Общая энергетика

Производство электрической и тепловой энергии. Гидравлические электрические станции. Использование альтернативных источников энергии. Распределение электрических нагрузок между электростанциями. Передача и потребление электрической и тепловой энергии.

Рубрика Физика и энергетика
Вид учебное пособие
Язык русский
Дата добавления 19.04.2012
Размер файла 2,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Общая энергетика

А.С. Енин
Тверь
Содержание
Введение
1.Производство электрической и тепловой энергии
1.1 Общие положения
1.2 Тепловые электрические станции
1.3 Атомные электрические станции
1.4 Гидравлические электрические станции
1.5 Газотурбинные и парогазовые силовые установки
1.6 Распределение электрических нагрузок между электростанциями
1.7 Использование альтернативных источников энергии
1.8 Перспективы динамики развития электрических станций
2. Передача электрической и тепловой энергии
2.1 Передача электрической энергии
2.2 Передача тепловой энергии
3. Потребление электрической и тепловой энергии
3.1 Потребление электрической энергии
3.2 Потребление тепловой энергии
4. Энергетика и биосфера
5. Энергосбережение
Библиографический список
Введение
В настоящем издании приведены общие сведения о процессах производства, передачи и потребления электрической и тепловой энергии, взаимной связи и объективных закономерностях этих процессов, о различных типах электростанций, их характеристиках, условиях совместной работы и комплексного использования. В отдельной главе рассмотрены вопросы энергосбережения.
1. Производство электрической и тепловой энергии
1.1 Общие положения
Энергетика - это совокупность естественных, природных и искусственных, созданных человеком систем, предназначенных для получения, преобразования, распределения и использования энергетических ресурсов всех видов. Энергоресурсами являются все материальные объекты, в которых сосредоточена энергия для возможного использования ее человеком.
Среди различных видов энергии, используемых людьми, электроэнергия выделяется рядом существенных достоинств. Это относительная простота ее производства, возможность передачи на очень большие расстояния, простота преобразования в механическую, тепловую, световую и иную энергию, что делает электроэнергетику важнейшей отраслью жизнедеятельности человека.
Процессы, происходящие при производстве, распределении, потреблении электрической энергии, неразрывно взаимосвязаны. Также взаимосвязаны и объединены установки по выработке, передаче, распределению и преобразованию электроэнергии. Такие объединения называются электроэнергетическими системами (рис.1.1) и являются составной частью энергетической системы. В соответствии с [1] энергетической системой называют совокупность электрических станций, котельных, электрических и тепловых сетей, соединенных между собой и связанных общностью режима в непрерывном процессе производства, преобразования и распределения электроэнергии и теплоты при общем управлении этими режимами.
Составной частью электроэнергетической системы является система электроснабжения, представляющая собой совокупность электроустановок, предназначенных для обеспечения потребителей электрической энергией.
Аналогичное определение можно дать системе теплоснабжения.
1.2 Тепловые электрические станции
Получение энергии из топливно-энергетических ресурсов (ТЭР) посредством их сжигания в настоящее время является наиболее простым и доступным способом производства энергии. Поэтому до 75% всей электроэнергии в стране вырабатывается на тепловых электростанциях (ТЭС). При этом возможны как совместная выработка тепловой и электрической энергии, например, на тепловых электростанциях (ТЭЦ), так и их раздельное производство (рис. 1.2).
Структурная схема ТЭС приведена на рис. 1.3. Работа происходит следующим образом. Система топливоподачи 1 обеспечивает поступление твердого, жидкого или газообразного топлива к горелке 2 парового котла 3. Предварительно топливо соответствующим образом подготавливается, например, уголь дробится до пылевидного состояния в дробилке 4, подсушивается и насыщается воздухом, который дутьевым вентилятором 5 от воздухо-заборника 6 через подогреватель 7 также подается к горелке. Тепло, выделяемое в топке котла, используется для нагрева воды в теплообменниках 8 и образования пара. Вода подается насосом 9 после того, как проходит специальную систему водоподготовки 10. Пар из барабана 11 при высоком давлении и температуре поступает в паровую турбину 12, где энергия пара преобразуется в механическую энергию вращения вала турбины и электрического генератора 13. Синхронный генератор вырабатывает переменный трехфазный ток. Отработанный в турбине пар конденсируется в конденсаторе 14. Для ускорения этого процесса используется холодная вода естественного или искусственного водоема 15 или специальные охладители - градирни. Конденсат насосами вновь подается в парогенератор (котел). Такой цикл называется конденсационным. Электростанции, использующие этот цикл (КЭС), вырабатывают только электрическую энергию. На ТЭЦ часть пара из турбины забирается при определенном давлении до конденсатора и используется для нужд потребителей тепла.
Рис. 1.1. Упрощенная схема электрической системы.
G - генераторы электроэнергии; Т - трансформаторы; Р - электрические нагрузки;
W - линии электропередачи (ЛЭП); АТ - автотрансформаторы
Рис.1.2. Блок-схема производства электрической и тепловой энергии.
а - совмещенное производство; б - раздельное производство
Рис.1.3. Структурная схема ТЭС.
Топливо и его приготовление. На ТЭС используется твердое, жидкое или газообразное органическое топливо. Его общая классификация приведена в таблице 1.1 [2].
Таблица 1.1. Общая классификация топлива

Агрегатное состояние топлива

Естественное

Искусственное

Твердое

Древесина, торф, бурый уголь, антрацит, сланцы

Древесный уголь, кокс, термоантрацит и др.

