Расчет структуры электромагнитных полей

Расчет структуры электромагнитных полей внутри и вне бесконечного проводящего цилиндра и в волноводе методом разделения переменных при интегрировании дифференциальных уравнений для получения аналитических выражений потенциалов и напряженностей полей.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 14.12.2013
Размер файла 860,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Украины

Сумский Государственный Университет

Кафедра наноелектроники

ОТЧЕТ

по курсовой работе

“Расчет структуры электромагнитных полей”

по курсу “Теория поля”

Сумы 2013

Содержание

Реферат

Содержание

Условные обозначения

Введение

Расчет структуры осесимметричных стационарных электромагнитных полей

Расчет структуры переменных электромагнитных полей в волноводе

Выводы

Литература

Приложение

Содержание

Реферат

Условные обозначения

Введение

1. Расчет структуры осесимметричных стационарных электромагнитных полей

2. Расчет структуры переменных электромагнитных полей в волноводе

Выводы

Литература

Приложение

Реферат

Объекты исследования - бесконечный проводящий цилиндр во внешнем электромагнитном поле и прямоугольный волновод с волной Е45.

Цель работы - расчет структуры полей внутри и вне цилиндра, а также в волноводе для приведенных в задании геометрических и электрических параметров.

Метод исследования - метод разделения переменных при интегрировании дифференциальных уравнений для получения аналитических выражений потенциалов и напряженностей полей с последующим построением на ЭВМ структуры этих полей.

Для заданной геометрии и параметров среды получены аналитические выражения значений потенциалов и напряженностей полей внутри и вне цилиндра, а также расчетное сопротивление для дипольного момента. В случае волны Е45, распространяющейся в прямоугольном волноводе сечением 110x55 мм, путем интегрирования волнового уравнения и использования уравнений Максвелла получены соотношения, описывающие поведение поперечных и продольных компонент полей, а также фазовой и групповой скоростей волны. Путем применения ЭВМ построены картины структуры статических полей для шара и переменных полей для волновода. Рассчитано значения дипольного момента цилиндра и проанализировано поведения фазовой и групповой скорости.

Ключевые слова: ПОЛЕ, ВОЛНА, ДИСПЕРСИЯ, КРИТИЧЕСКАЯ ЧАТОТА, ФАЗОВАЯ И ГРУППОВАЯ СКОРОСТИ.

Условные обозначения и размерность величин

Вид поля, Волны

Наименование

Обозначение

Единица

Магнитное поле

Напряженность магнитного поля

Магнитная индукция

Магнитный потенциал

Магнитная постоянная

Абсолютная магнитная проницаемость

H

B

Тл

В (вольт)

Электромагнитная волна

Длина волны

Критическая длина волны волновода

Длина волны в волноводе

Волновое сопротивление

Коэффициент распространения

м

м

м

Ом

м

электромагнитный поле цилиндр волновод

Введение

Электромагнитное поле -- это вид материи, связанный с изменением и непрерывным взаимным превращением магнитного и электрического полей и характеризующийся способностью распространяться в вакууме со скоростью, близкой к м/сек, способностью силового воздействия на заряженные частицы, токи и на определенным образом ориентированную поверхность вещества. Электромагнитное поле в одних случаях характеризуется непрерывным распределением в пространстве, а в других случаях обнаруживает дискретность своей структуры.

Теория электромагнитного поля представляет собой учение об электрических и магнитных явлениях, о теоретических положениях и законах, которым подчиняются эти явления, и о вытекающих из них методах расчета.

Изучение видов полей (электростатическое поле, электрическое поле постоянного тока в проводящей среде, магнитное поле постоянного тока, переменное электромагнитное поле) расширяет физические представления о поле, известные из курса физики, способствует более глубокому пониманию процессов, происходящих в электротехнических установках, а также важно с прикладной точки зрения, поскольку оно дает возможность решать многие задачи, имеющие существенное значение не только для теории электрических цепей.

