Научная революция и создание фундамента классической механики
Обзор научной революции ХVII в. Рассмотрение особенностей построения механической картины мира. Изучение жизни и творчества Ньютона. Характеристика гипотезы обратных квадратов Гука и теории тяготения Ньютона. Анализ полемики картезианцев и ньютонианцев.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 26.04.2019 |
Размер файла | 59,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования и науки Российской Федерации
ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (ТГУ)
Физико-технический факультет
Кафедра прочности и проектирования
РЕФЕРАТ
«Научная революция и создание фундамента классической механики (вторая половина ХVI-ХVII вв.)»
по дисциплине «История и методология механики»
Выполнил
студент группы № 10712
С.Д. Будаева
Проверил
доцент, канд.ф.-м. н.
В.В. Каракулов
Томск 2019
Содержание
ньютон квадрат гук тяготение
Завершение научной революции в ХVII в. Построение механической картины мира
Жизнь и творчество Ньютона
Гипотеза обратных квадратов Гука и теория тяготения Ньютона
Полемика картезианцев и ньютонианцев
Список использованной литературы
Завершение научной революции в ХVII в. Построение механической картины мира
Общепринятым считается положение о том, что именно в XVII в. возникла европейская наука (прежде всего это относится к классическому естествознанию), причем "в начале века ее еще не было, в конце века она уже была". Характерно, что возникла она сразу во взаимосвязи всех составляющих: теоретического знания, его логического обоснования и математического описания, экспериментальной проверки, социальной структуры с сетью научных коммуникаций и общественным применением.
География этого процесса включает немало европейских стран и городов, но представляется возможным выделение Италии в начале, и Англии в конце периода, как его "главных" научных центров.
Условно могут быть выделены три этапа становления науки. Первый, связанный, прежде всего, с деятельностью Г. Галилея - формирование новой научной парадигмы; второй - с Р. Декартом - формирование теоретико-методологических основ новой науки; и третий - "главным" героем которого был И. Ньютон, - полное завершение новой научной парадигмы - начало современной науки. И хотя не все согласны с определением "научная революция", впервые введенным в 1939 г. А. Койре, все сходятся в том, что именно в XVII в. была создана классическая наука современного типа.
На вопрос: "Почему возникает наука?" - вряд ли возможно дать исчерпывающий ответ, но вполне можно проследить и описать механизм возникновения этого явления. Познавательной моделью античности был Мир как Космос; и мыслителей волновала скорее проблема идеальной, чем "реальной" природы. Познавательной моделью средневековья был Мир как Текст; и "реальная" природа также мало заботила схоластов. Познавательной моделью Нового времени стал Мир как Природа. Разработка общезначимой процедуры "вопрошания" - эксперимента и создания специального научного языка описания диалога с Природой - составляет главное содержание научной революции.
Наблюдательная астрономия. Высшего совершенства в наблюдательной астрономии в "дотелескопическую эпоху" достиг, несомненно, Тихо Браге (1546 - 1601), помощником и, в определенной мере, научным наследником которого был Иоганн Кеплер (1571 - 1630). На основе наблюдений Браге составил каталог 777 звезд, причем координаты 21 опорной звезды были им определены с особой тщательностью. Ошибка при определении положений звезд не превышала одной минуты, а для опорных звезд - еще меньше. Позднее список звезд был доведен до 1000.Самым революционным в науке было наблюдение Тихо Браге появления новой звезды в созвездии Кассиопеи 11 ноября 1572 г. Тихо Браге не только зафиксировал это явление, но и строго научно его описал.
Новая модель мира. Первый "рабочий чертеж" новой модели мира суждено было выполнить Иоганну Кеплеру, на которого с детства выпало столько личных несчастий, что трудно найти более тяжелую судьбу. Кеплер был открытым и последовательным пифагорейцем и совершенство своей астрономической модели искал (и нашел!) в сочетании правильных многогранников и описывавших их окружностей, правда, нашел их в своей третьей геометрической модели, отказавшись при этом от круговой орбиты небесных тел.
В книге "Новая астрономия, основанная на причинных связях, Или физика неба, выведенная из изучения движений звезд звезды Марс, основанных на наблюдениях благородного Тихо Браге", завершенной в 1607 г. и опубликованной двумя годами позже, Кеплер привел два из своих знаменитых трех законов движения планет: Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце. Каждая планета движется в плоскости, проходящей через центр Солнца, причем линия, соединяющая Солнце с планетой (радиус-вектор планеты), за равные промежутки времени описывает равные площади. В 1618 г. Кеплер обнародовал свой третий закон планетных движений: Квадраты периодов обращения планет вокруг Солнца соотносятся как кубы больших полуосей их орбит.
Кеплер не смог объяснить причины планетных движений: он считал, что их "толкает" Солнце, испуская при своем вращении особые частицы (species immateriata). Кеплеровский закон площадей - это первое математическое описание планетарных движений, исключившее принцип равномерного движения по окружности как первооснову. Более того, он впервые выразил связь между мгновенными значениями непрерывно изменяющихся величин (угловой скорости планеты относительно Солнца и ее расстояния до него). Этот "мгновенный" метод описания, который Кеплер впоследствии вполне осознано, использовал при анализе движения Марса, стал одним из выдающихся принципиальных достижений науки XVII в. - методом дифференциального исчисления, оформленного Г. Лейбницем и И. Ньютоном.
Кеплер заложил первый камень (вторым стала механика Галилея) в фундамент, на котором покоится теория Ньютона.
Космология и механика Галилея. У Галилео Галилея (1564 - 1642) впервые связь космологии с наукой о движении приобрела осознанный характер, что и стало основой создания научной механики. Первоначально (до 1610 г.) Галилеем были открыты законы механики, но первые публикации и трагические моменты его жизни были связаны с менее оригинальными работами по космологии. Изобретение в 1608 г. голландцем Хансом Липперсхеем, изготовителем очков, телескопа (правда, не предназначавшегося для астрономических целей), дало возможность Галилею, усовершенствовав его, в январе 1610 г. "открыть новую астрономическую эру". Оказалось, что Луна покрыта горами, Млечный путь состоит из звезд, Юпитер окружен четырьмя спутниками и т.д. "Аристотелевский мир" рухнул окончательно. Вместе с тем, Галилей не создал цельной системы.
Новая механика. В 1638 г. вышла последняя книга Г. Галилея "Беседы и математические доказательства, касающиеся двух новых отраслей науки, относящихся к механике и местному движению...", в которой он касался проблем, решенных им за 30 лет до этого. Механика Галилея дает идеализированное описание движения тел вблизи поверхности Земли, пренебрегая сопротивлением воздуха, кривизной земной поверхности и зависимостью ускорения свободного падения от высоты.