Жидкое

Нефть

Продукты перегонки и переработки нефти: мазут, бензин, керосин, лигроин.

Газообразное

Природный газ, нефтепромысловый попутный газ

Доменный, генераторный, коксовый, крекинговый, пиролизный и другие газы

Топливо в том виде, в каком оно сжигается, называется "рабочим топливом”. В состав рабочего топлива (твердого и жидкого) входят: углерод С, водород Н, кислород О, азот N, зола А и влага W. Выражая компоненты топлива в процентах, отнесенных к одному килограмму массы, получают уравнение состава рабочей массы топлива.
Сера называется летучей и составляет часть общего количества серы, находящейся в топливе, остальная негорючая часть серы входит в состав минеральных примесей.
Естественное газообразное топливо содержит: метан, этан, пропан, бутан, углеводороды, азот, углекислый газ. Последние два компонента - балласт. Искусственное газообразное топливо имеет в своём составе метан, окись углерода, водород, углекислый газ, водяные пары, азот, смолы.
Основной теплотехнической характеристикой топлива является теплота сгорания, которая показывает, какое количество теплоты в килоджоулях выделяется при сжигании одного килограмма твердого, жидкого или одного кубического метра газообразного топлива. Различают высшую и низшую теплоту сгорания.
Высшей теплотой сгорания топлива называют количество теплоты, выделяемой топливом при полном его сгорании c учётом теплоты, выделившейся при конденсации водяных паров, которые образуются при горении.
Низшая теплота сгорания отличается от высшей тем, что не учитывает теплоту, затрачиваемую на образование водяных паров, которые находятся в продуктах сгорания. При расчётах используют низшую теплоту сгорания, т.к. теплота водяных паров бесполезно теряется с уходящими в дымовую трубу продуктами сгорания.
Взаимосвязь высшей и низшей теплоты сгорания для рабочей
массы топлива определяется уравнением
Для сравнения различных видов топлива по величине теплоты сгорания введено понятие "условное топливо" (у. т.). Условным считают топливо, низшая теплота сгорания которого при рабочей массе равна 293 кДж/кг для твёрдого и жидкого топлива или 29300 кДж/м3 для газообразного топлива. В соответствии с этим каждое топливо имеет свой тепловой эквивалент Эт = QНР / 29300.
Перевод расхода рабочего натурального топлива в условное производится по уравнению
Вусл = Эт? Вт .

Краткая характеристика отдельных видов топлива приведена в табл.1.2.

Таблица 1.2. Характеристика топлива

Вид топлива

Влажность, %

Низшая теплота сгорания, кДж/кг

Содержание летучих веществ, %

Примечание

Древесина

30

50

12000

8500

60…85

Торф

50

8500…15000

70

Возможно самовозгорание

Бурый уголь

10000…16000

Каменный уголь

25000…28000

Антрацит

26000…30000

Горючи сланцы

20

6000…10000

Зола 50…55 %

Особо следует отметить низшую теплоту сгорания в кДж/кг мазута - 38000...39000, природного газа - 34000...36000, попутного газа - 50000...60000. Кроме того, это топливо практически не содержит влаги и минеральных примесей.

Перед подачей топлива в топку производят его подготовку. Особенно сложна система приготовления твердого топлива, которое последовательно проходит очистку от механических примесей и посторонних предметов, дробление, сушку, пылеприготовление, перемешивание с воздухом.

Система подготовки жидкого и особенно газообразного топлива значительно проще. Кроме тоготакое топливо экологически более чистое, практически не имеет зольности.

Простота транспортировки, легкость автоматизации управления процессами горения, высокая теплота сгорания обусловливают перспективность использования в энергетике природного газа. Однако запасы этого сырья ограничены.

Водоподготовка. Вода, являясь теплоносителем на ТЭС, непрерывно циркулирует по замкнутому контуру. При этом особое значение имеет очистка воды, подаваемой в котел. Конденсат от паровой турбины (рис.1.3) поступает в систему 10 очистки от химических примесей (химводоочистка - ХВО) и свободных газов (деаэрация). В технологическом цикле вода -пар-конденсат неизбежны потери. Поэтому от внешнего источника 15 (пруд, река) через водозабор 16 производится подпитка водяного тракта. Вода, поступающая в котел, предварительно подогревается в экономайзере (теплообменнике) 17 уходящими продуктами сгорания.