При изучении переменного электромагнитного поля рассматриваются вопросы излучения электромагнитной энергии, распространения электромагнитных волн в идеальном диэлектрике, в проводящей и полупроводящих средах.

1. Расчет структуры осесимметричных стационарных электромагнитных полей

Общее задание.

Осесимметричное тело радиуса R находится в однородном внешнем магнитном поле H0, перпендикулярном к его оси. Заданы материальные характеристики окружающей среды. Получить аналитические выражения для потенциалов и и полей Hi и He, соответственно внутри и вне тела. Для заданных численных значений параметров задачи построить семейство эквипотенциальных линий (10 линий) в плоскости, перпендикулярной оси симметрии тела.

Найти вектор магнитной индукции B в точке М.

Параметры задачи

Бесконечный проводящий цилиндр в магнитной среде,

R=3см=0,03м, H0=25, і=1,5*102, е=4

Координаты точки M: r=4см=0,04м, =120

Решение

Решение проводится в цилиндрических координатах, связанных с центром основания цилиндра, r -- радиус-вектор точки наблюдения, ось x направлена вдоль приложенного магнитного поля (рис. 1.1).

При таком расположении цилиндра, потенциал поля не будет зависеть от координаты z. Учитывая это, запишем уравнение Лапласа:

(1.1)

Как внутри, так и вне цилиндра сторонних зарядов нет, поэтому следует решать уравнение Лапласа с соответствующими граничными условиями на поверхности r=R.

Решим уравнение (1.1) методом разделения переменных, в соответствии с которым решение будем искать в виде произведения двух функций, каждая из которых зависит только от одной координаты:

(1.2)

После подстановки выражения (1.2) в (1.1) получается

Помножая на получим:

Это равенство не должно нарушаться, если одну из независимых переменных r или произвольно менять, а другой придать произвольное, но постоянное значение:

(1.3) (1.4)

Этим самым решение уравнения (1.1) с частными производными сведено к решению обыкновенных дифференциальных уравнений.

Прежде всего надо найти частные решения уравнений (1.3) и (1.4) для p=0. Обозначим их M0 и N0, и в результате получим:

Т. к. потенциал является четной функцией относительно , т. е.: то необходимо принять

Если взять, согласно равенству (1.2), произведение функций и и изменить обозначение постоянных, то можно получить частное решение уравнения Лапласа в виде:

(1.5)

Пусть теперь постоянная разделения p в уравнениях (1.3) и (1.4) отлична от нуля.

Для решения уравнения (1.3) применим подстановку Эйлера Первая и вторая производные соответственно будут равны:

Подставим производные в уравнение

или (1.6)

Значение p определим при интегрировании уравнения (1.4):

(1.6`)

Решение его можно записать в виде .

Убедимся в этом путем подстановки и одновременно найдем значение p:

Следовательно, p = 1.

После нахождения числа p подставим его в (1.6) и найдем n: и

Таким образом, совместное решение уравнений (1.3) и (1.4) при p, не равном нулю, дает следующее выражение для

(1.7)

Полное решение:

(1.8)

Найдем значения С1, С2, С3 и С4. Величины, служащие для описания поля внутри цилиндра, обозначим с индексом i, а величины, с помощью которых записывается потенциал во внешней по отношению к цилиндру области, - с индексом e. Таким образом, для внутренней области:

(1.9)

Для внешней области:

(1.10)

Для визначення сталих інтегрування необхідно врахувати не лише граничні умови на поверхні циліндра, а й поведінку потенціалу на нескінченності. Потенціал на нескінченності в цьому випадку має вигляд [4]:

Зіставимо останній вираз з (1.10):

Отже,

(1.11)

Розглянемо вираз потенціала для внутрішньої області. Він повинен давати кінцеве значення для всіх точок всередині циліндра. Це можливо лише тоді, коли и . Стала , з точністю до якої визначається потенціал, дорівнює аналогічній константі для зовнішньої области.

Таким чином, для внутрішньої області:

(1.12)

Дві сталі та , що залишилися невідомими, будуть знайдені з граничних умов. Із рівності потенциалів та при r = R (тобто ) випливає, що

З рівності нормальних складових вектора на межі поділу випливає, що

,

тобто

.