В основе "теории" Галилея лежат четыре простые аксиомы (правда, в явном виде Галилеем не сформулированные):
Свободное движение по горизонтальной плоскости происходит с постоянной по величине и направлению скоростью (сегодня - закон инерции, или первый закон Ньютона).
Свободно падающее тело движется с постоянным ускорением.
dV = gdt,
где dV - приращение скорости, происходящее за интервал времени dt, а g - постоянное ускорение cвободного падения. Тогда скорость V свободно падающего тела в момент t будет равна
V = g(t-t0)+ V0,
где Vо - скорость тела в начальный момент времени.
Тело, скользящее без трения по наклонной плоскости, движется с постоянным ускорением g sinQ. Где Q - угол наклона плоскости к горизонту.
V2 = 2(g sinQ )d,
где d = h/sinQ , h - высота, с которой тело начало двигаться, так что V2 = 2gh.
Галилей чрезвычайно гордился этой формулой, поскольку она позволяла определять скорость с помощью геометрии.
Принцип относительности Галилея и движение снарядов ("Преобразования Галилея").
Траектория снаряда описывается уравнением параболы:
y = y0 +(Vy/Vx)x-1/2(g/Vx2)x2,
где y0 - высота вылетевшего снаряда; Vx- его горизонтальная скорость; Vy - вертикальная скорость.
Философско-методологическая манифестация научной революции. Только спустя несколько веков оказалось возможным выделить какие-либо тенденции в XVII в. "Внутри" же него процессы были мало связаны друг с другом. Мощное эмпирическое движение в естествознании зародилось само по себе - оно отвечало какой-то внутренней потребности познания; философско-методологическое осознание этого "внутреннего движения" развивалось также само собой, и то, что сегодня мы видим их тождественность - весомый аргумент в обосновании научности как таковой.
Первыми "концептуалистами" Нового времени принято считать Фрэнсиса Бэкона (1561 - 1626) и Рене Декарта (1596 - 1650).
Бэкону принадлежит провозглашение главенства метода индукции.
Декарт несравненно более глубокий мыслитель - основатель философии Нового времени. В отличие от Бэкона, Декарт ищет обоснование знания не столько в сфере его практической реализации, сколько в сфере самого знания. Поэтому в центре методологических размышлений ("сомнений") Декарта - мысль и сам Человек. Три положения механики Декарта важны для понимания последующей философии естествознания: в мире отсутствует пустота, Вселенная наполнена материей (и вся она в непрерывном движении), материя и пространство суть одно. Не существует абсолютной системы отсчета, а следовательно, и абсолютного движения. Р. Декарт явился типичным представителем ятрофизики - направления в естествознании, рассматривавшее живую природу с позиций физики.
Дальнейшее развитие это направление получило в работах итальянского анатома Джованни Борелли (1608-1679) - основоположника ятромеханики, которое в последствии выросло в биомеханику. С позиций ятрофизики и ятромеханики живой организм подобен машине, в которой все процессы можно объяснить при помощи математики и механики. (Подобно ятрофизике широкое развитие получила и ятрохимия - направление, представляющее все процессы, совершающиеся в организме - химическими.)
Новая картина мира. К концу XVII в. "Новый космос", новая картина мира, что и было когнитивной сутью науки, была полностью создана. ("Ньютоновская физика была ... спущена с Небес на Землю по наклонной плоскости Галилея", Анри Бергсон). Ее архитектором и прорабом стал Исаак Ньютон (1643 - 1727).
Роль Ньютона в истории науки удивительна. Многое, чем он занимался, что он описал, в частности, в знаменитых "Математических началах натуральной философии" (первое издание вышло в 1687 г. под наблюдением Э. Галлея) было раньше высказано и описано другими. Например, в частных экспериментах и рассуждениях Х.Гюйгенс (1629 - 1695) фактически использовал основные положения, которые позднее легли в основу теории Ньютона:
Пропорциональность веса тела G его массе m; (G = mg).
Соотношение между приложенной силой, массой и ускорением (F = ma).
Равенство действия и противодействия.
В истории известны не всегда красивые приоритетные споры, героем которых был Ньютон (чего стоит один спор с Лейбницем). Но все это не умаляет величие научного подвига Ньютона. Он показал себя настоящим Мастером, который не столько обобщал, сколько создавал оригинальную новую концепцию мира.
Основные положения теории Ньютона. У Ньютона, также как и у Галилея, слились космология и механика (правда, без философии - "гипотез не измышляю"), главными положениями которых стали следующие: Понятие движущей силы - высшей по отношению к телу (любому: снаряду или Луне, например), которая может быть измерена по изменению движения (его производной). При этом Ньютон понял, что сила, скорость и ускорение представляют собой векторные величины, а законы движения должны описываться как соотношения между векторами.
Наиболее полно все это выражается вторым законом Ньютона: "Ускорение "a", сообщаемое телу массы "m", прямо пропорционально приложенной силе "F" и обратно пропорционально массе "m", т.е. "F = ma".
Введено понятие инерции, которая изначально присуща материи и измеряется ее количеством.
Первый закон Ньютона гласит: "Если бы на тело не действовало никаких сил вообще, то оно после того, как ему сообщили начальную скорость, продолжало бы двигаться в соответствующем направлении равномерно и прямолинейно". Следовательно, никаких свободных движений нет, а любое криволинейное движение возможно лишь под действием силы.
Введено понятие соотношения гравитационной и инертной масс (они прямо пропорциональны друг другу).
Отсюда следует обоснование тяготения как универсальной силы, а также третий закон Ньютона: "Каждое действие вызывает противодействие, равное по величине и противоположно направленное, или, иными словами, взаимное действие двух тел друг на друга равно по величине и противоположно по направлению".
Особое место в размышлениях Ньютона принадлежит поиску адекватного количественного (математического) описания движения. Отсюда берет начало новый раздел математики, который Ньютон назвал "методом начальных и конечных отношений" (дифференциальное исчисление).
Исследуя движения по некруговой орбите, Ньютон рассматривал его как постоянно "падающее". При этом он ввел понятие "предельное отношение", основанное на интуитивном представлении о движении, так же, как евклидовы понятия "точки" и "линии" основаны на интуитивном восприятии пространства - это своего рода кванты движения.