Паровой котел. Котел является парогенератором на ТЭС. Основные конструкции представлены на рис.1.4.

Котел барабанного типа имеет стальной барабан 1, в верхней части которого собирается пар. Питательная вода подогревается в экономайзере 2, находящемся в камере 3 уходящих газов, и поступает в барабан. Коллектор 4 замыкает паро-водяной цикл котла. В топочной камере 5 горение топлива при температуре 1500. ..20000С обеспечивает закипание воды. По стальным подъемным трубам 6, имеющим диаметр 30...90 мм и покрывающим поверхность топочной камеры, вода и пар поступают в барабан. Пар из барабана через трубчатый пароперегреватель 7 подается в турбину. Пароперегреватель может выполняться двух - трехступенчатым и предназначен для дополнительного нагрева и сушки пара. Система имеет опускные трубы 8, по которым вода из нижней части барабана опускается в коллектор.

В котле барабанного типа обеспечивается естественная циркуляция воды и пароводяной смеси за счет их разной плотности.

Такая система позволяет получить докритические параметры пара (критической называется точка состояния, в которой исчезает различие в свойствах жидкости и пара): давление до 22,5 МПа, а практически не более 20 МПа; температура до 374°С (без пароперегревателя). При большем давлении нарушается естественная циркуляция воды и пара. Принудительная циркуляция пока не нашла применения в мощных барабанных котлах из-за своей сложности. Поэтому котлы данного типа используются в энергоблоках мощностью до 500 МВт при паропроизводителъности до 1600 тонн в час.

В котле прямоточного типа специальные насосы осуществляют принудительную циркуляцию воды и пара. Питательная вода насосом 9 через экономайзер 2 подается в трубы-испарители 10,где превращается в пар. Через пароперегреватель 7 пар поступает в турбину. Отсутствие барабана и принудительна циркуляция воды и пара позволяют получить сверхкритические параметры пара: давление до 30 МПа и температуру до 590°С. Это соответствует энергоблокам мощностью до 1200 МВт и паропроизводителъности до 4000 т/ч.

Котлы, предназначенные только для теплоснабжения и устанавливаемые в местных или районных котельных, выполняются на тех же принципах, что рассмотрены выше. Однако параметры теплоносителя, определяемые требованиями потребителей тепла, существенно отличаются от рассмотренных ранее (некоторые технические характеристики таких котлов приведены в табл.1.3).

Таблица 1.3. Технические данные котлов отопительных систем

Тип котла

Вид теплоносителя

Тепловая мощность, МВт

Паропроизводи-тельность, т/ч

Примечание

КЧМ-2

чугунный

Вода

0,05

Т = 1150С

р = 0,7 МПа

“Факел”

чугунный

Вода

1,0

То же, газомазутный

ДКВР

стальной

Пар

2,5…25

р = 1,4 МПа,

твердотопливный

ДЕ

стальной

Пар

4,0…25

р = 1,4 МПа,

газомазутный

ПТВМ

стальной

Вода

58; 116; 209

Т =70…1500С

газомазутный

КВ-ТК

стальной

Вода

35; 116

Т =70…1500С

твердотопливный

Например, котельные, пристроенные к зданиям, допускают применение котлов с давлением пара до 0,17 МПа и температурой воды до 1150С, а максимальная мощность встроенных котельных не должна превышать 3,5 МВт при работе на жидком и газообразном топливе или I,7 МВт при работе на твёрдом топливе. Котлы отопительных систем различаются по виду теплоносителя (вода, пар), по производительности и тепловой мощности, по конструкции (чугунные и стальные, малометражные и шатровые и др.).

Эффективность работы системы парогенерации или подготовки горячей воды во многом определяется коэффициентом полезного действий (КПД) котлоагрегата.

В общем случае КПД парового котла и расход топлива определяются выражениями:

, %,

, кг/с, (1.1)

где hk - КПД парового котла, %; q2, q3, q4, q5, q6 - потеря теплоты соответственно с уходящими газами, химическим недожогом, механическим недожогом, на наружное охлаждение, со шлаком, %; В - полный расход топлива, кг/с; QПК - теплота, воспринятая рабочей средой в паровом котле, кДж/м; - располагаемая теплота поступающего в топку топлива, кДж/кг.

Рис.1.4. Конструкции паровых котлов.