,

Потенціал внутрішньої області дорівнює

, (1.13)

.

А потенціал зовнішньої

(1.14)

Напруженість поля всередині циліндра [1]

H напрямлена вздовж осі x та не залежить від координат точки. Це значить, що поле всередині циліндра однорідне.

Напруженість поля поза циліндром дорівнює [1]

Вектор магнитной индукции в точке М (r=0,04м, =120):

2. Расчет структуры переменных электромагнитных полей в волноводе

Общее задание

Для заданного типа волны с начальной амплитудой поля E0 = 5кВ/см, распространяющейся в прямоугольном волноводе сечением ab, получить аналитические выражения продольной и поперечных компонент полей в комплексной форме записи и для мгновенных значений. Для численных параметров задачи построить эпюры полей по осям x, y, z, а также картину распределения полей в плоскостях xy и xz. Рассчитать заданные характеристики полей и построить их зависимости от частоты.

Параметры задачи

Волна E45, ab = 11055 мм; l = 20 мм; диэлектрическая проницаемость e = 7. Рассчитать ф и гр.

Решение

Оси координат расположим в соответствии с рис. 2.1.

Рисунок 2.1.

Полость волновода заполнена диэлектриком, электрическая проницаемость которого e. Длина волновода в направлении оси z не ограничена. Процесс распространения электромагнитных волн в полости прямоугольного волновода рассматриваем, полагая, что стенки волновода выполнены из сверхпроводящего материала (g = Ґ). При этом условии напряженность электрического поля на стенках волновода будет равна нулю (плотность тока на стенках волновода d = = gE есть величина конечная, поэтому при g®Ґ, E®0).[2]

Электромагнитное поле в волноводе описывается волновым уравнением:

(2.1)

где - круговая частота, а и а - абсолютные электрическая и магнитная проницаемости.

Для заданного типа волны выполняется следующее условие:

Ez 0, Hz = 0, m = 4, n = 5.

Распространяющиеся в волноводе электромагнитные волны являются волнами, бегущими вдоль оси волновода (оси z) и стоячими в двух остальных направлениях.

Тот факт, что волны являются бегущими вдоль оси z, в формально математическом отношении находит свое выражение в том, что каждая из составляющих волн, при записи ее имеет множитель exp(*t-kp*z), где kp - коэффициент распространения.

Если подставить в уравнение (2.1), то последнее разобьется на три уравнения для проекций. Для проекции на ось z будем иметь следующее уравнение:

(2.2)

Упростим уравнение (2.3) путем подстановки решения вида:

, (2.3)

справедливого для гармонических процессов в волноводах [2], где

- продольный коэффициент распространения в волноводе, - длина волны в волноводе. Множитель выражает собой то обстоятельство, что вдоль оси z движется бегущая волна.

Подставляем (2.3) в (2.2):

Заменим и поделим на . Получим:

(2.4)

Воспользуемся методом разделения переменных и искомую функцию представим в виде:

(2.5)

и подставим в (2.4), получаем:

Разделим это уравнение на XY, получим:

(2.6)

Сумма двух функций и , из которых одна является функцией только x, а другая - функцией только y, может равняться постоянному числу только в том случае, если каждая из этих функций есть постоянное число. Перейдем от частных производных к обыкновенным и положим:

Здесь через kx и ky обозначены постоянные разделения (поперечные волновые числа), удовлетворяющие равенствам:

,.

Исходя из соотношения (2.5), имеем выражение для амплитуды (волновой множитель опускаем) продольной составляющей электрического поля:

(2.7)

где - начальная комплексная амплитуда; kx, ky, x и y - постоянные интегрирования.

Для нахождения поперечных компонент поля воспользуемся уравнениями Максвелла в проекциях на оси координат[1,2]:

(2.8) (2.11)

(2.9) (2.12)

(2.10) (2.13)

В силу того, что для E-волны , то уравнения (2.8), (2.9), (2.13) можно упростить, убрав выражения, содержащие :

Поскольку характер изменения полей по оси z задается выражением (2.4), то в (2.8)-(2.13) примем, что:

.