Важное значение при этом имеют те "предельные отношения", которые характеризуют скорость изменения каких-либо величин (т.е. изменения в зависимости от времени). Ньютон назвал их "флюксиями" (сейчас - производные). Вторая производная при этом звучала как "флюксия от флюксий", что особенно возмущало одного из критиков Ньютона епископа Дж. Беркли, который считал это нелепым изобретением, подобным призраку призрака.
В "тени" Ньютона несколько теряются фигуры других выдающихся исследователей и мыслителей XVII в. Прежде всего, следует отметить Готфрида Лейбница (1646-1716) и упомянуть его значительно более глубокое, чем у Ньютона, осмысление понятия дифференциала, как общенаучного термина (сам термин принадлежит Лейбницу), как собственно научного метода, а не только языка научного описания конкретного научного факта; и указать его удивительную теорию - "Монадологию" - о своеобразных квантах - "монадах" бытия.
Отдельно упоминания заслуживают понятия абсолютного ("пустого") пространства, в котором находятся сосредоточенные массы (с их взаимным дальнодействием и единым центром масс); и абсолютного же времени с начальной точкой отсчета (полностью обратимого, поскольку перемена знака времени в формулах механики не меняет их вида и смысла).
Теория Ньютона - простая, ясная, легко проверяемая и наглядная - стала фундаментом всего "классического естествознания", механической картиной мира и философии, интегральным выражением и критерием самого понимания научности на более чем 200 лет. Не утратила она своего значения и сегодня.
Социальная сторона научной революции XVII века. Рассмотрение истории научной революции XVII в. не может быть исчерпано лишь ее когнитивной стороной. В XVII в. наука стала частью социальной системы.
С самого начала века во многих странах появляется множество «миниакадемий», например, флорентийская Академия деи Линчеи, знаменитым членом которой был Г. Галилей. Во второй половине века возникают "большие" академии - сообщества профессиональных ученых.
В 1660 г. организованный в частной лондонской научно-исследовательской лаборатории современного типа кружок, куда входили Роберт Бойль (1627 - 1691), Кристофер Рен (1632 - 1723), Джон Валлис, Вильям Нейл и другие, был преобразован в "Лондонское королевское общество для развития знаний о природе" (Royal Society of London for Improving Natural Knowledge). Ньютон стал членом этого общества в 1672 г., а с 1703 г. - его президентом. С 1664 г. общество стало регулярно печатать свои труды - "Philosophical Transactions".
В 1666 г., также путем преобразования подобного кружка, была организована Академия наук в Париже.
Становление науки выражало стремление к осмыслению мира, с одной стороны; с другой - стимулировало развитие подобных процессов в различных сферах общественной жизни. Огромный вклад в развитие правосознания, идей веротерпимости и свободы совести внесли такие философы XVI - XVII вв., как М. Монтень (1533 - 1592), Б. Спиноза (1632 - 1677), Т. Гоббс (1588 - 1679), Дж. Локк (1632 - 1704) и др. Их усилиями разрабатывались концепции гражданского общества, общественного договора, обеспечения прав личности и многое другое.
Научное мышление позволяло выдвигать и обосновывать механизмы реализации этих концепций. В этом контексте ключевой является оценка Локком (друг Ньютона и член Лондонского королевского общества) парламента как социальной научной лаборатории, способствующей поиску, изобретению и реализации новых и эффективных форм синтеза частных интересов граждан, включая интерес государства.
Краткий научный итог XVII века. Старый Космос устарел и был разрушен. В новой картине мира, которая заменила старый Космос, не было ничего живого и неопределенного и, казалось, все можно было рассчитать ("кеплеровский детерминизм"). Наука обрела свои механизмы и процедуры конструирования теоретического знания, проверки и самопроверки, свой язык, прежде всего, в математической его форме, ставший "плотью" метода. Наука стала социальной системой - появились свои профессиональные организации, печатные органы, целая инфраструктура (включая специальный инструментарий). В науке возникли свои нормы и правила поведения, каналы коммуникации. Наука через распространение принципов научности становится мощной интеллектуальной силой - школой "правильного" мышления, - влияющей на специальные процессы в самых различных формах.
Вырастая из мистицизма, наука постепенно преодолевала его.
Научная революция XVII века (Выводы)
Основы нового типа мировоззрения, новой науки были заложены Галилеем. Он начал создавать ее как математическое и опытное естествознание. Исходной посылкой было выдвижение аргумента, что для формулирования четких суждений относительно природы ученым надлежит учитывать только объективные - поддающиеся точному измерению свойства, тогда как свойства, просто доступные восприятию, следует оставить без внимания как субъективные и эфемерные.
Галилей разработал динамику - науку о движении тел под действием приложенных сил. Он сформулировал первые законы свободного падения тел, дал строгую формулировку понятий скорости и ускорения, осознал решающее значение свойства движения тел, в будущем названного инерцией. Очень ценна была высказанная им идея относительности движения. Философское и методологическое значение законов механики, открытых Галилеем, было огромным, ибо впервые в истории человеческой мысли было сформулировано само понятие физического закона в современном значении. Законы механики Галилея вместе с его астрономическими открытиями подводили физическую базу под теорию Коперника.
Завершить коперниковскую революцию выпало Ньютону. Он доказал существование тяготения как универсальной силы - силы, которая одновременно заставляла камни падать на Землю и была причиной замкнутых орбит, по которым планеты вращались вокруг Солнца. Заслуга Ньютона была в том, что он соединил механистическую философию Декарта, законы Кеплера о движении планет и законы Галилея о земном движении, сведя их в единую всеобъемлющую теорию. После целого ряда математических открытий Ньютон установил: для того чтобы планеты удерживались на устойчивых орбитах с соответственными скоростями и на соответствующих расстояниях, определяющихся третьим законом Кеплера, их должна притягивать к Солнцу некая сила, обратно пропорциональная квадрату расстояния до Солнца; этому закону подчиняются и тела, падающие на Землю (это касалось не только камней, но и Луны - как земных, так и небесных явлений). Кроме того, Ньютон математическим путем вывел на основании этого закона эллиптическую форму планетных орбит и перемену их скоростей, следуя определениям первого и второго закона Кеплера. Был получен ответ на важнейшие космологические вопросы, стоящие перед сторонниками Коперника, - что побуждает планеты к движению, как им удается удерживаться в пределах своих орбит, почему тяжелые предметы падают на Землю? - и разрешен спор об устройстве Вселенной и о соотношении небесного и земного. Коперниковская гипотеза породила потребность в новой, всеобъемлющей и самостоятельной космологии и отныне ее обрела.
