Второй закон термодинамики. Энтропия
Использование энергии топлива в работе различных машин, аппаратов, энергетических и технологических установок. Определения термодинамики: второй закон, энтропия, расчет ее изменения. Абсолютная энтропия, постулат Планка; необратимость тепловых процессов.
Рубрика | Физика и энергетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 08.01.2012 |
Размер файла | 520,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Государственное образовательное учреждение высшего профессионального образования
Астраханский государственный университет
Кафедра аналитической и физической химии
Курсовая работа
по физической химии:
Второй закон термодинамики. Энтропия
Выполнила:
студентка группы ДХМ312
Волобоева М.Ю.
Проверила: доцент, к.х.н.,
Джигола Л.А.
Астрахань 2011
Содержание
Введение
1. Второй закон термодинамики. Энтропия
2. Расчет изменения энтропии для различных процессов
3. Абсолютная энтропия
4. Необратимость тепловых процессов
Заключение
Расчетная задача
Список литературы
Введение
В настоящее время теплосиловые и тепловые установки получили широкое распространение в различных отраслях народного хозяйства. На промышленных предприятиях они составляют основную важнейшую часть технологического оборудования.
Наука, изучающая методы использования энергии топлива, законы процессов изменения состояния вещества, принципы работы различных машин и аппаратов, энергетических и технологических установок, называется теплотехникой. Теоретическими основами теплотехники являются термодинамика и теория теплообмена.
Термодинамика опирается на фундаментальные законы (начала), которые являются обобщением наблюдений над процессами, протекающими в природе независимо от конкретных свойств тел. Этим объясняется универсальность закономерностей и соотношений между физическими величинами, получаемых при термодинамических исследованиях.
Первый закон термодинамики характеризует и описывает процессы превращения энергии с количественной стороны и дает все необходимое для составления энергетического баланса любой установки или процесса.
Второй закон термодинамики, являясь важнейшим законом природы, определяет направление, по которому протекают термодинамические процессы, устанавливает возможные пределы превращения теплоты в работу при круговых процессах, позволяет дать строгое определение таких понятий, как энтропия, температура и т.д. В этой связи второй закон термодинамики существенно дополняет первый.
В качестве третьего начала термодинамики принимается принцип недостижимости абсолютного нуля.
В теории теплообмена изучаются закономерности переноса теплоты из одной области пространства в другую. Процессы переноса теплоты представляют собой процессы обмена внутренней энергией между элементами рассматриваемой системы в форме теплоты.
1. Второй закон термодинамики. Энтропия
Второй закон термодинамики устанавливает критерии необратимости термодинамических процессов. Известно много формулировок второго закона, которые эквивалентны друг другу. Мы приведем здесь только одну формулировку, связанную с энтропией.
Существует функция состояния - энтропия S, которая обладает следующим свойством:
, (1)
где знак равенства относится к обратимым процессам, а знак больше - к необратимым.
Для изолированных систем второй закон утверждает: dS ? 0, (2) т.е. энтропия изолированных систем в необратимых процессах может только возрастать, а в состоянии термодинамического равновесия она достигает максимума
(dS = 0,d 2S < 0).
Неравенство (1) называют неравенством Клаузиуса. Поскольку энтропия - функция состояния, ее изменение в любом циклическом процессе равно 0, поэтому для циклических процессов неравенство Клаузиуса имеет вид:
(3)
где знак равенства ставится, если весь цикл полностью обратим.
Энтропию можно определить с помощью двух эквивалентных подходов - статистического и термодинамического. Статистическое определение основано на идее о том, что необратимые процессы в термодинамике вызваны переходом в более вероятное состояние, поэтому энтропию можно связать с вероятностью:
, (4)
где k = 1.38 10-23 Дж/К - постоянная Больцмана (k = R / NA), W - так называемая термодинамическая вероятность, т.е. число микросостояний, которые соответствуют данному макросостоянию системы. Формулу (4) называют формулой Больцмана.
С точки зрения строгой статистической термодинамики энтропию вводят следующим образом:
, (5)
где G (E) - фазовый объем, занятый микроканоническим ансамблем с энергией E.
Термодинамическое определение энтропии основано на рассмотрении обратимых процессов:
, (6)
Это определение позволяет представить элементарную теплоту в такой же форме, как и различные виды работы:
Qобр = TdS, (7)
где температура играет роль обобщенной силы, а энтропия - обобщенной (тепловой) координаты.