Рассмотрим теперь уравнения (2.8) и (2.12) как систему для и , а уравнения (2.9) и (2.11) -- и :

(2.14)

Подставляя в (2.14) значение , получаем выражения для поперечных составляющих поля:

(2.15)

В соответствии с граничными условиями на стенках волновода = 0 при x=0 и x=a, а = 0 при y=0 и y=b. Тогда:

,

где n = 0, 1, 2, …

,

где m = 0, 1, 2, …

Окончательное выражение для составляющих поля после подстановки найденных постоянных, а также после подстановки , примет вид:

Заменим a:

,

где -- эквивалентное сопротивление волновода для Е-волны [3]; -- волновое сопротивление неограниченной среды; fкр -- критическая частота.

Тогда:

(2.16)

Аналитические выражения для составляющих поля волны Е41 получаем из (2.16) при m = 4 и n = 5:

(2.16)

Для восстановления действительных значений необходимо компоненты полей домножить на опущенный ранее волновой множитель , перейти по формуле Эйлера [4] к тригонометрической форме записи и взять действительную часть полученного выражения:

Получили:

(2.17)

Длина волны в волноводе и эквивалентное сопротивление волновода для Е-волны в общем случае определяются следующими соотношениями [1, 2]:

,,

где -- волновое сопротивление неограниченной среды; акр -- критическая длина волны, которая равна:

Подставив значения, получаем:

Фазовая и групповая скорости в общем случае определяются следующими соотношениями:

ф = гр = (2.18)

ф= = 32,2 _ 107(м/с)

гр = =27,9 _ 107 (м/с)

Для соотношений (2.17), (2.18) составляем блок-схему и программу расчета зависимостей компонент поля от координат волновода и значений ф и гр от .

Выводы
При выполнении курсовой работы были приобретены навыки по расчету структуры стационарных потенциальных полей и переменных электромагнитных полей в направляющих системах, а также закреплены навыки основ программирования и работы на персональных компьютерах.

В соответствии с заданием на курсовую работу были выведены выражения для потенциала и напряженности полей, рассчитаны (с помощью ЭВМ) семейство эквипотенциальных линий для проводящий цилиндр в магнитной среде.

2. В случае переменного электромагнитного поля в прямоугольном волноводе получены аналитические выражения для электрических и магнитных компонент поля, построены их распределения в поперечном и продольном сечениях. В поперечных сечениях волновода вдоль осей x, y образуются стоячие волны в результате наложения многократных отражений от стенок волновода электромагнитного поля. Длина волны в волноводе больше длины волны в свободном пространстве. При таком условии возможно нормальное распространение электромагнитных волн (без затухания).

Литература

1. Бессонов Л.А. Теоретические основы электротехники. Электромагнитное поле. М.: Высшая школа, 1978.

2. Даревский А.И., Кухаркин Е.С. Теоретические основы электротехники. Ч.2. - М.: Высшая школа, 1965.

3. Татур Т.А. Основы теории электромагнитного поля. Справочное пособие. М.: Высшая школа, 1989.

4. Методические указания к выполнению курсовой работы. Сумы: Ризоцентр СумГУ, 1998.

Приложение А

1. Программа для расчёта и построения эквипотенциальных линий и полей.

Размещено на http://www.allbest.ru/

#include <iostream.h>

#include <math.h>

#include <graphics.h>

#include <conio.h>

const double eps0 = 8.85e-12;

double E0 = 350000;

double R = 0.1;

double eps = 50;

double tau = 1e-8;

double r = 0.1;

double alpha = 60;

double Er();

double Ea();

double Calc_E();

void InitGr();

void DrawGr(int, int);

void DrawShape();

double Ponetial(int, int);

void main()

{ int x = -100, y;

clrscr();

cout<<Calc_E();

getch();

InitGr();

DrawShape();

for(int i=0;i<10;i++)

