Расчет специального высоковольтного усилителя

Разработки в области получения высокого напряжения. Структура высоковольтного усилителя. Осуществление процесса выпрямления и умножения напряжения на высокой частоте 16-20 кГц. Область применения высоковольтных усилителей. Методика академика Власова В.В.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 20.02.2010
Размер файла 44,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

2

Расчет специального высоковольтного усилителя

Исторически первыми разработками в области получения высокого напряжения были неуправляемые выпрямители переменного напряжения, предназначенные для питания различных устройств. Такая схема не могла обеспечить хорошего качества выпрямленного высокого напряжения. Низкая частота опорного питающего напряжения обуславливала большие габариты и вес практически всех элементов структуры. На практике в подавляющем большинстве случаев используется структура ВУ, показанная на рис.1.

UВХ

UВЫХ

ИОН НВ К ВТ УН

Рис.1 Классическая структура высоковольтного усилителя

Основное отличие схемы заключается в том, что процесс выпрямления и умножения напряжения осуществляется на высокой частоте 16 - 20 кГц. Для этого низкочастотные напряжение от ИОН выпрямляется низковольтным выпрямителем (НВ) и подается для питания конвертора (К), вырабатывающего высокочастотные колебания. Дальнейшая технология получения высокочастотного напряжения происходит через высоковольтный трансформатор (ВТ) на умножитель напряжения (УН). Достоинствами ВУ перед своими историческими прототипами являются малые габариты и вес, а также возможность плавной регулировки выходного напряжения с большим коэффициентом усиления по мощности. Весогабаритные параметры значительно уменьшаются за счет высокой частоты (уменьшение объема ВТ и величин емкостей УН), а возможность плавного изменения UВЫХ за счет использования в конверторах регулируемых элементов: ламп, транзисторов, тиристоров.

Все разновидности этой структуры обусловлены различием либо в схемах конверторов, либо в конструкциях трансформаторов, либо в схемах УН.

Все разновидности схем конверторов могут быть разделены на три группы. К первой группе относятся одноконтактные конверторы, предназначенные для генерации одиночных импульсов напряжения на первичную обмотку ВТ. Наиболее типичным представителем этой группы конверторов является блокинг-генератор с использованием в качестве активных элементов ламп, транзисторов и тиристоров.

Конверторы с ударным контуром относятся ко второй группе разновидностей конверторов и основан на том, что параллельный L-C контур возбуждается одиночными прямоугольными импульсами тока, под воздействием которых контур начинает “звенеть", то есть генерировать пачку спадающих по амплитуде до нуля импульсов.

Третью группу разновидностей конверторов составляют устройства с большой мощностью в нагрузке. Такие конверторы строятся по схеме магнитно-транзисторных мультивибраторов.

Общие сведения о высоковольтных усилителях

Высоковольтные усилители - усилители, у которых ТВЫХ > 1 кВ.

Мощность таких усилителей не превышает 10...20 Вт.

ВВУ:

Область применения высоковольтных усилителей.

Приборный вариант высокого напряжения: Блок питания электронно-лучевых трубок, мониторов ЭВМ, телеиндикаторов рекламных щитовых табло, приборов рентгенодиагностики, нейтрализаторы статического электричества на нефтеналивных танкерах, люстры Чижевского.

Технологическое высокое напряжение, мощностью более 40 Вт: электрофильтры газоочистки, электротехнология.

СВЧ - технология: электро-гидравлические взрывные технологии по эффекту Юткина, системы электронного высоковольтного зажигания на дизелях.

Способы получения высоковольтного напряжения:

1. Получение высоковольтного напряжения из промышленной сети 50 Гц - для получения технологического высоковольтного напряжения.

50 Гц UВЫХ 220

ВТ УН

ВТ - трансформатор с выходным напряжением до 10...50 кВ;

УН - умножитель напряжения строится на число каскадов до 16.

310 = 1,41;

220 1,41 220=310;

лампочка мигает 100 в сек.

Достоинства данной схемы:

1) простота получения высокого напряжения;

2) практически неограниченная мощность сети.

Недостатки:

1) низкое качество высокого выходного напряжения (частота пульсации 50 Гц (-), большой габаритный вес, включенные конденсаторы);

2) опасность поражения электрическим током.

В качестве исключения данную схему можно использовать для приборного варианта только на стадии эксперимента.

2. СВЧ - схема.

Основана на том, что автономное высоковольтное напряжение преобразуется специальным генератором в ВЧ импульсы (1000-16000 Гц) и выпрямляется специальным умножителем напряжения УН до нужного уровня.