а - барабанного типа; б - прямоточного типа

1- барабан; 2 - экономайзер; 3 - камера уходящих газов; 4 - коллектор; 5 - топочная камера; 6 - подъёмные трубы; 7 - пароперегреватель; 8 - опускные трубы; 9 - насос; 10 - трубы-испарители

Если теплота уходящих газов не используется, то

, % ,

а при разомкнутой системе сушки топлива уходящими газами

, %, (1.2)

где Нух, Нотб, - энтальпия соответственно уходящих газов, газов в месте отбора на сушку и холодного воздуха, кДж/кг; r - доля отбора газов на сушку; ?yx - избыток воздуха в уходящих газах.

Энтальпия газа при температуре Т численно равна количеству теплоты, которое подведено к газу в процессе нагревания его от нуля градусов Кельвина до температуры Т при постоянном давлении.

При разомкнутой системе сушки все данные о топливе относят к подсушенному топливу.

В этом случае расход сырого топлива при изменении влажности от WР до Wсуш составляет

, кг/с (1.3)

где Всуш - расход подсушенного топлива по (1.1), кг/с; Wсуш, WР - влажность подсушенного и неподсушенного топлива, %.

При изменении влажности меняется и низшая теплота сгорания
топлива от до :

, кДж/кг (1.4)

Низшая теплота сгорания соответствует количеству теплоты, выделяемой топливом при полном его сгорании без учёта теплоты, затрачиваемой на образование водяных паров, которые находятся в продуктах сгорания.

Полная располагаемая теплота поступающего в топку топлива

, кДж/кг, (1.5)

где - низшая теплота сгорания топлива, кДж/кг; - дополнительная теплота, вносимая в котел подогретым снаружи воздухом, паровым дутьем и т.д., кДж/кг.

Для ориентировочных расчетов .

Теплота, воспринимаемая рабочей средой в паровом котле

, кДж/с, (1.6)

где Dп - паропроизводительность котла, кг/с; hпп, hпв - энтальпия перегретого пара и питающей воды, кДж/кг; ?Qпк - дополнительно воспринимаемая теплота при наличии в котле пароперегревателя, продувки водой и т.д., кДж/с.

Для ориентировочных расчетов ?Qпк=0,2…0,3 Dп(hпп - hпв).

, %, (1.7)

где ?ун- доля уноса золы с продуктами сгорания; Ншл - энтальпия шлака, кДж/кг; АР - рабочая зольность топлива, %.

Значения q3, q4, q5, Wр, Aр, приводятся в специальной литературе, а также в учебных пособиях [3,4].

При твердом шлакоудалении можно принять ?ух=1,2…1,25; ?ун=0,95; Ншл=560 кДж/кг.

Кроме того, при температуре воздуха перед котлом 300С =223 кДж/кг, а при температуре уходящих газов 1200С Нух=1256 кДж/кг.

Пример расчета. Определить КПД и расход топлива для парового котла при следующих условиях: Dп=186 кг/с; топливо - подсушенный Березовский угль с Wсуш=13%; разомкнутая система сушки, r=0,34; отбираемый на сушку газ имеет Нотб=4000кДж/кг; энтальпия перегретого пара и питательной воды соответственно hпп =3449 кДж/кг, hпв=1086,5 кДж/кг.

Решение. Предварительно по (1.4) определяется низшая теплота сгорания подсушенного топлива.

, кДж/кг

Здесь Wр=33% и =16200 кДж/кг приняты по [3,4].

Принимая по (1.5)

кДж/кг,

находим по (1.2)

, %

По [3,4] находим: q3=1%, q4=0,2%, q5=0,26% и с учётом (1.7)

, %.

Тогда

, %

Для расчета расхода топлива по (1.6) находим

кДж/с.

Расход подсушенного топлива по (1.1)

, кг/с.

Расход сырого топлива при Wр =33% по (1.3) составляет

, кг/с.

Паровая турбина. Это тепловой двигатель, в котором энергия пара превращается в механическую энергию вращения ротора (вала) и закреплённых на нём рабочих лопаток. Упрощенная схема устройства паровой турбины приведена на рис.1.5. На валу 1 турбины крепятся диски 2 с рабочими лопатками 3. На эти лопатки из сопла 4 подаётся пар из котла, подводимый по паропроводу 5. Энергия пара приводит во вращение рабочее колесо турбины, а вращение вала передаётся через муфту 6 валу 7 синхронного генератора. Отработавший пар через камеру 8 направляется в конденсатор.

Паровые турбины по конструкции разделяются на активные и реактивные. В активной турбине (рис.1.5в) объем пара V2 при входе на рабочие лопатки равен объёму пара V3 при выходе с лопаток. Расширение объёма пара от V1 до V2 происходит только в соплах. Там же изменяется давление от р1 до p2 и скорость пара от с1 до с2. В этом случае остаётся неизменным давление пара на входе р2 и выходе р3 с лопаток, а скорость пара падает от с2 до с3 за счет передачи кинетической энергии пара лопаткам турбины:

Gп?(с2-с3)2 / 2 Gт?ст2 / 2,

где Gп, Gт - масса пара и рабочего колеса турбины; с2, с3, ст - скорость пара на входе и выходе с лопаток и скорость перемещения рабочего колеса.