2. Расчет изменения энтропии для различных процессов
Термодинамические расчеты изменения энтропии основаны на определении (6) и на свойствах частных производных энтропии по термодинамическим параметрам:
(8)
Последние два тождества представляют собой соотношения Максвелла.
1) Нагревание или охлаждение при постоянном давлении.
Количество теплоты, необходимое для изменения температуры системы, выражают с помощью теплоемкости: Qобр = Cp dT.
(9)
Если теплоемкость не зависит от температуры в интервале от T1 до T2, то уравнение (4.8) можно проинтегрировать:
(10)
Если изменение температуры происходит при постоянном объеме, то в формулах (9) и (10) Cp надо заменить на CV.
2) Изотермическое расширение или сжатие.
Для расчета энтропии в этом случае надо знать уравнение состояния системы. Расчет основан на использовании соотношения Максвелла:
(11)
В частности, для изотермического расширения идеального газа (p = nRT / V)
(12)
Этот же результат можно получить, если использовать выражение для теплоты изотермического обратимого расширения идеального газа: Qобр = nRT ln(V2/V1).
3) Фазовые переходы.
При обратимом фазовом переходе температура остается постоянной, а теплота фазового перехода при постоянном давлении равна Hфп, поэтому изменение энтропии равно:
(13)
При плавлении и кипении теплота поглощается, поэтому энтропия в этих процессах возрастает: Sтв < Sж < Sг. При этом энтропия окружающей среды уменьшается на величину Sф.п., поэтому изменение энтропии Вселенной равно 0, как и полагается для обратимого процесса в изолированной системе.
4) Смешение идеальных газов при постоянных температуре и давлении.
Если n1 молей одного газа, занимающего объем V1, смешиваются с n2 молями другого газа, занимающего объем V2, то общий объем будет равен V1 + V2, причем газы расширяются независимо друг от друга и общее изменение энтропии равно сумме изменений энтропии каждого газа:
, (14)
где xi - мольная доля i-го газа в полученной газовой смеси. Изменение энтропии (14) всегда положительно, т.к. все ln xi < 0, поэтому идеальные газы всегда смешиваются необратимо.
Если при тех же условиях смешиваются две порции одного и того же газа, то уравнение (14) уже неприменимо. Никаких изменений в системе при смешивании не происходит, и S = 0. Тем не менее, формула (14) не содержит никаких индивидуальных параметров газов, поэтому, казалось бы, должна быть применима и к смешению одинаковых газов. Это противоречие называют парадоксом Гиббса.
Абсолютная энтропия
В отличие от многих других термодинамических функций, энтропия имеет точку отсчета, которая задается постулатом Планка (третьим законом термодинамики):
При абсолютном нуле T = 0 К все идеальные кристаллы имеют одинаковую энтропию, равную нулю.
При стремлении температуры к абсолютному нулю не только энтропия стремится к 0, но и ее производные по всем термодинамическим параметрам:
(x = p, V). (4.15)
Это означает, что вблизи абсолютного нуля все термодинамические процессы протекают без изменения энтропии. Это утверждение называют тепловой теоремой Нернста.
Постулат Планка позволяет ввести понятие абсолютной энтропии вещества, т.е. энтропии, отсчитанной от нулевого значения при T = 0. Для расчета абсолютной энтропии веществ в стандартном состоянии надо знать зависимости теплоемкости Cp от температуры для каждой из фаз, а также температуры и энтальпии фазовых переходов. Так, например, абсолютная энтропия газообразного вещества в стандартном состоянии при температуре T складывается из следующих составляющих:
(4.16)
В термодинамических таблицах обычно приводят значения абсолютной энтропии в стандартном состоянии при температуре 298 К.
Значения абсолютной энтропии веществ используют для расчета изменения энтропии в химических реакциях:
, (4.17)
3. Необратимость тепловых процессов
тепловой энергия термодинамика энтропия
Первый закон термодинамики не устанавливает направление тепловых процессов. Однако, как показывает опыт, многие тепловые процессы могут протекать только в одном направлении. Такие процессы называются необратимыми. Например, при тепловом контакте двух тел с разными температурами тепловой поток всегда направлен от более теплого тела к более холодному. Никогда не наблюдается самопроизвольный процесс передачи тепла от тела с низкой температурой к телу с более высокой температурой. Следовательно, процесс теплообмена при конечной разности температур является необратимым.