UВЫХ

БНП К ВТ УН

БОС

БНП - блок низковольтного питания (5...12 В);

К - конвертор, преобразует 5 - 12 В в высокочастотные импульсы,

Конверторы бывают:

1) блокинг - генератор - преобразует постоянное напряжение в одиночные единичные импульсы с 3-5 Вт;

2) мультивибратор Ройера - генерирует симметричные импульсы с выходной мощностью 100 Вт;

3) тиристорные ключи - генерируют импульсы неограниченной мощности для построения блоков питания, приводов, станков с ЧПУ.

ВТ - высоковольтный трансформатор;

УН - умножитель напряжения, построен из-за большой частоты на малогабаритных конденсаторах и диодах;

БОС - блок обратной связи.

Достоинства данной схемы:

1) малый габаритный вес параметров;

2) высокая частота выходного напряжения;

3) простота управления (либо по БНП, либо по К).

Недостаток данной схемы: нестабильность выходного напряжения, поэтому требуется стабилизация через БОС.

Рассчитанный ниже блок высоковольтного усилителя в рамках дипломного проекта может использоваться в качестве высоковольтного источника питания для создания электростатического поля, необходимого для дробления капли в процессе получения эмульсий с помощью ЭГД-эмульгатора.

Расчет высоковольтного усилителя напряжения по методике академика Власова В.В.

2. Техническое задание

2.1 Мощность источника на выходе на высокой стороне Р=17 Вт

2.2 Высокое выходное напряжение в нагрузке Uвых=8 кВ

2.3 Число ступеней умножения n=3

2.4 Рабочая частота f=6250 Гц

3. Расчет усилителя

3.1 Выходной ток в нагрузке

Iвых = Р/Uвых = 17/ 8000 = 2,125.10-3 А, (1)

3.2 По числу каскадов умножения определяем требуемое напряжение высоковольтного трансформатора:

Uт = Uвых/n = 8000/ 3 = 2 666 В, (2)

3.3 Поскольку предполагается использование стандартного высоковольтного трансформатора, то в качестве базовых выбираем параметры трансформатора выходной строчной развертки ТВС-90ЛЦ2-1. Его паспортные данные: Ртр=110 Вт, Uтр=4,5кВ, fраб=6250 Гц, Lтр=1,68Гн.

3.4 Количество последовательно включенных по вторичной обмотке высоковольтных трансформаторов:

Nтр = Uт/Uтр = 2,666 кВ/4,5 кВ = 0,59 (3)

Принимаем Nтр=1.

3.5 Таким образом, будем считать, что последовательно включенных трансформаторов в схеме три, и на каждом из них необходимо иметь истинное выходное напряжение равное

Uист = Uт/Nтр = 2,666 кВ/1 =2,666 кВ, (4)

На каждом из последовательно включенных трансформаторов включается умножитель напряжения с числом каскадов равным 2.

3.6. Вычисляем емкости каждого умножителя напряжения в согласованном режиме. Будем считать, что трансформатор ТВС-90ЛЦ2-1 пока работает один на один каскад умножителя напряжения.

Сi = 2n+1-i / 42f2Lтр, (5)

где n - число каскадов, i - порядковый номер конденсатора.

Примечание: С1 = С2.

С1 = С2 = 23+1-1/42 62502 1,68 =

=23/2,589109= 309010-12 Ф, (6)

С3 = 154510-12 Ф,

Полученное значение емкости конденсаторов составляют так называемую верхнюю границу вилки емкостей умножителя напряжения.

3.7. Рассчитаем требуемую мощность трансформаторного блока, питающего умножитель напряжения в согласованном режиме.

Ртр = (Uист) 2С1f (27,6 - 623-n - 1,2 (0,25) (n - 1) /2) =

= (2666) 2309010-126250 (27,6 - 6.20 - 2,52 0,252) =

=2924 Вт

Поскольку мощность блочного трансформатора значительна превышает мощность выбранного ТВС-90ЛЦ2-1 согласованный режимы принципиального технико-экономически расточителен и от него за счет понижения емкости конденсаторов.

3.8. Посчитаем КПД использования блочного трансформатора при питании умножителя напряжения;

=0,04

Полученное КПД отражает долю мощности блочного трансформатора, который поступает через него в нагрузку;

3.9. Посчитаем мощность каждого трансформаторного блока по формуле

Ртр бл=P/Nтр=17/1=17 Вт

3.10. Рассчитаем мощность каждого блочного трансформатора

Pбл=Pтр бл/=17/0,035=485,7 Вт

Поскольку мощность выбранного трансформатора 110 Вт, то одного трансформатора мало. Вывод:

либо выбирать другой питающий трансформатор;

либо параллельно включать несколько трансформаторов.

Выбираем второй путь.

3.11 Считаем количество трансформаторов в каждом блоке

nтр твс= Pбл/Pтр=4,41

Выбираем nтр твс=5.