{ y = i*10;

DrawGr(x, y);}

getch();

closegraph();}

double Calc_E()

{ return sqrt(Er()*Er() + Ea()*Ea());}

double Er()

{ return E0*(r*r/(R*R)+1)*cos(alpha)-tau/(2*M_PI*eps0*eps*R);}

double Ea()

{ return E0*(r*r/(R*R)-1)*sin(alpha);}

double Potential(int x, int y)

{ double r, x1, y1;

x1 = double(x);

y1 = double(y);

r=sqrt(x1*x1 + y1*y1);

R = r;

alpha = asin(x1/R);

return Calc_E();}

void DrawGr(int x, int y)

{ double a1 = -1.57;

double Pot, Pot0;

double epsilon;

Pot0 = Potential(x, y);

do

{ x+=cos(a1);

y+=sin(a1);

a1+=0.001;

Pot = Potential(x, y);

putpixel(300 + x,300 - x,2);

epsilon = Pot/10;} while(fabs(Pot - Pot0)>epsilon);}

void DrawShape()

{ setbkcolor(BLUE);

setcolor(RED);

circle(300, 300, 50);

line(150,300,450,300);

line(300,100,300,400);

setcolor(WHITE);

rectangle(0,0,getmaxx(),getmaxy());}

void InitGr()

{ int gdriver = DETECT, gmode, errorcode;

initgraph(&gdriver, &gmode, "");}

2. Программа для расчёта эпюр электромагнитных полей.

#include <iostream.h>

#include <math.h>

#include <conio.h>

#include <fstream.h>

double f_cs(double, double);

double f_sc(double, double);

double f_c(double);

const double Zc = 377;

const double c = 300000000;

const double step = 0.01;

double a, b, E0;

double Ex, Ey, Hx, Hy, Ez, vf, vg;

double AA, BB, lambda_kr, lambda, Lamb;

double EHx, EHy, x, y, i, kp, d, Ze;

int m, n;

int main()

{ clrscr();

cout<<"Введите E0: "; cin>>E0;

cout<<"Введите lambda: "; cin>>lambda;

cout<<"Введите m: "; cin>>m;

cout<<"Введите n: "; cin>>n;

cout<<"Введите a: "; cin>>a;

cout<<"Введите b: "; cin>>b;

ofstream dataX("x.dat");

ofstream dataY("y.dat");

ofstream dataZ("z.dat");

ofstream dataL("l.dat");

AA = m*M_PI/a;

BB = n*M_PI/b;

lambda_kr = 2/(sqrt(m*m/(a*a)+n*n/(b*b)));

vf = c/(sqrt(1-lambda*lambda/(lambda_kr*lambda_kr)));

vq = c*(sqrt(1-lambda*lambda/(lambda_kr*lambda_kr)));

Lamb = lambda/(sqrt(1-lambda*lambda/(lambda_kr*lambda_kr)));

Ze = Zc*lambda/Lamb;

EHx = a*b*b/(Lamb*(a*a+b*b));

EHY = a*a*b/(Lamb*(a*a+b*b));

i = 0;

while(i<a)

{ Ex = EHx*f_cs(i,b/4);

Hy = EHx*f_cs(i,b/4)/Ze;

Ey = EHy*f_sc(i,b);

Hx = - EHy*f_sc(i,b)/Ze;

dataX<<i<<Ex<<Ey<<Hx<<Hy;

i+=step;}

i = 0;

do

{ Ex = EHx*f_cs(a,i);

Hy = EHx*f_cs(a,i)/Ze;

Ey = EHy*f_sc(a/4,i);

Hx = - EHy*f_sc(a/4,i)/Ze;

dataY<<i<<Ex<<Ey<<Hx<<Hy;

i+=step;

} while(i>b);

kp = 2*M_PI/Lamb;

i = 0;

do

{ Ex = EHx*f_c(i);

Hy = EHx*f_c(i)/Ze;

Ey = EHy*f_s(i);

Hx = - EHy*f_s(i)/Ze;