Обратимыми процессами называют процессы перехода системы из одного равновесного состояния в другое, которые можно провести в обратном направлении через ту же последовательность промежуточных равновесных состояний. При этом сама система и окружающие тела возвращаются к исходному состоянию. Процессы, в ходе которых система все время остается в состоянии равновесия, называются квазистатическими.
Все квазистатические процессы обратимы. Все обратимые процессы являются квазистатическими. Если рабочее тело тепловой машины приводится в контакт с тепловым резервуаром, температура которого в процессе теплообмена остается неизменной, то единственным обратимым процессом будет изотермический квазистатический процесс, протекающий при бесконечно малой разнице температур рабочего тела и резервуара. При наличии двух тепловых резервуаров с разными температурами обратимым путем можно провести процессы на двух изотермических участках. Поскольку адиабатический процесс также можно проводить в обоих направлениях (адиабатическое сжатие и адиабатическое расширение), то круговой процесс, состоящий из двух изотерм и двух адиабат (цикл Карно) является единственным обратимым круговым процессом, при котором рабочее тело приводится в тепловой контакт только с двумя тепловыми резервуарами.
Все остальные круговые процессы, проводимые с двумя тепловыми резервуарами, необратимы. Необратимыми являются процессы превращения механической работы во внутреннюю энергию тела из-за наличия трения, процессы диффузии в газах и жидкостях, процессы перемешивания газа при наличии начальной разности давлений и т. д. Все реальные процессы необратимы, но они могут сколь угодно близко приближаться к обратимым процессам. Обратимые процессы являются идеализацией реальных процессов. Первый закон термодинамики не может отличить обратимые процессы от необратимых. Он просто требует от термодинамического процесса определенного энергетического баланса и ничего не говорит о том, возможен такой процесс или нет.
Направление самопроизвольно протекающих процессов устанавливает второй закон термодинамики. Он может быть сформулирован в виде запрета на определенные виды термодинамических процессов. Английский физик У. Кельвин дал в 1851 г. следующую формулировку второго закона. В циклически действующей тепловой машине невозможен процесс, единственным результатом которого было бы преобразование в механическую работу всего количества теплоты, полученного от единственного теплового резервуара. Гипотетическую тепловую машину, в которой мог бы происходить такой процесс, называют «вечным двигателем второго рода». В земных условиях такая машина могла бы отбирать тепловую энергию, например, у Мирового океана и полностью превращать ее в работу.
Масса воды в Мировом океане составляет примерно 1021 кг, и при ее охлаждении на один градус выделилось бы огромное количество энергии (?1024 Дж), эквивалентное полному сжиганию 1017 кг угля. Ежегодно вырабатываемая на Земле энергия приблизительно в 104 раз меньше. Поэтому «вечный двигатель второго рода» был бы для человечества не менее привлекателен, чем «вечный двигатель первого рода», запрещенный первым законом термодинамики. Немецкий физик Р. Клаузиус дал другую формулировку второго закона термодинамики: Невозможен процесс, единственным результатом которого была бы передача энергии путем теплообмена от тела с низкой температурой к телу с более высокой температурой. На рис. 1 изображены процессы, запрещаемые вторым законом, но не запрещаемые первым законом термодинамики. Эти процессы соответствуют двум формулировкам второго закона термодинамики.
2
Рисунок 1 Процессы, не противоречащие первому закону термодинамики, но запрещаемые вторым законом:
1 - «вечный двигатель второго рода»; 2 - самопроизвольный переход тепла от холодного тела к более теплому («идеальная холодильная машина»).
Следует отметить, что обе формулировки второго закона термодинамики эквивалентны. Если допустить, например, что тепло может самопроизвольно (то есть без затраты внешней работы) переходить при теплообмене от холодного тела к горячему, то можно прийти к выводу о возможности создания «вечного двигателя второго рода». Действительно, пусть реальная тепловая машина получает от нагревателя количество теплоты Q1 и отдает холодильнику количество теплоты Q2. При этом совершается работа A = Q1 - |Q2|. Если бы количество теплоты |Q2| самопроизвольно переходило от холодильника к нагревателю, то конечным результатом работы реальной тепловой машины и «идеальной холодильной машины» было бы превращение в работу количества теплоты Q1 - |Q2|, полученного от нагревателя без какого-либо изменения в холодильнике.