С помощью трех законов движения (закон инерции, закон ускорения и закон равного противодействия) и закона всемирного тяготения Ньютон не только подвел научный фундамент под законы Кеплера, но и объяснил морские приливы, орбиты движения комет, траекторию движения пушечных ядер и прочих метательных снарядов. Все известные явления небесной и земной механики были теперь сведены под единый свод физических законов. Было найдено подтверждение взглядам Декарта, считавшего, что природа есть совершенным образом упорядоченный механизм, подчиняющийся математическим законам и постижимый наукой.
Крупнейшим достижением научной революции стало крушение антично-средневековой картины мира и формирование новых черт мировоззрения, позволивших создать науку Нового времени. Основу естественнонаучной идеологии составили следующие представления и подходы:
натурализм - идея самодостаточности природы, управляемой естественными, объективными законами;
механицизм - представление мира в качестве машины, состоящей из элементов разной степени важности и общности; отказ от доминировавшего ранее символически-иерархического подхода, представлявшего каждый элемент мира как органическую часть целостного бытия;
квантитативизм - универсальный метод количественного сопоставления и оценки всех предметов и явлений мира, отказ от качественного мышления античности и Средневековья;
причинно-следственный автоматизм - жесткая детерминация всех явлений и процессов в мире естественными причинами, описываемыми с помощью законов механики;
аналитизм -примат аналитической деятельности над синтетической в мышлении ученых, отказ от абстрактных спекуляций, характерных для античности и Средневековья;
геометризм - утверждение картины безграничного однородного, описываемого геометрией Евклида и управляемого едиными законами космического универсума.
Вторым важнейшим итогом научной революции стало соединение умозрительной натурфилософской традиции античности и средневековой науки с ремесленно-технической деятельностью, с производством. Еще одним результатом научной революции стало утверждение гипотетико-дедуктивной методики познания. Основу этого метода, составляющего ядро современного естествознания, образует логический вывод утверждений из принятых гипотез и последующая их эмпирическая проверка.[1]
Жизнь и творчество Ньютона
В апреле 1642 года зажиточный, но совершенно безграмотный фермер Исаак Ньютон из маленькой деревеньки Вулсторп женился на хорошо образованной 19-летней Анне Эйскоу из деревни Маркет Овертон. Счастье молодых длилось недолго. В октябре муж умер. А аккурат на Рождество, 25 декабря, Анна родила мальчика. Его назвали в честь отца -- Исааком.[2]
Мать Ньютона, Анна Эйскоу, происходила из рода Блитов из Трансона в Линколшьншире, сейчас угасшего, а тогда весьма богатого и уважаемого. Анна по теперешним стандартам была не слишком ученой женщиной - писала она с немалым трудом, долго и тяжело. И все же по сравнению с мужем она была заправским грамотеем. А вот брат Анны, Вильям, получивший степень магистра в Кембриджском университете, не мог представить себе, что его племянник, подобно «этим Ньютонам», остался бы без образования. Оставаясь в судьбе Ньютона как бы за кулисами, в тени, он, несомненно, сыграл решающую роль в ньютоновском начальном образовании. Не будь его влияния, Ньютон, скорее всего, остался бы неграмотным, как большинство его кузенов и кузин.[3]
Малыш родился недоношенным. По воспоминаниям матери, ребенок был так мал, что мог поместиться в чашку на четверть кварты. Все ожидали, что он не проживет и суток. Через три года Анна вышла замуж за богатого викария Барнаби Смита, которому к тому времени исполнилось 63 года. Она оставила сына своим родителям и переехала к преподобному. Второй брак матери «подарил» Ньютону двух сводных сестер и одного сводного брата (Мэри, Бенджамина и Анну). Надо сказать, что отношения у них были хорошие -- добившись успеха, Исаак всегда помогал сводным родственникам.
Некоторые исследователи полагают, что юный Ньютон страдал от аутизма. Он мало говорил (качество, сохранявшееся на протяжении всей его жизни) и так сильно погружался в свои мысли, что забывал принимать пищу. До семи лет его часто «заклинивало» на повторении одних и тех же предложений, что, естественно, не добавляло странному мальчику друзей. Необычайные таланты Исаака впервые проявились на практической почве. Он мастерил игрушки, миниатюрные ветряные мельницы, воздушных змеев (запускал с ними фонари и распространял по округе слух о комете), сделал каменные солнечные часы для своего дома, а также измерял силу ветра, прыгая по его направлению и против.[2]
Исаак был сдан на руки пятидесятилетней бабушке. Бабушка рассказывала ему об окружающем мире - о змеях, усыпляющих жаворонков своим ядом и затем поглощающих их, о дождях, приносящих кузнечиков и лягушек, о старых поверьях линкольнширской земли. Но - странное дело! - в то время как у обычных детей именно с бабушками связаны самые сладкие воспоминания детства, Исаак никогда не обнаруживал особой нежности к своей прародительнице. Даже ее смерть оставила его безучастным. Его личность была сломлена, и многие исследователи творчества Ньютона приписывают ему, и не без оснований, свойства крайнего невротика.[3]
В 1652 году Ньютона послали учиться в школу Грэнтхэма. Этот городок был всего в 5 милях от его дома, но Исаак предпочел покинуть родные стены и поселился у грэнтхэмского аптекаря -- мистера Кларка.
Несмотря на явные способности Исаака, успехами в учении он не блистал. В списке успеваемости он находился на предпоследнем месте, опережая лишь одного явного идиота. Следующим вверх в списке успевающих был Артур Сторер - сын мисс Сторер, у которой жил Исаак. Ньютон страшно ненавидел Артура и однажды, со слов самого Ньютона, избил его. Эта история не представляла бы никакого существенного интереса, если бы не имела свое продолжение - не удовлетворившись физическим триумфом над Артуром Сторером, Ньютон решил обойти его и в списке успеваемости, благо он стоял прямо перед ним. Увлекшись, он легко, просто легчайшим способом, совершенно без натуги обошел не только Артура, но и всех остальных учеников класса. Теперь учение - душевная потребность, школьные успехи - существенны, а первое место в списке учеников - вожделенно. Страсти доступно все, и вот Исаак лучший ученик школы.
