Кристаллографические символы

Система обозначения граней и направлений. Индексы граней и ребер кристаллов. Символы ребер. Основные кристаллографические соотношения. Углы между двумя направлениями, между направлением и плоскостью. Межплоскостное расстояние и индексы плоскости.

Рубрика Физика и энергетика
Вид лабораторная работа
Язык русский
Дата добавления 20.03.2007
Размер файла 29,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

4

ЛАБОРАТОРНАЯ РАБОТА

КРИСТАЛЛОГРАФИЧЕСКИЕ СИМВОЛЫ

Цель работы: 1) Знакомство с системой обозначения граней и направлений;

2) Определение индексов граней и ребер кристаллов;

3) Решение некоторых типичных кристаллографических задач с использованием условия зональности.

Важнейшее значение в кристаллографии имеет вопрос об аналитической записи взаимного расположения граней и ребер кристалла в пространстве. С этой целью применяют кристаллографические символы, определяющие положение любой грани и ребра кристалла относительно принятых координатных осей.

Символы граней

Положение грани кристалла можно описать с помощью трех отрезков, отсекаемых этой гранью на координатных осях. Кристаллографическую систему характеризуют геометрические константы кристалл: осевые углы (, , ) и осевые единицы (a0, b0, c0). Осевыми единицами называют отрезки a0, b0, c0 , отсекаемые единичной гранью на координатных осях x,y,z соответственно. В соответствии с симметрией кристалла масштаб измерения отрезков, отсекаемых гранью на осях, определяется для каждой сингонии соотношением между осевыми единицами (табл. 1).

Таблица 1.

Сингония

Угловые соотношения

Осевые единицы

Кубическая

===90

a0=b0=c0

Тетрагональная

===90

a0=b0c0

Ромбическая

===90

a0b0c0

Моноклинная

==90

a0b0c0

Триклинная

90

a0b0c0

Гексагональная

==90, =120

a0=b0c0

В методе параметров (метод Вейса) для определения грани используется тройка безразмерных векторов a, b, c, соответствующих отрезкам, отсекаемым гранью на координатных осях и измеренных с помощью осевых единиц a0, b0, c0 (рис. 1) a=OA/a0, b=OB/b0, c=OC/c0.

Для выбора масштаба измерения, после установки кристалла, среди его наиболее развитых граней находят такую, которая пересекает все три оси. Отрезки, отсекаемые такой гранью кристалла, принимают за единичные, а саму грань - за единичную. Её параметры: (1:1:1). Чтобы определить параметры любой другой грани кристалла, необходимо найти соотношение отрезков, отсекаемых ею на координатных осях и отнесенных к соответствующим единичным отрезкам a0, b0, c0.

Такое обозначение граней с помощью параметров имеет один существенный недостаток: неудобство обозначения граней, параллельных координатным осям. Например, грань, параллельная плоскости XOY, запишется как (::1), поскольку такая грань пересекает лишь ось Z. Между тем, грани параллельные координатным осям, представляют для кристаллографии особый интерес.

В методе индексов (метод Миллера) положение любой грани кристаллов в трехосной системе координат определяется тройкой целых, как правило, небольших, взаимно-простых чисел - индексов h, k, l, представляющих собой отношение обратных величин параметров. Тогда грань, параллельная плоскости XOY будет иметь индексы h:k:l=1/:1/:1/1=0:0:1. Индексы грани заключают в круглые скобки, не разделяя их друг от друга никакими знаками. Следовательно, рассмотренная выше грань имеет символ (001).

В кристаллографической практике метод индексов Миллера получил широкое распространение. Следует иметь в виду, что параллельные грани имеют один и тот же символ, соответствующий грани ближайшей к началу координат.

Благодаря высокой симметрии кубических кристаллов, их индицирование (определение индексов всех граней) осуществляется достаточно просто. Единичная грань кубического кристалла должна составлять с координатными осями равные углы и отсекать на них равные отрезки. Легко видеть, что такой гранью может быть выбрана грань октаэдра или тетраэдра, через которую проходит поворотная ось третьего порядка.