Таким образом, комбинация реальной тепловой машины и «идеальной холодильной машины» равноценна «вечному двигателю второго рода». Точно также можно показать, что комбинация «реальной холодильной машины» и «вечного двигателя второго рода» равноценна «идеальной холодильной машине».
Второй закон термодинамики связан непосредственно с необратимостью реальных тепловых процессов. Энергия теплового движения молекул качественно отличается от всех других видов энергии - механической, электрической, химической и т. д. Энергия любого вида, кроме энергии теплового движения молекул, может полностью превратиться в любой другой вид энергии, в том числе и в энергию теплового движения. Последняя может испытать превращение в любой другой вид энергии лишь частично. Поэтому любой физический процесс, в котором происходит превращение какого-либо вида энергии в энергию теплового движения молекул, является необратимым процессом, то есть он не может быть осуществлен полностью в обратном направлении. Общим свойством всех необратимых процессов является то, что они протекают в термодинамически неравновесной системе и в результате этих процессов замкнутая система приближается к состоянию термодинамического равновесия.
На основании любой из формулировок второго закона термодинамики могут быть доказаны следующие утверждения, которые называются теоремами Карно:
1. Коэффициент полезного действия тепловой машины, работающей при данных значениях температур нагревателя и холодильника, не может быть больше, чем коэффициент полезного действия машины, работающей по обратимому циклу Карно при тех же значениях температур нагревателя и холодильника.
2. Коэффициент полезного действия тепловой машины, работающей по циклу Карно, не зависит от рода рабочего тела, а только от температур нагревателя и холодильника.
Таким образом, коэффициент полезного действия машины, работающей по циклу Карно, максимален.
Знак равенства в этом соотношении соответствует обратимым циклам. Для машин, работающих по циклу Карно, это соотношение может быть переписано в виде
В каком бы направлении ни обходился цикл Карно (по или против часовой стрелки), величины Q1 и Q2 всегда имеют разные знаки. Поэтому можно записать
Это соотношение может быть обобщено на любой замкнутый обратимый процесс, который можно представить как последовательность малых изотермических и адиабатических участков (рис. 2).
3
Рисунок 2. Произвольный обратимый цикл как последовательность малых изотермических и адиабатических участков
При полном обходе замкнутого обратимого цикла
где ДQi = ДQ1i + ДQ2i - количество теплоты, полученное рабочим телом на двух изотермических участках при температуре Ti.
Для того, чтобы такой сложный цикл провести обратимым путем, необходимо рабочее тело приводить в тепловой контакт со многими тепловыми резервуарами с температурами Ti. Отношение ДQi / Ti называется приведенным теплом. Полученная формула показывает, что полное приведенное тепло на любом обратимом цикле равно нулю. Эта формула позволяет ввести новую физическую величину, которая называется энтропией и обозначается буквой S (Р. Клаузиус, 1865 г.). Если термодинамическая система переходит из одного равновесного состояния в другое, то ее энтропия изменяется. Разность значений энтропии в двух состояниях равна приведенному теплу, полученному системой при обратимом переходе из одного состояния в другое.
В случае обратимого адиабатического процесса ДQi = 0 и, следовательно, энтропия S остается неизменной. Выражение для изменения энтропии ДS при переходе неизолированной системы из одного равновесного состояния (1) в другое равновесное состояние (2) может быть записано в виде
Энтропия определена с точностью до постоянного слагаемого, так же, как, например, потенциальная энергия тела в силовом поле. Физический смысл имеет разность ДS энтропии в двух состояниях системы. Чтобы определить изменение энтропии в случае необратимого перехода системы из одного состояния в другое, нужно придумать какой-нибудь обратимый процесс, связывающий начальное и конечное состояния, и найти приведенное тепло, полученное системой при таком переходе. Рис. 3 иллюстрирует необратимый процесс расширения газа «в пустоту» в отсутствие теплообмена. Только начальное и конечное состояния газа в этом процессе являются равновесными, и их можно изобразить на диаграмме (p, V). Точки (a) и (b), соответствующие этим состояниям, лежат на одной изотерме. Для вычисления изменения ДS энтропии можно рассмотреть обратимый изотермический переход из (a) в (b). Поскольку при изотермическом расширении газ получает некоторое количество теплоты от окружающих тел Q > 0, можно сделать вывод, что при необратимом расширении газа энтропия возросла: ДS > 0.