Конструкция лопаток реактивной турбины такова (рис.1.5г), что пар расширяется не только в соплах от V1 до V2, но и между лопатками рабочего колеса от V2 до V3. При этом изменяется давление пара от р2 до р3 и скорость пара от с2 до с3. Поскольку V2<V3, то р2>p3 и в соответствии с первым законом термодинамики элементарная работа расширения единицы пара

Дж/кг,

где F - площадь лопатки, м2; (р2 - р3) - разность давления на входе и выходе с лопаток, Па; dS - перемещение лопатки, м.

При этом - работа, используемая для вращения рабочего колеса турбины. Таким образом, в реактивных турбинах помимо центробежных сил, возникающих при изменении скорости движения пара, на лопатки действуют реактивные силы, вызванные расширением пара.

Современные турбины выполняются как активными, так и реактивными. В мощных агрегатах параметры пара на входе приближается к значениям 30 МПа и 6000С. При этом истечение пара из сопла происходит со скоростью, превышающей скорость звука. Это ведёт к необходимости большой частоты вращения ротора. Возникают огромные центробежные силы, действующие на вращающиеся части турбины.

Практически частота вращения ротора, обусловленная конструктивными особенностями, как самой турбины, так и синхронного генератора, составляет 3000 1/мин. При этом линейная скорость на окружности колеса турбины диаметром один метр составляет 157 м/с. В этих условиях частицы стремятся оторваться с поверхности колеса с силой в 2500 раз превышающей их вес. Инерционные нагрузки уменьшают применением ступеней скорости и давления. Каждой ступени отдаётся не вся энергия пара, а только часть ее. Это обеспечивает и оптимальный теплоперепад на ступени, который составляет 40...80 кДж/кг при окружной скорости 140...210 м/с. Общий теплоперепад, срабатываемый в современных турбинах, составляет 1400...1600 кДж/кг.

По конструктивным соображениям 5...12 ступеней группируются в одном корпусе, который называют цилиндром. Современная мощная турбина может иметь цилиндр высокого давления (ЦВД) с давлением пара на входе 15...30 МПа, цилиндр среднего давления (ЦСД) с давлением 8...10 МПа и цилиндр низкого давления (ЦНД) с давлением 3...4 МПа. Турбины мощностью до 50 МВт обычно выполняются в одном цилиндре.

Отработавший в турбине пар поступает в конденсатор для охлаждения и конденсации. В трубчатый теплообменник конденсатора подаётся охлаждающая вода с температурой 10...15°С, что способствует интенсивной конденсации пара. С этой же целью давление в конденсаторе поддерживается в пределах 3...4 кПа. Охлаждённый конденсат вновь подаётся в котёл (рис.1.5), а охлаждающая вода, нагревшаяся до 20...25°С, удаляется из конденсатора. Если вода для охлаждения забирается из водоёма и затем безвозвратно сбрасывается, система называется разомкнутой прямоточной. В замкнутых системах охлаждения вода, нагревшаяся в конденсаторе, подается насосами на градирни - конусообразные башни. С верхней части градирен с высоты 40…80 м вода струится вниз, охлаждаясь при этом до необходимой температуры. Затем вода снова поступает в конденсатор.

Обе системы охлаждения имеют свои достоинства и недостатки и находят применение на электростанциях.

в г

Рис.1.5. Устройство паровой турбины:

а - рабочее колесо турбины; б - схема трехступенчатой активной турбины; в - работа пара в активной ступени турбины; г - работа пара в реактивной ступени турбины.

1 - вал турбины; 2 - диски; 3 - рабочие лопатки; 4 - сопла; 5 - паропровод; 6 - муфта; 7 - вал синхронного генератора; 8 - камера отработавшего пара.

Турбины, у которых весь поданный в них пар после совершения работы поступает в конденсатор, называются конденсационными и используются для получения только механической энергии с последующим преобразованием её в электрическую. Такой цикл называется конденсационным, используется на ГРЭС и КЭС. Пример конденсационной турбины - К300-240 мощностью 300 МВт с начальными параметрами пара 23,5 МПа и 600°С.

В теплофикационных турбинах часть пара отбирается до конденсатора и используется для подогрева воды, которая затем направляется в систему теплоснабжения жилых, административных, производственных зданий. Цикл называется теплофикационным и используются на ТЭЦ и ГРЭС. Например, турбина Т100-130/565 мощностью 100 МВт на начальные параметры пара 13 МПа и 5650С имеет несколько регулируемых отборов пара.

