Кристаллографические символы
Система обозначения граней и направлений. Индексы граней и ребер кристаллов. Символы ребер. Основные кристаллографические соотношения. Углы между двумя направлениями, между направлением и плоскостью. Межплоскостное расстояние и индексы плоскости.
Рубрика | Физика и энергетика |
Вид | лабораторная работа |
Язык | русский |
Дата добавления | 20.03.2007 |
Размер файла | 29,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
4
ЛАБОРАТОРНАЯ РАБОТА
КРИСТАЛЛОГРАФИЧЕСКИЕ СИМВОЛЫ
Цель работы: 1) Знакомство с системой обозначения граней и направлений;
2) Определение индексов граней и ребер кристаллов;
3) Решение некоторых типичных кристаллографических задач с использованием условия зональности.
Важнейшее значение в кристаллографии имеет вопрос об аналитической записи взаимного расположения граней и ребер кристалла в пространстве. С этой целью применяют кристаллографические символы, определяющие положение любой грани и ребра кристалла относительно принятых координатных осей.
Символы граней
Положение грани кристалла можно описать с помощью трех отрезков, отсекаемых этой гранью на координатных осях. Кристаллографическую систему характеризуют геометрические константы кристалл: осевые углы (, , ) и осевые единицы (a0, b0, c0). Осевыми единицами называют отрезки a0, b0, c0 , отсекаемые единичной гранью на координатных осях x,y,z соответственно. В соответствии с симметрией кристалла масштаб измерения отрезков, отсекаемых гранью на осях, определяется для каждой сингонии соотношением между осевыми единицами (табл. 1).
Таблица 1.
Сингония |
Угловые соотношения |
Осевые единицы |
|
Кубическая |
===90 |
a0=b0=c0 |
|
Тетрагональная |
===90 |
a0=b0c0 |
|
Ромбическая |
===90 |
a0b0c0 |
|
Моноклинная |
==90 |
a0b0c0 |
|
Триклинная |
90 |
a0b0c0 |
|
Гексагональная |
==90, =120 |
a0=b0c0 |
В методе параметров (метод Вейса) для определения грани используется тройка безразмерных векторов a, b, c, соответствующих отрезкам, отсекаемым гранью на координатных осях и измеренных с помощью осевых единиц a0, b0, c0 (рис. 1) a=OA/a0, b=OB/b0, c=OC/c0.
Для выбора масштаба измерения, после установки кристалла, среди его наиболее развитых граней находят такую, которая пересекает все три оси. Отрезки, отсекаемые такой гранью кристалла, принимают за единичные, а саму грань - за единичную. Её параметры: (1:1:1). Чтобы определить параметры любой другой грани кристалла, необходимо найти соотношение отрезков, отсекаемых ею на координатных осях и отнесенных к соответствующим единичным отрезкам a0, b0, c0.
Такое обозначение граней с помощью параметров имеет один существенный недостаток: неудобство обозначения граней, параллельных координатным осям. Например, грань, параллельная плоскости XOY, запишется как (::1), поскольку такая грань пересекает лишь ось Z. Между тем, грани параллельные координатным осям, представляют для кристаллографии особый интерес.
В методе индексов (метод Миллера) положение любой грани кристаллов в трехосной системе координат определяется тройкой целых, как правило, небольших, взаимно-простых чисел - индексов h, k, l, представляющих собой отношение обратных величин параметров. Тогда грань, параллельная плоскости XOY будет иметь индексы h:k:l=1/:1/:1/1=0:0:1. Индексы грани заключают в круглые скобки, не разделяя их друг от друга никакими знаками. Следовательно, рассмотренная выше грань имеет символ (001).
В кристаллографической практике метод индексов Миллера получил широкое распространение. Следует иметь в виду, что параллельные грани имеют один и тот же символ, соответствующий грани ближайшей к началу координат.