4
Рисунок 3. Расширение газа в «пустоту». Изменение энтропии
где A = Q - работа газа при обратимом изотермическом расширении.
Другой пример необратимого процесса - теплообмен при конечной разности температур.
На рис. 4 изображены два тела, заключенные в адиабатическую оболочку. Начальные температуры тел T1 и T2 < T1. При теплообмене температуры тел постепенно выравниваются. Более теплое тело отдает некоторое количество теплоты, а более холодное - получает. Приведенное тепло, получаемое холодным телом, превосходит по модулю приведенное тепло, отдаваемое горячим телом. Отсюда следует, что изменение энтропии замкнутой системы в необратимом процессе теплообмена ДS > 0.
Рост энтропии является общим свойством всех самопроизвольно протекающих необратимых процессов в изолированных термодинамических системах. При обратимых процессах в изолированных системах энтропия не изменяется:
Рисунок 4. Теплообмен при конечной разности температур: a - начальное состояние; b - конечное состояние системы. Изменение энтропии ДS > 0.
Это соотношение принято называть законом возрастания энтропии. При любых процессах, протекающих в термодинамических изолированных системах, энтропия либо остается неизменной, либо увеличивается. Таким образом, энтропия указывает направление самопроизвольно протекающих процессов. Рост энтропии указывает на приближение системы к состоянию термодинамического равновесия. В состоянии равновесия энтропия принимает максимальное значение. Закон возрастания энтропии можно принять в качестве еще одной формулировки второго закона термодинамики. В 1878 году Л. Больцман дал вероятностную трактовку понятия энтропии. Он предложил рассматривать энтропию как меру статистического беспорядка в замкнутой термодинамической системе. Все самопроизвольно протекающие процессы в замкнутой системе, приближающие систему к состоянию равновесия и сопровождающиеся ростом энтропии, направлены в сторону увеличения вероятности состояния. Всякое состояние макроскопической системы, содержащей большое число частиц, может быть реализовано многими способами.
Термодинамическая вероятность W состояния системы - это число способов, которыми может быть реализовано данное состояние макроскопической системы, или число микросостояний, осуществляющих данное макросостояние. По определению термодинамическая вероятность W >> 1. Например, если в сосуде находится 1 моль газа, то возможно огромное число N способов размещения молекулы по двум половинкам сосуда:
где- число Авогадро. Каждый из них является микросостоянием. Только одно из микросостояний соответствует случаю, когда все молекулы соберутся в одной половинке (например, правой) сосуда. Вероятность такого события практически равна нулю. Наибольшее число микросостояний соответствует равновесному состоянию, при котором молекулы равномерно распределены по всему объему. Поэтому равновесное состояние является наиболее вероятным. Равновесное состояние с другой стороны является состоянием наибольшего беспорядка в термодинамической системе и состоянием с максимальной энтропией. Согласно Больцману, энтропия S системы и термодинамическая вероятность W связаны между собой следующим образом:
где k = 1,38·10-23 Дж/К - постоянная Больцмана. Таким образом, энтропия определяется логарифмом числа микросостояний, с помощью которых может быть реализовано данное макросостояние. Следовательно, энтропия может рассматриваться как мера вероятности состояния термодинамической системы. Вероятностная трактовка второго закона термодинамики допускает самопроизвольное отклонение системы от состояния термодинамического равновесия. Такие отклонения называются флуктуациями. В системах, содержащих большое число частиц, значительные отклонения от состояния равновесия имеют чрезвычайно малую вероятность.
Заключение
В связи с тем, что непрерывное получение работы из теплоты возможно только при условии передачи части отбираемой от горячего источника теплоты холодному источнику, следует подчеркнуть важную особенность тепловых процессов: механическую работу, электрическую работу, работу магнитных сил и т.д. можно без остатка превратить в теплоту. Что же касается теплоты, то только часть ее может быть превращена в периодически повторяющемся процессе в механическую и другие виды работ; другая ее часть неизбежно должна быть передана холодному источнику. Этой важнейшей особенностью тепловых процессов определяется то особое положение, которое занимает процесс получения работы из теплоты любых других способов получения работы (например, получения механической работы за счет кинетической энергии тела, получения электроэнергии за счет механической работы, производства работы магнитным полем за счет электроэнергии и т.д.). При каждом из этих способов преобразования часть энергии должна затрачиваться на неизбежные необратимые потери, такие как трение, электросопротивление, магнитная вязкость и др., переходя при этом в теплоту.