Символы ребер

Любое направление (ребро кристалла) в данной системе координат может быть задано: 1) двумя точками, лежащими на заданном направлении, не проходящим через начало координат; 2) одной точкой, если направление проходит через эту точку и начало координат.

Если осевые единицы единичной грани равны a0, b0, c0 , а точки А (x1, y1, z1) и В (x2, y2, z2) лежат на заданном направлении, то проекции отрезка АВ будут равны:

(AB)x=x2-x1, (AB)y=y2-y1, (AB)z=z2-z1.

Тогда символ направления [r s t] определится как

.

Таким образом, заданное направление определяется отношением трех проекций отрезка, лежащем на этом направлении, к соответствующим осевым единицам и выражается с помощью целых взаимно простых чисел r, s, t, записываемых в квадратных скобках [r s t]. В случае, когда заданное направление проходит через точку А [[000]] начала координат и точку В [[x y z]] можно записать.

Из приведенного выше правила определения символов ребер следует, что если данный отрезок АВ или данное направление перемещать в пространстве параллельно самому себе, то его символ не изменится.

Заданное направление может быть определено и с помощью углов , , , которые оно образует с координатными осями x, y, z. Для отрезка АВ, лежащего на заданном направлении, можно записать:

.

В кубических кристаллах:

.

Несложные геометрические рассмотрения показывают, что для кубических кристаллов отношение направляющих косинусов нормали к грани (h k l) пропорционально отношению индексов:

,

отсюда:

.

Таким образом, при индицировании направлений в кубических кристаллах следует помнить, что символы направления и перпендикулярной ему грани обозначаются одинаковыми индексами. Например, направление [111] перпендикулярно грани (111), а направление [110] - грани (110).

Основные кристаллографические соотношения

Угол между двумя направлениями.

Чтобы найти угол между двумя направлениями [r1, s1, t1], [r2, s2, t2] необходимо вспомнить одно из правил аналитической геометрии о нахождении скалярного произведения двух векторов .

.

Если .

(Здесь - тройка единичных векторов координатной системы), то для прямоугольной системы координат имеем:

,

.

Откуда

.

2) Угол между направлением и плоскостью

Учитывая, что для кубических кристаллов перпендикуляры к плоскостям (h k l) изображаются как [h k l], легко найти угол между таким перпендикуляром и заданным направлением [r s t].

Исходный угол будет дополнительным к 90, т.е. =(90-) и определится как

.

3) Условие зональности.

Кристаллографической зоной называется совокупность граней кристалла, параллельных одному направлению, называемому осью зоны. Чтобы какая-либо плоскость (h k l) принадлежала зоне, ось которой [r s t] , необходимо, чтобы направление, параллельное оси зоны, лежало в этой плоскости. Следовательно, косинус угла между перпендикуляром к заданной плоскости (h k l) и осью зоны [r s t] должен быть равен нулю. При этом условие зональности для кубических кристаллов может быть записано как

.

Используя условие зональности, легко определить символ ребра [r s t] , образованного двумя гранями (h1 k1 l1) и (h2 k2 l2) из совместного решения уравнений:

.

Решение данной системы уравнений можно представить в виде:

Рассмотренную задачу можно назвать нахождением символа зоны по символам граней кристалла.

Аналогичным образом решается задача о нахождении символа грани (h k l), в которой лежат два заданных направления [r1 s1 t1] и [r2 s2 t2]. В этом случае решение системы уравнений

Дает индексы искомой грани (h k l).

4) Межплоскостное расстояние и индексы плоскости.

При расчете рентгенограмм необходимо знать связь межплоскостного расстояния d с индексами (h k l) , отражающего семейства плоскостей. геометрическое рассмотрение для ортогональной системы координат дает следующие зависимости:

- для ромбической сингонии;

- для тетрагональной сингонии;

- для кубической сингонии.

