеличения скорости и, следовательно, коэффициента теплоотдачи теплоносителей.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1. Рыжкин В.Я. Тепловые электрические станции: Учебник для вузов / Под ред. В.Я. Гиршфельда. - М: Энергоатомиздат, 1987. - 328 с.

2. Елизаров Д.П. Теплоэнергетические установки электростанций: Учебник для вузов / Д.П. Елизаров. - М.: Энергоиздат, 1982. - 264 с.

3. Теплопреобразующие установки: Методические указания к практическому занятию и выполнению семестрового задания по дисциплине «Энергоснабжение»/Сост. А.А. Шеин, Е.П. Богдановф:Волгоград.гос.техн.ун-т. - Волгоград, 2006. - 37 с.

4. Быстрицкий Г.Ф. Основы энергоснабжения промышленных предприятий: Учеб. пособие для сред. проф. образования. - М.: МЭИ, 1975.

5. http://www.aces.ru/problems/index.

6. А.З. Жук, Б.М. Козлов, Научно-Технологический Центр Энергосберегающих процессов и установок (НТЦ ЭПУ) ОИВТ РАН.

Размещено на Allbest.ru


Подобные документы

  • Определение максимального расхода теплоты на отопление, вентиляцию и водоснабжение промышленных предприятий, общественных и жилых зданий. Подсчет капитальных вложений в сооружение конденсационной электростанции и котельной. Выбор сетевой установки.

    курсовая работа [945,2 K], добавлен 05.07.2021

  • Расчет электрических нагрузок и суммарной мощности компенсирующих устройств с учетом режимов энергосистемы. Выбор числа трансформаторов, схем электроснабжения и напряжения распределительных сетей для понизительных подстанций промышленных предприятий.

    курсовая работа [1,6 M], добавлен 21.11.2010

  • Оценка эффективности инвестиций к элементам теплоэнергетических систем - теплоутилизационным установкам промышленных предприятий. Расчет выхода и полезного использования вторичных энергоресурсов. Энергоснабжение в зонах централизованного энергоснабжения.

    курсовая работа [310,9 K], добавлен 03.11.2014

  • Особенности технологической схемы ТЭЦ. Специфика пароводяного контура и способ выдачи электроэнергии. Мощность теплового оборудования ТЭЦ в сравнении с электрической мощностью электростанции. Схема конденсационной электростанции. Вакуумный насос.

    презентация [1,6 M], добавлен 22.05.2016

  • Принципиальная схема турбины К-150-130 для построения конденсационной электростанции. Расчёт параметров воды и пара в подогревателях, установки по подогреву воды, расхода пара на турбину. Расчёт регенеративной схемы и проектирование топливного хозяйства.

    курсовая работа [384,4 K], добавлен 31.01.2013

  • Основные особенности принципа действия конденсационной электростанции, принцип работы. Характеристика Ириклинской ГРЭС, общие сведения. Анализ структурной схемы проектируемой электростанции. Этапы расчета технико-экономического обоснования проекта.

    курсовая работа [1,7 M], добавлен 18.11.2012

  • Назначение, перечень узлов и принцип работы оборудования бойлерной установки. Анализ и оценка эффективности работы бойлерной установки турбины. Проект реконструкции бойлерной установки Конструкция и преимущества пластинчатых теплообменных аппаратов.

    дипломная работа [3,1 M], добавлен 07.03.2009

  • Проектирование нагрузок системы внутризаводского электроснабжения. Выбор конденсаторной установки. Определение величины оптимальных электрических нагрузок для силовых трансформаторов и подстанции. Расчет токов короткого замыкания, марки и сечения кабелей.

    курсовая работа [223,2 K], добавлен 12.02.2011

  • Разработка отопительно-производственной котельной с паровыми котлами типа ДЕ 16–14 для обеспечения теплотой систем отопления, вентиляции, горячего водоснабжения и технологического теплоснабжения промышленных предприятий. Тепловые нагрузки потребителей.

    курсовая работа [624,0 K], добавлен 09.01.2013

  • Системы электроснабжения промышленных предприятий. Проектирование и эксплуатация систем электроснабжения промышленных предприятий. Выбор схемы и расчет внутрицеховой электрической сети. Выбор вводной панели. Выбор коммутационных и защитных аппаратов.

    контрольная работа [97,9 K], добавлен 25.03.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.