В 1656 году викарий умирает, и вдова Смит возвращается в родовое имение. Нельзя сказать, что Исаак был рад ей. В возрасте 19 лет он составил перечень своих былых юношеских грехов, где, в частности, указал намерение сжечь дом викария вместе со своей нерадивой матерью. Анна запоздало решила принять участие в воспитании первенца и решила, что сын пойдет по стопам отца. Исаака забрали из школы, и некоторое время он усердно вскапывал поля графства Линкольншир. Стараниями преподобного Вильяма Эйскоу (брата матери Ньютона и пастора соседней деревни) английское земледелие лишилось очередного плохого работника. Дядя заметил научные успехи юноши и уговорил Анну послать сына в университет. [2]
Сюжеты рисунков юного Ньютона способны донести до нас, потомков, отголоски его внутреннего мира, его симпатий и увлечений. Своеобразное «я» Ньютона, как считают психологи, проявляется даже в его латинских текстах. Из его упражнений сохранилось множество фраз, которые свидетельствуют о сложном, мутящемся сознании мальчика. Мир тревоги, разрушения, обреченности встает со страниц тетради для латинских упражнений. Из мира латинских упражнений - из мира юного Ньютона? - изгнано все суетное: его истины - это истины правоверного пуританина: «Чем лучше игрок, тем хуже человек», «Что еще означает танцевать, как не выставлять себя дураком?», «Мы больше всего хотим того, что нам больше всего навредит», «У него даже нет денег купить веревку, чтобы повеситься». Иногда в его высказываниях звучат недоверие и подозрительность: «Я должен быть уверен, что он не причинит мне зла», «Вы одурачиваете меня», «Вы никогда не заставите меня поверить в эту сказку». И мотивы одиночества: «Никто меня не понимает», «Что станет со мной?», «Я хочу покончить со всем этим», «Я не способен ни на что, кроме слез», «Я не знаю, что мне делать». Фрэнк Мануэль, выудивший все эти сентенции из латинских упражнений Ньютона, поражается тому, что здесь совершенно отсутствуют позитивные чувства. Никогда не появляется, например, слово «любовь». Почти нет выражений радости, желания. Здесь - мир отрицания и запрещения, наказания и одиночества. Это мир высокомерных пуританских ценностей, ставших к тому времени частью существования Ньютона: жестокий самоконтроль, основательность, склонность к порядку, стремление с помощью своих добродетелей стать над всеми, выше всех.[3]
В 1661 году парень поступает в Тринити-колледж Кембриджского университета на бесплатное обучение. [4] Первые три года пребывания Ньютона в Кембридже никак не отмечены. Первое время Ньютон был субсайзером -- а проще говоря, оплачивал учебу работой по хозяйству.[2] Теперь ему нужно было попасть в число «сколеров», т.е. студентов старших курсов. Для Ньютона страшнее всего было то, что выборы в число «сколеров» проводились раз в четыре года. За всю университетскую жизнь Ньютона он смог использовать один единственный шанс - выборы 1664 года. И 28 апреля 1664 года Ньютон был избран сколером и впервые получил стипендию. Теперь для него окончилась позорная жизнь сайзера. Учение стало единственной страстью его жизни. Работая, он забывал о еде и сне. Его сосед по комнате Викинс не раз засыпал при свете свечи и, просыпаясь рано утром к службе, видел в неверном свете кембриджского утра фигуру сидящего в той же позе в углу за столом Исаака. Тот не замечал Викинса, как не замечал ничего вокруг. Бессонница, головные боли, слабость одолевали его. Он потерял представление о времени, почти утратил способность что-либо воспринимать.
Ньютона охватывает новое увлечение - математика, и новая черная бакалавровская мантия с белым воротничком все больше отдаляли его от детской мечты - жениться когда-нибудь на мисс Сторер. Маленькая фигурка ее, смутные воспоминания о проведенных вместе детских годах меркли в его воображении перед пронзительным светом математической истины. Конечно, он останется в Кембридже навсегда. Потом он станет магистром, затем членом колледжа, может быть, профессором. Он знал, что членам колледжа запрещено жениться. Ньютон не жалел об этом. Его любовью стала математика.[3] В январе 1665 года он защитился на бакалавра, а в 1668 стал магистром. К 23 годам молодой человек освоил методы дифференциального и интегрального исчисления, вывел формулу бинома Ньютона, сформулировал основную теорему анализа (позже названную «формулой Ньютона-Лейбница), открыл закон всемирного тяготения и доказал, что белый цвет -- смесь цветов.
Ньютон в 1666 году в письме к астроному Галлею сообщил о найденном им законе, управляющем падением тел и движением планет. Однако применив свою формулу к движению Луны, Ньютон вынужден был признать поражение: астрономы фиксировали местонахождение Луны вовсе не там, где следовало ей быть по формуле Ньютона. Он не захотел публиковать свой результат. Прошло шестнадцать лет. Ньютон узнал, что значение радиуса Земли, которым он пользовался при расчетах, было неверным. Повторив вычисления с более точным значением этого радиуса, Ньютон получил прекрасное совпадение результата. Прошло еще четыре года, и лишь тогда, многократно убедившись, что ошибки нет, Ньютон публикует свое великое открытие - постижение тайны всемирного тяготения.
Ньютон предпочитал заявлять о своем открытии лишь тогда, когда его уже невозможно будет смести потоком неизбежной критики. Интересно, что Ньютон никогда не пытался опубликовать свой октябрьский трактат 1666 года и тем временем усовершенствовать метод флюксий. Он считал себя слишком молодым для того, чтобы занимать собой публику, а свой метод - слишком уязвимым для критики. [3]
В 1667 году всех преподавателей университета поразил созданный им телескоп, который изобрел будущий учёный: это был прорыв в области оптики. [4] Ньютон стал полноправным членом европейского сообщества естествоиспытателей. Уже в начале мая, всего лишь через четыре месяца после того, как он послал свой телескоп в Лондон, он получил двенадцать писем и написал одиннадцать ответов. Все они касались или телескопа или цветов. Его одиночество окончилось, но нельзя сказать, чтобы столь резкая перемена его радовала. Бесплодные споры, затянувшиеся на долгие годы, не приносили молодому Ньютону ничего, кроме больших потерь времени и резкого ухудшения характера, который стал еще более подозрителен и скрытен, молчалив и беспощаден к коллегам.[3]
В 1669 году чума отступила. Кембридж вновь ожил, и Ньютона назначили профессором математики. В то время под математическими науками подразумевались также геометрия, астрономия, география и оптика, однако лекции Ньютона считались скучными и не пользовались спросом у студентов [2]
Вскоре, однако, Ньютон потерял терпение и не выдержал. Он считал, что его открытия всем понятны и ясны, и все тут же должны принять их. Он был не против споров, но полагал, что в споре идей, как в скрещении шпаг, должна была рождаться искра нового знания; здесь же этого явно не происходило. Он слишком сильно превосходил своих соперников, а в некоторых случаях, увлекшись борьбой, и сам не видел их сильных сторон и здравых мыслей. Ньютоном двигала чистая страсть к познанию, которая не позволяла ему допускать малейших отклонений от научной истины. Любая критика выводила его из себя, повергала его в тревогу и беспокойство, которые он мог погасить лишь яростной атакой на покушающихся. Дружная оппозиция статье Ньютона со стороны Гюйгенса, Гука, Пардиза, льежских иезуитов оказалась для Ньютона тяжелой травмой. Он решил навсегда отказаться от дальнейшей публикации своих работ.