Промышленно-теплофикационные турбины имеют конденсатор и несколько регулируемых отборов пара для теплофикационных и промышленных нужд. Они используется на ТЭЦ и ГРЭС. Например, турбина П150-130/7 мощностью 50 МВт на начальные параметры пара 13 МПа и 5650С обеспечивает промышленный отбор пара при давлении 0,7 МПа.

Турбины с противодавлением работают без конденсатора, а весь отработавший пар поступает теплофикационным и промышленным потребителям. Цикл называется противодавленческим, а турбины используются на ТЭЦ и ГРЭС. Например, турбина Р50-130/5 мощностью 50 МВт на начальное давление пара 13 МПа и конечное давление (противодавление) 0,5 МПа с несколькими отборами пара.

Использование теплофикационного цикла позволяет достичь на ТЭЦ КПД до 70% с учетом отпуска тепла потребителям. При конденсационном цикле КПД составляет 25...40% в зависимости от начальных параметров пара и мощности агрегатов. Поэтому КЭС размещаются в местах добычи топлива, что снижает затрата на транспортировку, а ТЭЦ приближаются к потребителям тепла.

Синхронные генераторы. Конструкция и характеристики этой машины, преобразующей механическую энергию в электрическую, подробно рассматриваются в специальных дисциплинах. Поэтому ограничимся общими сведениями.

Основные элементы конструкции синхронного генератора (рис.1.6): ротор 1, обмотка 2 ротора, статор 3, обмотка 4 статора, корпус 5, возбудитель 6 - источник постоянного тока.

Неявнополюсной ротор быстроходных машин - турбогенераторов (n = 3000 1/мин) выполняется из листовой электротехнической стали в форме цилиндра, находящегося на валу 7. Тихоходные машины - гидрогенераторы (n ? 1500 1/мин) имеют явнополюсный ротор (показан пунктиром). В пазах на поверхности ротора располагается медная изолированная обмотка, подключённая с помощью скользящих контактов 8 (щёток) к возбудителю. Статор представляет собой полный цилиндр из электротехнической стали, на внутренней поверхности которого в пазах располагаются три фазные обмотки - А, В, С. Обмотки выполняется медным изолированным проводом, идентичны друг другу и имеют осевую симметрию, занимая секторы по 120°. Начала фазных обмоток А, В, С через изоляторы выводятся наружу, а концы обмоток Х, У, Z соединяются в общую точку N - нейтраль .

Работа генератора происходит следующим образом. Ток возбуждения iB в обмотке ротора создает магнитный поток Ф, пересекающий обмотки статора. Вал генератора приводится во вращение турбиной. Тем самым обеспечивается равномерное вращение магнитного поля ротора с угловой частотой ?=2?f, где f - частота переменного тока, 1/с - Гц. Для получения частоты переменного тока 50 Гц при числе пар магнитных полюсов р необходима частота вращения ротора n=60?f /p.

При р = 1, что соответствует наявнополюсному ротору, n= 3000 1/мин. Вращающееся магнитное поле пересекая обмотки статора наводит в них электродвижущую силу (ЭДС). В соответствии с законом электромагнитной индукции мгновенное значение ЭДС

,

где w - число витков.

ЭДС в обмотках статора наводятся синхронно с изменением магнитного поля по мере вращения ротора.

Рис.1.6. Устройство синхронного генератора.

а - конструкция генератора; б - схема соединения обмоток;

в - ЭДС на выводах обмоток генератора

1 - ротор; 2 - обмотка ротора; 3 - статор; 4 - обмотка статора; 5 - корпус; 6 - возбудитель; 7 - вал (ось) ротора; 8 - контактные кольца

При равномерном вращении ротора и осевой симметрии обмоток статора мгновенные значения фазных ЭДС равны:

(1.8)

где ЕМ - амплитудное значение ЭДС.

Если к выводам обмоток статора генератора подключена электрическая нагрузка Z во внешней цепи протекает электрически ток

, , , (1.9)

где - напряжение на выводах обмоток при протекании в них тока i и сопротивлении обмотки статора Zвн.

На практике удобнее использовать не мгновенные, а действующие значения электрических величин. Необходимые соотношения известны из курса физики и теоретических основ электротехники.

Работа генератора во многом зависит от режима возбуждения и охлаждения машины. Различные системы возбуждения (независимое и самовозбуждение, электромашинное и тиристорное и т.д.) позволяют изменять величину iB и, следовательно, магнитного потока Ф и ЭДС в обмотках статора. Это даёт возможность регулировать напряжение на выводах генератора в определённых пределах (обычно ±5%).

Величина активной мощности, отдаваемой турбогенератором в электрическую сеть, определяется мощностью на валу турбины и регулируется подачей в турбину пара.

В процессе работы генератора происходит его нагрев, прежде всего из-за выделения тепла в обмотках, обтекаемых током. Поэтому существенное значение имеет эффективность системы охлаждения.