3.12. Посчитаем мощность накачки от конвертора низковольтного в каждом трансформаторе блока по формуле

Ртр инд=Р бл/ nтр твс=485,7/ 5=97,14 Вт

Поскольку получили мощность меньше 110 Вт, исходя из рекомендаций в качестве генератора накачки, выбираем мультивибратор Ройра.

3.13. На расчетную блочную мощность посчитаем мощность умножителя напряжения

С1= Ртр инд /U2 истf (27,6-6 23-n-1.2 0.25 (n-1) /2) =513,310-12 Ф,

С1 = С2 (6)

С3 = 256,6510-12 Ф,

Полученные значения емкостей соответствуют блочной мощности трансформатора, но не в чисто согласованном режиме, а с уходом от него и составляют нижнюю границу значений емкостей. Согласованный режим:

С12=3090 пФ>C1=C2>513,3пФ;

С3=1545 пФ>C3>256,65 пФ;

Поскольку определяющим фактором является мощность блока трансформаторов, то выбираем правое значение вилки, но поскольку номиналы не стандартны, конденсаторы набираются в виде батарей последовательно-параллелельно включенных стандартных конденсаторов.

3.14 Набираем батарею конденсаторов.

Выбираем емкость типа К15-4 с номинальным напряжением

Uс >= 2Uтр = 6,00 кВ,

Набираем батареи конденсаторов:

С11=250 пФ, C12=250 пФ, С13=15 пФ.

С21=250 пФ, С22=55 пФ.

15. Выбираем высоковольтные диоды для умножителя напряжения по двум параметрам:

прямой ток по формуле

,

пробойное напряжение Uобр >= 2Uист = 22666 = 5332 В.

Исходя из справочных материалов выбираем Д1007 в сухом исполнении с параметрамиUобр=8 кВ, I=30 А

Высоковольтный усилитель напряжения.


Подобные документы

  • Проект понизительной подстанции для электроснабжения района Подмосковья. Анализ нагрузок и определение номинального напряжения линии электропередач высокого напряжения. Электрическая схема; выбор силовых трансформаторов, высоковольтного оборудования.

    дипломная работа [2,6 M], добавлен 05.02.2014

  • Принципы проектирования электрического фильтра и усилителя напряжения. Анализ спектра сложного периодического сигнала. Оценка прохождения входного сигнала через радиотехнические устройства. Разработка схем электрического фильтра и усилителя напряжения.

    курсовая работа [323,7 K], добавлен 28.03.2015

  • Расчет каскада транзисторного усилителя напряжения, разработка его принципиальной схемы. Коэффициент усиления каскада по напряжению. Определение амплитуды тока коллектора транзистора и значения сопротивления. Выбор типа транзистора и режима его работы.

    контрольная работа [843,5 K], добавлен 25.04.2013

  • Пункт автоматического регулирования напряжения ПАРН типа ВДТ/VR-32, его назначение и область применения. Схема электроснабжения без использования и с использованием ПАРН. Расчет мощности в точке ответвления куста №1. Потери напряжения на участке лини.

    контрольная работа [3,4 M], добавлен 16.01.2015

  • Разработка схемы усилителя постоянного тока и расчет источников питания: стабилизатора напряжения и выпрямителя. Определение фильтра низких частот. Вычисление температурной погрешности и неточностей измерения от нестабильности питающего напряжения.

    курсовая работа [166,3 K], добавлен 28.03.2012

  • Последовательность сбора инвертирующего усилителя, содержащего функциональный генератор и измеритель амплитудно-частотных характеристик. Осциллограмма входного и выходного сигналов на частоте 1 кГц. Схема измерения выходного напряжения, его отклонения.

    лабораторная работа [2,3 M], добавлен 11.07.2015

  • Выбор и обоснование принципиальной электрической схемы двухкаскадного усилителя, их элементы. Определение основных параметров транзисторов и их статических режимов. Методика и главные этапы вычисления электрических параметров всех элементов усилителя.

    курсовая работа [402,2 K], добавлен 26.01.2015

  • Повышение устойчивости питающего напряжения посредством применения специальных стабилизаторов напряжения. Изучение принципа действия параметрических и компенсационных стабилизаторов постоянного напряжения, определение и расчет их основных параметров.

    лабораторная работа [1,8 M], добавлен 12.05.2016

  • Категории надёжности электроснабжения предприятия, расчет нагрузок цеха. Выбор напряжения и схемы. Выбор мощности трансформаторов, высоковольтного оборудования. Расчёт токов короткого замыкания, линий электропередачи. Расчёт стоимости электроэнергии.

    курсовая работа [1,9 M], добавлен 06.02.2010

  • Комплектные трансформаторные подстанции. Выключатели высокого напряжения. Короткозамыкатели и отделители. Ограничители перенапряжения, разрядники. Контакторы высокого напряжения. Комплектные распределительные устройства. Токоограничивающие реакторы.

    презентация [15,0 M], добавлен 20.07.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.