Благодаря высокой симметрии кубических кристаллов, их индицирование (определение индексов всех граней) осуществляется достаточно просто. Единичная грань кубического кристалла должна составлять с координатными осями равные углы и отсекать на них равные отрезки. Легко видеть, что такой гранью может быть выбрана грань октаэдра или тетраэдра, через которую проходит поворотная ось третьего порядка.
Символы ребер
Любое направление (ребро кристалла) в данной системе координат может быть задано: 1) двумя точками, лежащими на заданном направлении, не проходящим через начало координат; 2) одной точкой, если направление проходит через эту точку и начало координат.
Если осевые единицы единичной грани равны a0, b0, c0 , а точки А (x1, y1, z1) и В (x2, y2, z2) лежат на заданном направлении, то проекции отрезка АВ будут равны:
(AB)x=x2-x1, (AB)y=y2-y1, (AB)z=z2-z1.
Тогда символ направления [r s t] определится как
.
Таким образом, заданное направление определяется отношением трех проекций отрезка, лежащем на этом направлении, к соответствующим осевым единицам и выражается с помощью целых взаимно простых чисел r, s, t, записываемых в квадратных скобках [r s t]. В случае, когда заданное направление проходит через точку А [[000]] начала координат и точку В [[x y z]] можно записать.
Из приведенного выше правила определения символов ребер следует, что если данный отрезок АВ или данное направление перемещать в пространстве параллельно самому себе, то его символ не изменится.
Заданное направление может быть определено и с помощью углов , , , которые оно образует с координатными осями x, y, z. Для отрезка АВ, лежащего на заданном направлении, можно записать:
.
В кубических кристаллах:
.
Несложные геометрические рассмотрения показывают, что для кубических кристаллов отношение направляющих косинусов нормали к грани (h k l) пропорционально отношению индексов:
,
отсюда:
.
Таким образом, при индицировании направлений в кубических кристаллах следует помнить, что символы направления и перпендикулярной ему грани обозначаются одинаковыми индексами. Например, направление [111] перпендикулярно грани (111), а направление [110] - грани (110).
Основные кристаллографические соотношения
Угол между двумя направлениями.
Чтобы найти угол между двумя направлениями [r1, s1, t1], [r2, s2, t2] необходимо вспомнить одно из правил аналитической геометрии о нахождении скалярного произведения двух векторов .
.
Если .
(Здесь - тройка единичных векторов координатной системы), то для прямоугольной системы координат имеем:
,
.
Откуда
.
2) Угол между направлением и плоскостью
Учитывая, что для кубических кристаллов перпендикуляры к плоскостям (h k l) изображаются как [h k l], легко найти угол между таким перпендикуляром и заданным направлением [r s t].
Исходный угол будет дополнительным к 90, т.е. =(90-) и определится как
.
3) Условие зональности.
Кристаллографической зоной называется совокупность граней кристалла, параллельных одному направлению, называемому осью зоны. Чтобы какая-либо плоскость (h k l) принадлежала зоне, ось которой [r s t] , необходимо, чтобы направление, параллельное оси зоны, лежало в этой плоскости. Следовательно, косинус угла между перпендикуляром к заданной плоскости (h k l) и осью зоны [r s t] должен быть равен нулю. При этом условие зональности для кубических кристаллов может быть записано как
.
Используя условие зональности, легко определить символ ребра [r s t] , образованного двумя гранями (h1 k1 l1) и (h2 k2 l2) из совместного решения уравнений:
.
Решение данной системы уравнений можно представить в виде:
Рассмотренную задачу можно назвать нахождением символа зоны по символам граней кристалла.
Аналогичным образом решается задача о нахождении символа грани (h k l), в которой лежат два заданных направления [r1 s1 t1] и [r2 s2 t2]. В этом случае решение системы уравнений
Дает индексы искомой грани (h k l).
4) Межплоскостное расстояние и индексы плоскости.