Генераторы малой мощности (1...30 МВт) имеют воздушное охлаждение внутренних поверхностей по проточной (разомкнутой) или регенеративной (замкнутой) схеме. На генераторах средней мощности (25...100 МВт) применяют поверхностное водородное охлаждение по замкнутой схеме, что более эффективно, но требует применения специальных мер безопасности. Мощные генераторы (более 100 МВт) имеют форсированное водородное, водяное или масляное охлаждение, при котором охладитель прокачивается под давлением внутри статора, ротора, обмоток по специальным полостям (каналам).

Основные технические характеристики генераторов: номинальное напряжение на выводах обмотки статора генератора, Uном: 6,3-10,5-21 кВ (бoльшие значения соответствуют более мощным генераторам); номинальная активная мощность, Рном, МВт; номинальный коэффициент мощности; номинальный КПД, составляющий 90...99%.

Эти параметры связаны между собой:

.

Собственные нужды электростанций. Не вся электрическая и тепловая энергия, произведённая на ТЭС, отдаётся потребителям. Часть остаётся на станции и используется для обеспечения её работы. Основными потребителями этой энергии являются: система транспортировки и подготовки топлива; насосы подачи воды, воздуха; система очистки воды, воздуха, уходящих газов и др.; отопление, освещение, вентиляция бытовых и производственных помещений, а также целый ряд других потребителей.

Многие элементы собственных нужд относятся к первой категории по надёжности электроснабжения [1]. Поэтому они подключаются, по крайней мере, к двум независимым источникам энергии, например, к источникам на своей станции и к энергосистеме.

Распределительное устройство. Электроэнергия, выработанная генераторами, собирается на распределительном устройстве (РУ), а затем распределяется между потребителями. Для этого выводы обмоток статоров генераторов через специальные коммутационные аппараты (выключатели, разъединители и др.) жесткими или гибкими проводниками (шинами) присоединяются к сборным шинам РУ. Каждое присоединение в РУ осуществляется посредством специальной ячейки, содержащей необходимый комплект аппаратуры. Поскольку передача, распределение и генерация электроэнергии, а также ее потребление происходят при разном напряжении, на станции есть несколько РУ. На номинальное напряжение генераторов, например, 10,5 кВ, выполняется РУ генераторного напряжения. Обычно оно находится в здании станции и по конструкции является закрытым (ЗРУ). К этому РУ подключаются близко расположенные потребители. Для передачи электроэнергии по линиям электропередачи (ЛЭП) на большие расстояния и связи с другими станциями и системой необходимо использовать напряжение 35...330 кВ. Такая связь осуществляется с помощью отдельных РУ, обычно открытого исполнения (ОРУ), где устанавливаются повышающие трансформаторы. Для подключения потребителей собственных нужд служит - РУСН. С шин РУСН электроэнергия непосредственно и через понижающие трансформаторы передаётся потребителям на электростанции.

Схожие принципы используются и при распределении тепловой энергии, вырабатываемой на ТЭЦ. Специальные коллекторы, паропроводы, насосы обеспечивают подачу тепла промышленным и коммунальным потребителям, а также в систему собственных нужд.

1.3 Атомные электростанции

Принципиальное отличие АЭС от ТЭС состоит в топливе, которое используется для получения тепла. При этом конструктивные особенности АЭС весьма существенны.

Протекание цепной ядерной реакции с выделением большого количества тепла известно из курса физики. Этот процесс используется на АЭС, где выделяющееся в результате цепной реакции тепло направляется на получение необходимых параметров теплоносителя. Основной вид топлива на АЭС - изотопы урана. Уран-235, содержание которого в природном уране составляет 0,7%, неустойчив, легко делится от бомбардировки нейтронами сравнительно малой энергии (тепловые нейтроны со скоростью до 2 км/с). Уран-238 составляет 99,3% природного урана, но начинает распадаться только под воздействием нейтронов большой энергии (быстрые нейтроны со скоростью 30 км/с). В процессе деления урана-238 воспроизводится плутоний-239, который может служить как топливом для АЭС, так и исходным сырьём для термоядерного оружия. Легко сделать выводы о достоинствах и недостатках каждого из изотопов урана для использования на АЭС.

Первая в нашей стране Обнинская АЭС имела реакторы на тепловых нейтронах и была введена в эксплуатацию в 1951 г. Почти через 20 лет, в 1973 г. начала работать Шевченковская АЭС - первая с реакторами на быстрых нейтронах. Мощность Обнинской станции составляла 5 МВт, Шевченковской - 350 МВт.

Тепловые схемы АЭС. Основными элементами тепловой схемы АЭС являются (рис.1.7): ядерный реактор 1 с первичной биологической защитой; вторичная биологическая защита 2; контуры теплоносителя - первый 3, второй 4, третий 5; турбина 6; генератор 7; конденсатор 8 или газоохладитель; насосы 9 или компрессоры; парогенератор 10; теплообменник 11.