Ez = E0*sin(-kp*i);

dataZ<<i<<Ex<<Ey<<Hx<<Hy<<Ez;

i+=step;

} while(i>50);

i = 0;

do

{ d = sqrt(1-i*i/(lambda_kr*lambda_kr));

vf = 3/d;

vg = 3*d;

dataL<<i<<vf<<vg;

i+=step;

} while(i>lambda_kr);

return 0;}

double f_cs(double xx, double yy)

{ return cos(AA*xx)*sin(BB*yy);}

double f_sc(double xx, double yy)

{ return sin(AA*xx)*cos(BB*yy);}

double f_c(double xx)

{ return cos(-kp*xx);}

Блок-схема

Блок-схема для программы расчета эквипотенциальных линий и полей

Размещено на http://www.allbest.ru/

Блок-схема для программы расчета эпюр электромагнитных полей

Размещено на http://www.allbest.ru/

Размещено на Allbest.ru


Подобные документы

  • Электрическое поле Земли. Атмосферики, радиоизлучения Солнца и галактик. Физические основы взаимодействия электромагнитных полей с биологическими объектами. Главные преимущества и недостатки лазеротерапии. Глубина проникновения волн в различные ткани.

    курсовая работа [179,2 K], добавлен 16.05.2016

  • Процессы в электрических цепях с сосредоточенными параметрами. Четырехполюсники при переменных токах. Расчет электрических полей. Теорема Гаусса и ее применение. Расчет симметричных магнитных полей. Моделирование плоскопараллельного магнитного поля.

    методичка [4,4 M], добавлен 16.10.2012

  • Экспериментальный и теоретический методы познания физической реальности. Единая теория векторных полей - обобщение уравнений электродинамики Максвелла, теоретическое обоснование схемы их построения; исследование гравитационного и электрического полей.

    контрольная работа [18,7 K], добавлен 10.01.2011

  • Связь между переменным электрическим и переменным магнитным полями. Свойства электромагнитных полей и волн. Специфика диапазонов соответственного излучения и их применение в быту. Воздействие электромагнитных волн на организм человека и защита от них.

    курсовая работа [40,5 K], добавлен 15.08.2011

  • Влияние электромагнитного поля (ЭМП) на иммунную, гуморальную, половую и нервную систему. Механизм функциональных нарушений при воздействии ЭМП. Исследования о влиянии ЭМП на развитие эмбриона. Способы и методы защиты от электромагнитных излучений.

    доклад [16,2 K], добавлен 03.12.2011

  • Изучение конструкции волноводов. Классификация волн в волноводе. Создание электрических и магнитных полей различной структуры. Уравнения Максвелла для диэлектрика. Уменьшение потерь энергии внутри волновода. Распространение поперечно-электрических волн.

    презентация [267,3 K], добавлен 25.12.2014

  • Постановка нестационарной краевой задачи теплопроводности в системе с прошивной оправкой. Алгоритм решения уравнений теплообмена. Методы оценки термонапряженного состояния. Расчет температурных полей и полей напряжений в оправке при циклическом режиме.

    реферат [4,0 M], добавлен 27.05.2010

  • Понятие гравитационного поля как особого вида материи и его основные свойства. Сущность теории вихревых полей. Определение радиуса действия гравитационного поля. Расчет размеров гравитационных полей планет, их сравнение с расстоянием между ними.

    реферат [97,9 K], добавлен 12.03.2014

  • Классификация методов электроразведки. Характеристика естественных, искусственно созданных постоянных и переменных электромагнитных полей. Электрическая модель горной породы, возникновение граничных слоев, диффузионных и электродинамических процессов.

    курсовая работа [1,1 M], добавлен 18.01.2015

  • Исследование электрических полей нестандартных многоцепных высоковольтных линий электропередач. Инструкция по ликвидации аварийных режимов работы на подстанции 110/35/10 кВ. Программа расчета электрических полей трехфазной линии на языке Turbo Pascal.

    дипломная работа [1,6 M], добавлен 29.04.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.