Расчетная задача
Найти изменение энтропии при охлаждении, при постоянном давлении в интервале температур от 423 до 223К 8кг уксусной кислоты, если известны значения его температур плавления и кипения (испарения) и зависимость истинной теплоемкости, значения которых представлены в справочнике.
Список литературы
1. Кириллин В.А. и др. Техническая термодинамика: Учебник для вузов.- 4-е изд., перераб.- М.: Энергоатомиздат, 1983.
2. Основы теплотехники /В.С. Охотин, В.Ф. Жидких, В.М. Лавыгин и др.- М.: Высшая школа, 1984.
3. Поршаков Б.П., Романов Б.А. Основы термодинамики и теплотехники.- М.: Недра, 1988.
4. Теплотехника /под ред. В.И. Крутова.- М.: Машиностроение, 1986
5. Теплоэнергетика и теплотехника. Общие вопросы (справочник).- М.: Энергия, 1980.
Размещено на Allbest.ru
Подобные документы
История развития термодинамики. Свойства термодинамических систем, виды процессов. Первый закон термодинамики, коэффициент полезного действия. Содержание второго закона термодинамики. Сущность понятия "энтропия". Особенности принципа возрастания энтропии.
реферат [21,5 K], добавлен 26.02.2012История развития термодинамики, ее законы. Свойства термодинамических систем, виды основных процессов. Характеристика первого и второго законов термодинамики. Примеры изменения энтропии в системах, принцип ее возрастания. Энтропия как стрела времени.
реферат [42,1 K], добавлен 25.02.2012Термодинамика - раздел физики об общих свойствах макроскопических систем с позиций термодинамических законов. Три закона (начала) термодинамики в ее основе. Теплоемкость газа, круговые циклы, энтропия, цикл Карно. Основные формулы термодинамики.
реферат [1,7 M], добавлен 01.11.2013Изучение поведения энтропии в процессах изменения агрегатного состояния. Анализ её изменения в обратимых и необратимых процессах. Свободная и связанная энергии. Исследование статистического смысла энтропии. Энергетическая потеря в изолированной системе.
презентация [1,6 M], добавлен 13.02.2016Понятие научной картины мира. Фундаментальные основы новой картины мира: теория относительности; квантовая механика. Энтропия в современной картине мира. Термодинамическая, статистическая и информационная энтропия. Взаимосвязь энтропии и необратимости.
реферат [24,9 K], добавлен 03.06.2010Основные понятия. Температура. Первый закон термодинамики. Термохимия. Второй закон термодинамики. Равновесие в однокомпонентных гетерогенных системах. Термодинамические свойства многокомпонентных систем. Растворы. Химический потенциал.
лекция [202,7 K], добавлен 03.12.2003Взаимосвязь внутренней энергии и теплоты газа. Первое начало термодинамики. Общее понятие о теплоемкости тела. Энтропия как мера необратимого рассеяния энергии или беспорядка. Адиабатический процесс: уравнение, примеры. Политропные и циклические процессы.
презентация [889,7 K], добавлен 29.09.2013Коэффициент полезного действия тепловой машины. Цикл Карно идеального газа. Цикл Отто, Дизеля и Тринкеля. Второе начало термодинамики. Энтропия обратимых и необратимых процессов. Термодинамическая вероятность состояния. Тепловая смерть Вселенной.
презентация [111,6 K], добавлен 29.09.2013Изучение истории формирования термодинамики как научной дисциплины на основе молекулярно-кинетической теории. Ознакомление с содержанием теоремы сохранения, превращения энергии (Гельмгольц, Майер, Джоуль) и законом возрастания энтропии (Клаузиус, Томсон).
контрольная работа [44,4 K], добавлен 03.05.2010Передача энергии от одного тела к другому. Внутренняя энергия и механическая работа. Первое начало термодинамики. Формулировки второго закона термодинамики. Определение энтропии. Теоремы Карно и круговые циклы. Процессы, происходящие во Вселенной.
реферат [136,5 K], добавлен 23.01.2012