У Ньютона была манера не цитировать предшественников, исключая разве что совсем уж неизбежные случаи. Он позабыл или не захотел упомянуть, например, “Микрографию” Гука, оказавшую на громадное влияние на его исследования по цветам в тонких пленках и пластинах. Он не вспомнил и Гримальди, открывшего дифракцию света. То же можно сказать о многих других исследователях. А ведь он тщательнейшим образом изучал оптиков прошлого и многое у них взял. В его библиотеке были все главные труды по оптике. Многие идеи были подсказаны ему чтением.[3]
В декабре 1671 года Ньютон стал кандидатом в члены Королевского научного общества, основанного десятью годами раньше. Это была элитная организация гениев, масонов и алхимиков, интересовавшихся всеми видами знаний, в том числе и оккультными.[4]
В январе 1672 Исаак прочитал перед членами общества доклад об оптике и продемонстрировал построенный им зеркальный телескоп. Используемые ранее телескопы-рефракторы давали заметную хроматическую аберрацию. Рефлектор же был лишен этих недостатков (зеркальные телескопы применяются до сих пор). По итогам доклада Ньютон немедленно был принят в общество. Ему это польстило и он решил поделиться с коллегами неким «великим философским открытием». Им оказалась теория света: белый цвет состоит из всего спектра цветов, а предметы кажутся цветными лишь потому, что они поглощают некоторые цвета лучше, чем другие.[2] Это была первая научная статья Ньютона. Тот необычный резонанс, который получила столь небольшая по объему работа, ее громадное влияние на судьбу Ньютона и судьбу науки в целом вынуждают наших современников более внимательно отнестись к тому новому, что привнесла в мир научного исследования. Эта статься знаменует наступление новой науки - науки нового времени, науки, свободной от беспочвенных гипотез, опирающейся лишь на твердо установленные экспериментальные факты и на тесно связанные с ним логические рассуждения. Пристальное наблюдение, четкая классификация многих разрозненных ранее явлений, нахождение в них общих черт, сути и первопричины, извлечение из них некоторых закономерностей, которые могут дать представление о поведении вещей и явлений в еще не изученных ситуациях. Наука получает дар предвидения.[3]
В 1682 году около Земли прошла комета Галлея, что вызвало всплеск интереса к взаимодействию небесных тел. Сам Галлей долго уговаривал Ньютона обобщить и опубликовать все его исследования по физике в единый труд. Решающим аргументом стали деньги. Ньютон испытывал затруднения с финансами, в связи с чем его даже освободили от членских взносов в Королевское общество. Финансированием издания Magnum Opus Ньютона занялся Галлей.
Работа вышла в 1686 году под названием «Математические начала натуральной философии» (то есть физики). Книга, детально описывающая -- не больше, ни меньше -- базовые законы природы, была распродана за 4 года и выдержала 3 переиздания еще при жизни автора. Ньютон моментально стал национальным героем. Ритм жизни ускорился в несколько раз. В 1689 его избирают членом Парламента, однако все, что осталось от его депутатства -- письменные жалобы на сквозняки в зале заседания.[2]
С 1689 года Гемфри Ньютон стал основным помощником и переписчиком трудов великого сородича. Именно он оставил после себя воспоминания, рисующие Ньютона в 1685-1689 годах, то есть во время создания “Начал” и непосредственно после их выхода. По его словам, Ньютон в те годы был весьма скромным, любезным и спокойным человеком. Он никогда не смеялся и никогда не раздражался. Все его существование заполнялось работой. Она была его единственным увлечением. Работая, он забывал обо всем - о друзьях, о сне. Он в те годы спал не более четырех-пяти часов в сутки, причем засыпал иной раз лишь в пять-шесть утра. Не только “Начала” были тогда предметом его увлеченных занятий. Нет, отнюдь! Скорее наоборот. “Начала” он создавал как бы из-под палки, по необходимости, под давлением Галлея, подвигаемый маячившим на горизонте очередным спором и приоритете. Впрочем, не будь Гука, не будь его ревности и нападок, не будь его прозрений и намеков, Ньютон, возможно, никогда не собрался бы написать эту книгу. Именно желание доказать всему миру подлинное авторство великих законов мира двигало им наряду с понуканиями Галлея. Главная черта Ньютона, которая упорно всплывает в воспоминаниях и документах его кембриджских лет жизни, - это рассеянность. Однажды, пригласив гостей и усадив их за стол, он пошел в чулан за бутылкой вина. Там его осенила некая мысль, и он к столу не вернулся. Гости не раз уходили, не попрощавшись, не желая тревожить его, близоруко уткнувшегося в бумаги. Он не знал иного времяпрепровождения, кроме научных занятий. Он жил тогда в одиночестве. У него не было ни учеников, ни друзей. Нельзя сказать, что живое общение с людьми ему заменяли книги, - он редко пользовался своей обширной библиотекой. Размышляя, он погружался в себя; натыкаясь на мебель, ходил по комнате. Он не посещал театров и уличных зрелищ, не ездил верхом, не гулял по живописным кембриджским окрестностям, не купался. Он не особенно жаловал литературу и совсем не любил поэзию, живопись и скульптуру. Он не знал иного отдыха кроме перемены занятий. Никогда не ездил верхом, не пользовался своим законным правом на игру в шары на кембриджских зеленых лужайках, не играл в кегли и не занимался каким-либо видом спорта или гимнастикой. Всякий час, оторванный от занятий, считал потерянным. Все дни его проходили в размышлениях. Он редко покидал свою келью, не выходил в Тринити-холл обедать вместе с другими членами колледжа, за исключением обязательных случаев. И тогда каждый имел возможность обратить внимание на его стоптанные каблуки, спущенные чулки, не застегнутые у колен бриджи, не соответствующую случаю одежду и всклоченные волосы. В разговорах за “высоким столом” он обычно участия не принимал и, в крайнем случае, отвечал на прямые вопросы. Когда его оставляли в покое, он безучастно сидел за столом, глядя в пространство, не пытаясь вникнуть в разговор соседей и не обращая внимания на еду - обычно блюда уносили до того, как он успевал что-нибудь заметить и съесть.[3]
Страсть к научным занятиям не покидала его и в поздние лондонские годы. Хотя творческий возраст его давно уже миновал, он строго соблюдал раз и навсегда установленный им для себя режим занятий. Никто и никогда не видел его без работы. Работа служила ему бальзамом от душевного беспокойства. Когда он действительно не знал, чем заняться, он переписывал старый текст.