При расчете рентгенограмм необходимо знать связь межплоскостного расстояния d с индексами (h k l) , отражающего семейства плоскостей. геометрическое рассмотрение для ортогональной системы координат дает следующие зависимости:
- для ромбической сингонии;
- для тетрагональной сингонии;
- для кубической сингонии.
План работы
Произвести индицирование всех граней и ребер заданных кристаллов.
Найти угол между двумя заданными направлениями в кристаллах кубической,. тетрагональной и ромбической сингоний при известных параметрах решетки.
Определить угол между двумя заданными плоскостями, направлением и плоскостью в кубических кристаллах.
Найти символ зоны по известным символам граней. Найти символ грани, в которой лежат два заданных направления.
Определить межплоскостные расстояния для заданного семейства атомных плоскостей по известным параметрам решетки в ряде кристаллов разных сингоний.
Контрольные вопросы
В чем сущность метода индексов?
Какие индексы имеют параллельные грани и ребра кристалла?
Как выбирается единичная грань в кубических кристаллах?
В чем состоит особенность индицирования направлений в кубических кристаллах?
Что физически собой представляет условие зональности?
Подобные документы
Преобразования Лоренца и основные следствия из них. Четырехмерное пространство Эйнштейна. Расстояние между точками трехмерного пространства. Интервал между двумя событиями. Промежуток собственного времени. События, разделенные вещественным интервалом.
лекция [212,8 K], добавлен 28.06.2013Цели, принципы и формула теплообмена. Влияние на него потока и температуры. Схема теплового баланса. Определение разницы температур между холодной и теплой средами. Организация противопотока. Различные типы распределителей и ребер теплообменника.
презентация [2,9 M], добавлен 28.10.2013Реологические свойства жидкостей в микро- и макрообъемах. Законы гидродинамики. Стационарное движение жидкости между двумя бесконечными неподвижными пластинами и движение жидкости между двумя бесконечными пластинами, двигающимися относительно друг друга.
контрольная работа [131,6 K], добавлен 31.03.2008Методика расчета силы взаимодействия между двумя реальными молекулами в рамках классической физики. Определение потенциальной энергии взаимодействия как функции от расстояния между центрами молекул. Уравнение Ван-дер-Ваальса. Сверхкритическое состояние.
презентация [275,6 K], добавлен 29.09.2013Сведения о колебаниях кристаллических решёток, функции, описывающие их физические величины. Кристаллографические системы координат. Расчет энергии взаимодействия атомов в ковалентных кристаллах, спектра колебаний кристаллической решётки вольфромата бария.
дипломная работа [566,1 K], добавлен 09.01.2014Направляющая система, образованная двумя параллельными проводящими плоскостями. Зависимость составляющей от координаты в пространстве между проводящими плоскостями. Нахождение критической длины волны. Фазовая скорость поперечно-электрической волны.
курсовая работа [1,1 M], добавлен 07.12.2010Выбор рабочего и избыточного давления в газопроводе. Определение числа компрессорных станции (КС) и расстояния между станциями. Уточненный тепловой и гидравлический расчеты участка газопровода между двумя компрессорными станциями. Расчет режима работы КС.
курсовая работа [251,8 K], добавлен 16.03.2015Характеристики поляризованного света. Свойство двойного лучепреломления. Поляризация света при отражении и преломлении. Вращение плоскости поляризации. Сжатие или растяжение кристаллов. Действие магнитного поля. Угол поворота плоскости поляризации.
реферат [972,8 K], добавлен 21.03.2014Описание классических задач механики контактного взаимодействия. Определение контакта между шаром и упругим полупространством, двумя шарами, двумя скрещивающимися цилиндрами, индентором и упругим полупространством. Учет шероховатости поверхности.
реферат [376,0 K], добавлен 23.12.2015Четырехмерное пространство-время. Уравнения Максвелла в пустоте. Пространственные углы Эйлера. Формула опускания индекса контравариантного вектора. Основные законы преобразования тензоров на четырехмерном многообразии. Расстояния между событиями.
реферат [221,5 K], добавлен 20.03.2016