План работы

Произвести индицирование всех граней и ребер заданных кристаллов.

Найти угол между двумя заданными направлениями в кристаллах кубической,. тетрагональной и ромбической сингоний при известных параметрах решетки.

Определить угол между двумя заданными плоскостями, направлением и плоскостью в кубических кристаллах.

Найти символ зоны по известным символам граней. Найти символ грани, в которой лежат два заданных направления.

Определить межплоскостные расстояния для заданного семейства атомных плоскостей по известным параметрам решетки в ряде кристаллов разных сингоний.

Контрольные вопросы

В чем сущность метода индексов?

Какие индексы имеют параллельные грани и ребра кристалла?

Как выбирается единичная грань в кубических кристаллах?

В чем состоит особенность индицирования направлений в кубических кристаллах?

Что физически собой представляет условие зональности?


Подобные документы

  • Преобразования Лоренца и основные следствия из них. Четырехмерное пространство Эйнштейна. Расстояние между точками трехмерного пространства. Интервал между двумя событиями. Промежуток собственного времени. События, разделенные вещественным интервалом.

    лекция [212,8 K], добавлен 28.06.2013

  • Цели, принципы и формула теплообмена. Влияние на него потока и температуры. Схема теплового баланса. Определение разницы температур между холодной и теплой средами. Организация противопотока. Различные типы распределителей и ребер теплообменника.

    презентация [2,9 M], добавлен 28.10.2013

  • Реологические свойства жидкостей в микро- и макрообъемах. Законы гидродинамики. Стационарное движение жидкости между двумя бесконечными неподвижными пластинами и движение жидкости между двумя бесконечными пластинами, двигающимися относительно друг друга.

    контрольная работа [131,6 K], добавлен 31.03.2008

  • Методика расчета силы взаимодействия между двумя реальными молекулами в рамках классической физики. Определение потенциальной энергии взаимодействия как функции от расстояния между центрами молекул. Уравнение Ван-дер-Ваальса. Сверхкритическое состояние.

    презентация [275,6 K], добавлен 29.09.2013

  • Сведения о колебаниях кристаллических решёток, функции, описывающие их физические величины. Кристаллографические системы координат. Расчет энергии взаимодействия атомов в ковалентных кристаллах, спектра колебаний кристаллической решётки вольфромата бария.

    дипломная работа [566,1 K], добавлен 09.01.2014

  • Направляющая система, образованная двумя параллельными проводящими плоскостями. Зависимость составляющей от координаты в пространстве между проводящими плоскостями. Нахождение критической длины волны. Фазовая скорость поперечно-электрической волны.

    курсовая работа [1,1 M], добавлен 07.12.2010

  • Выбор рабочего и избыточного давления в газопроводе. Определение числа компрессорных станции (КС) и расстояния между станциями. Уточненный тепловой и гидравлический расчеты участка газопровода между двумя компрессорными станциями. Расчет режима работы КС.

    курсовая работа [251,8 K], добавлен 16.03.2015

  • Характеристики поляризованного света. Свойство двойного лучепреломления. Поляризация света при отражении и преломлении. Вращение плоскости поляризации. Сжатие или растяжение кристаллов. Действие магнитного поля. Угол поворота плоскости поляризации.

    реферат [972,8 K], добавлен 21.03.2014

  • Описание классических задач механики контактного взаимодействия. Определение контакта между шаром и упругим полупространством, двумя шарами, двумя скрещивающимися цилиндрами, индентором и упругим полупространством. Учет шероховатости поверхности.

    реферат [376,0 K], добавлен 23.12.2015

  • Четырехмерное пространство-время. Уравнения Максвелла в пустоте. Пространственные углы Эйлера. Формула опускания индекса контравариантного вектора. Основные законы преобразования тензоров на четырехмерном многообразии. Расстояния между событиями.

    реферат [221,5 K], добавлен 20.03.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.