В результате "Славной революции" на английский престол сел Вильгельм Оранский, который тут же стал нещадно преследовать якобитов, папистов, еретиков. Положение Ньютона было непростым. Бывало, что его поддерживали те, чьи имена сейчас были под запретом. Сам Ньютон был под подозрением в связи с безбожными идеями "Начал". Он боялся, что кто-то выдаст его тайный еретический арианизм, особенно нетерпимый в колледже Святой Троицы. Как можно было служить святой троице и не верить в троицу? Для еретиков наступало время ужасов и бедствий. Пострадали десятки тысяч иноверцев.
Ньютон был правомерным протестантом, представляющим его крайнее крыло; отказываясь от церкви римской, как и все протестанты, он шел еще дальше и призывал вернуться к доисторическому, примитивному, “истинному христианству”. Основные принципы этой первичной и когда-то единой для всех народов религии просты: “вера в то, что мир создан верховным богом и им же управляется; любовь к нему и почитание его; почет, воздаваемый родителям; завет любить ближнего своего как самого себя, сострадание даже к диким зверям - вот древнейшая из всех религий”. Когда произошло расселение народов, истинная религия была, по мнению Ньютона, искажена; многие народы стали отождествлять с богами своих царей и героев. Протестантизм упразднял посредничество между богом и человеком. Уже давно, с Кембриджа, вокруг Ньютона стал складываться кружок его религиозных единомышленников. Однако Ньютон боялся, что слухи о безбожии могут сильно ему навредить, и поэтому стремился держаться подальше так же от своего бывшего друга Фацио Дюийе. Множество сект протестантизма - тринитарианцы, социнианцы, арианцы, гуманитарианцы, антитринитарианцы - опирались впоследствии на имя Ньютона. Он все-таки стал знаменем новой Реформации, хотя и не широкой.
Вступление Ньютона в общественную жизнь, его парламентское сидение на скамьях вигов тоже делало его слишком заметным, непривычно незащищенным! Он чувствовал страшное беспокойство; сон пропал, работа не спорилась, Ему казалось, что его хотят убить, хотят разграбить его лабораторию, украсть его труды. Причины могли быть самые разные - зависть, ревность, месть, религиозный фанатизм, политический расчет. Точной причины он не знал, но знал, что его преследуют... Временами ему казалось, что он сходит с ума. Впрочем, это казалось не ему одному. Некоторые исследователи творчества Ньютона связывают его временное душевное нездоровье с происшедшим в 1691-1692 годах пожаром в его лаборатории, при котором якобы сгорели ценные рукописи по оптике и алхимии. Ньютон впал в апатию, снова решил покончить с философией и заняться производством сидра.
Затем снова пробуждается бешеная энергия: он вдруг начинает бурно переписываться с Бентли; темы - исключительно богословские. Темп переписки все возрастает. Конец 1692 года - апатия, сонливость, перемежающиеся с мучительной бессонницей. Начало 1693 года - глубокая меланхолия, бессвязность мыслей. К концу 1693 года он постепенно выздоравливает, а через некоторое время начинает понимать свои же собственные “Начала”.[3]
В 1695 году канцлер казначейства Чарльз Монтегю, бывший студент Ньютона, пригласил ученого на должность смотрителя монетного двора с годовым жалованьем в 600 фунтов. Ньютон, хандривший из-за отсутствия материального признания его заслуг, согласился переехать в Лондон.
В то время страна была наводнена фальшивыми монетами. Монтегю задумал полную перечеканку всей наличности и рассчитывал на познания Ньютона в металлургии и механике. Исаак показал себя отличным администратором и, невзирая на забастовки и доносы, наладил ускоренный выпуск новых денег. За это его сделали директором монетного двора с годовым окладом около 1500 фунтов.
Дела шли в гору. В 1699 году Ньютона сделали членом Французской академии наук, а в 1703 году он был избран Президентом Лондонской королевской академии (по поводу чего Исаак подарил ученым новый прибор -- солнечную печь, плавившую металлы с помощью системы линз). Его переизбирали на эту должность каждый год в течении последующих 25 лет -- рекорд общества, продержавшийся три столетия. А в 1705 королева Анна возводит его в рыцарское достоинство. [2]
Ньютон в своей обычной обстоятельной манере сначала внимательнейшим образом изучил историю Королевского общества, пока еще насчитывающую только полвека, перелистывал все протоколы и “Философские труды” - печатный орган Общества. После чего уже полностью был готов к тому, чтобы взвалить нелегкую ношу на плечи. И первое, что он решил сделать, - лично вести все заседания совета. Затем он решил доказать Обществу, что обладает способностью не только говорить, но и кое-что делать своими собственными руками. Он часто приносил в Общество изготовленные им приборы. Видя, что главный недостаток в работе Общества заключается в пустопорожней болтовне, Ньютон решил разработать “Схему укрепления Королевского общества”. Здесь Ньютон четко сформулировал, какого сорта дискуссии должны вестись в Обществе и какие - нет. “Натуральная философия, - писал Ньютон, - заключается в раскрытии форм и явлений природы и сведении их, насколько это возможно, к общим законам природы, устанавливая эти законы посредством наблюдений и экспериментов и, таким образом, делая выводы о причинах и действиях”.
Теперь, когда основные враги умерли, важные дела сделаны, болезни еще не мучили, а слава - тепло грела, Ньютон стал гораздо менее раздражительным и угрюмым; напротив, он стал приветливым, словоохотливым, с ним стало приятно беседовать. Исчезла диковатость и постоянная озабоченность юности, колючее самолюбие зрелого возраста. К нему стекались ученики и посетители, встречавшие самый радушный прием. В последние годы жизни за Ньютоном стала замечаться склонность к некоторой сентиментальности. Кондуитт вспоминал: “Печальные истории часто вызывали у него слезы; его крайне шокировали всяческие акты жестокости к людям или животным. Свои нередкие слезы он оправдывал просто: “Господь не зря снабдил человека слезными железами”. В свои последние годы он много времени проводил с Китти, своей внучатой племянницей, играл с ней в своем кабинете. Китти через полвека вспоминала о Ньютоне как о приветливом старичке, читавшем без очков маленькими буковками и любившем детскую компанию. В поисках родного тепла он вновь и вновь возвращался в Грэнтэм, к местам своего рождения и детства. Говорят, попадая на деревенские пиры, он незаметно садился сбоку и сидел в одиночестве до тех пор, пока его не узнавали. Он не упускал случая посетить свадьбу любого, даже самого дальнего своего родственника. Там он освобождался от дум, был свободен, приятен, ничем не скован.
Теперь Ньютон мог свободно сосредоточиться на Библии. В конце жизни он решил, наконец, поведать миру о главном откровении господнем, сошедшем на него, - о своих доселе тайных представлениях о религии и Христе, о невозможности троицы. Теперь он редко расставался с Библией. Большинство посещавших его отмечали, что он постоянно заглядывает в нее, читает и отчеркивает написанное желтым своим старческим ногтем. Обожатель и родственник Джон Кондуитт так описывает Ньютона в последние его годы: “В его действиях и внешних выражениях проявляли себя врожденная скромность и простота. Вся его жизнь была неразрывной цепью труда, терпения, добродеяния, щедрость, умеренности, набожности, благочестия, великодушия и других достоинств, без наличия чего-нибудь противоположного. Он был награжден от рождения очень здоровой и сильной конституцией, был среднего роста и полноват в его последние годы. У него был очень живой проницательный взгляд, любезное выражение лица, прекрасные волосы, белые, как серебро, голова без признаков лысины; когда он снимал парик, он приобретал необычайно почтенный вид. До последней болезни у него был здоровый румянец, хороший цвет лица. Он никогда не пользовался очками и ко дню своей смерти потерял всего один зуб”.[3]
В 1725 году Ньютон простудился и был вынужден поселиться в Кенсингтоне -- пригороде Лондона. Последние годы своей жизни он редко выходил на улицу. 28 февраля 1727 года Ньютон отправился в Лондон, чтобы, как обычно, заседать на собрании Королевского общества. 4 марта у него случилось обострение мочекаменной болезни. Ученого доставили домой. 84-летний старик мучился еще две недели. 18 марта у него начался бред. 20 марта в час ночи он умер. Его могила находится в Вестминстерском аббатстве.[2]
Самые главные и значительные его открытия были совершены в период с 1665 по 1667 год, во время бубонной чумы в Лондоне. Кембриджский университет был временно закрыт, преподавательский состав распущен из-за бушевавшей инфекции. 18-летний студент уехал на родину, где открыл закон всемирного тяготения, а также проводил различные эксперименты с цветами спектра и оптикой. Среди его открытий в области математики -- алгебраические кривые 3-го порядка, биноминальное разложение и способы решения дифференциальных уравнений. Дифференциальное и интегральное исчисление было разработано почти в одно время с Лейбницем, независимо друг от друга. В сфере классической механики им была создана аксиоматическая основа, а также такая наука, как динамика. Нельзя не упомянуть о трех законах, откуда пошло их название «законы Ньютона»: первый, второй и третий. Был заложен фундамент для дальнейших исследований астрономии, в том числе небесной механики.
Опубликованные книги Ньютона при жизни: «Метод разностей». «Перечисление линий третьего порядка». «Математические начала натуральной философии». «Оптика или трактат об отражениях, преломлениях, изгибаниях и цветах света». «Новая теория света и цветов». «О квадратуре кривых». «Движение тел по орбите». «Универсальная арифметика». «Анализ с помощью уравнений с бесконечным числом членов».
Опубликованные уже после смерти труды: «Хронология древних царств». «Система мира». «Метод флюксий». Лекции по оптике. Замечания на книгу пророка Даниила и Апокалипсис св. Иоанна. «Краткая хроника». «Историческое прослеживание двух заметных искажений Священного Писания».
Подобные документы
Изучение законов Ньютона, лежащих в основе классической механики и позволяющих записать уравнения движения для любой механической системы. Анализ причин изменения движения тел. Исследование инерциальных систем отсчета. Взаимодействие тел с разной массой.
презентация [531,3 K], добавлен 08.11.2013Основные концепции классической механики Ньютона: принципы относительности и инерции, законы всемирного тяготения и сохранения, законы термодинамики. Прикладное значение классической механики: применение в пожарной экспертизе, баллистике и биомеханике.
контрольная работа [29,8 K], добавлен 16.08.2009Аксиоматика динамики. Первый закон Ньютона (закон инерции). Сущность принципа относительности Галилея. Инертность тел. Область применения механики Ньютона. Закон Гука. Деформации твердых тел. Модуль Юнга и жесткость стержня. Сила трения и сопротивления.
презентация [2,0 M], добавлен 14.08.2013Демонстрация первого закона Ньютона о сохранении телом состояния покоя или равномерного движения при скомпенсированных действиях на него других тел. Формулирование и математическое представление основных законов, лежащих в основе классической механики.
презентация [588,4 K], добавлен 05.10.2011Особенности второй механической революции: критика системы Аристотеля Н. Коперником, Г. Галилеем. Анализ воздействия механической картины мира. Основные постулаты редукционизма и физики – науки о природе. Антропный принцип в современной науке и философии.
контрольная работа [35,0 K], добавлен 25.03.2010Биография и научная деятельность Исаака Ньютона. "Математические начала натуральной философии", изложение закона всемирного тяготения и трех законов механики. Разработка дифференциального и интегрального исчисления. Изобретение зеркального телескопа.
доклад [21,7 K], добавлен 13.01.2010Краткая биография Исаака Ньютона. Явление инерции в классической механике. Дифференциальный закон движения, описывающий зависимость ускорения тела от равнодействующей всех приложенных к телу сил. Третий закон Ньютона: принцип парного взаимодействия тел.
презентация [544,5 K], добавлен 20.01.2013История становления ядерной физики в ХХ веке. Применение теоретических моделей электродинамики Максвелла и общих принципов термодинамики. Развитие молекулярно-кинетической теории. Изучение физической картины мира Галилея-Ньютона. Физический вакуум.
реферат [59,2 K], добавлен 25.03.2016Обобщение закона тяготения Ньютона. Принцип эквивалентности сил инерции и сил тяготения. Потенциальная энергия тела. Теория тяготения Эйнштейна. Положения общей теории относительности (ОТО). Следствия из принципа эквивалентности, подтверждающие ОТО.
презентация [6,6 M], добавлен 13.02.2016Гравитационные силы как один из видов фундаментальных сил. Теория тяготения Ньютона. Законы Кеплера и космические скорости. Тождественность инерциальной и гравитационной масс как основа общей теории относительности Эйнштейна. Теория наблюдения Коперника.
презентация [39,7 M], добавлен 13.02.2016