В системе АЭС различают теплоноситель, отводящий тепло от реактора, и рабочее тело, предназначенное для преобразования тепловой энергии в механическую. Если контуры теплоносителя и рабочего тела совпадают, АЭС называется одноконтурной. В этом случае среда, отводящая теплоту из реактора, должна совершать работу в турбине. Достоинством одноконтурных АЭС является простота тепловой схемы и относительно высокая тепловая экономичность. Однако, проходя через реактор, теплоноситель активируется и значительная часть радиоактивности переносится в паротурбинный тракт, что затрудняет эксплуатацию его агрегатов и усложняет радиационную обстановку на АЭС.

В двухконтурной схеме теплоноситель и рабочее тело разделены. Контур теплоносителя называется первым и является радиоактивным. Во втором контуре, где циркулирует рабочее тело, радиоактивность отсутствует. Это упрощает конструкцию и эксплуатацию второго контура и обеспечивает сопоставимые технико-экономические показатели двух- и одноконтурных АЭС.

В качестве теплоносителя может использоваться жидкий металл, например, натрий. Это улучшает отвод тепла из реактора, но повышает вероятность аварийной ситуации (контакт жидкого натрия с водой проходит при бурном химическом взаимодействии с выделением большого количества тепла). Для предотвращения этого вводится дополнительный промежуточный контур, схема становится трехконтурной.

Рис.1.7. Схемы работы АЭС

а - одноконтурная; б - двухконтурная; в - трехконтурная

Реактор. Это установка, предназначенная для осуществления и поддержания цепной реакции деления тяжёлых ядер при бомбардировке их нейтронами. Примеры конструкции реакторов приведены на рис.1.8. Первым отечественным промышленным реактором был водоводяной реактор корпусного типа ВВЭР. Он состоит из прочного корпуса 1, несущего давление, закрытого крышкой 2 с нажимным кольцом 3 и защитным колпаком 4. Внутри корпуса находится активная зона 5, куда загружается ядерное топливо, размещённое в тепловыделяющих элементах (ТВЭЛ). Эти элементы объединяются в кассеты шестигранной или квадратной формы. Оболочка ТВЭЛа предотвращает контакт теплоносителя с топливом и выход продуктов деления в теплоноситель.

Для регулирования интенсивности реакции в активную зону вводятся поглотители нейтронов, например, вода или графит. Управление поглотителями производится по специальной программе с помощью стержневых приводов 6. Теплоноситель (лёгкая вода) подводится через нижние патрубки 7, опускается вниз между корпусом и цилиндром подвесной корзины 8 и поступает в нижнюю часть активной зоны, где нагревается до заданной температуры. Отвод теплоносителя происходит через верхние патрубки 9. Тепловой экран 10 служит для защиты корпуса от чрезмерного облучения нейтронами и ? - частицами.

В реакторах большой мощности канального типа с кипящим слоем РБМК теплоносителем является лёгкая вода, а замедлителем - графит 12. Нижняя опорная железобетонная плита 13 поддерживает графит. Верхняя плита 14 опирается на бак 15 биологической защиты, заполненный водой. Обе плиты объединены цилиндрической стальной обечайкой и вместе представляют собой герметичный корпус. В графите находятся трубы 16 технологических каналов, внутри которых размещены ТВЭЛы 17 и принудительно циркулирует теплоноситель.

Реактор РБМК больше по габаритам, чем ВВЭР, т.к. замедляющая способность графита меньше, чем у лёгкой воды. Но РБМК не имеют ограничений по мощности, связанных с наличием корпуса и корпусным давлением в реакторах ВВЭР. Некоторые сравнительные характеристики этих реакторов приведены в табл.1.4.

Кроме рассмотренных водоводяных и водографитовых реакторов на АЭС работают газографитовые реакторы, у которых теплоносителем является газ (гелий, углекислый газ), а замедлителем - графит.

В реакторах на быстрых нейтронах, отсутствует замедлитель. Поскольку быстрые нейтроны слабо поглощаются ядерным топливом, используется высокообогащенное топливо, а концентрация делящегося вещества в единице объёма в 4...5 раз больше, чем в реакторах на тепловых нейтронах. Это требует интенсивного отвода тепла, что осуществляется путем использования в качестве теплоносителя жидких металлов, например, натрия.

Таблица 1.4. Характеристики ядерных реакторов

Тип реактора

Мощность, МВт

Давление в реакторе, МПа

Температура теплоносителя на выходе, С

Размеры активной зоны, м

тепловая

электрическая

диаметр

высота

ВВЭР-1000

3000

1000

16

324

3,12

3,5…7,0

РБМК-1000

3200

1000

7

280

11, 8

Парогенератор. На одноконтурных АЭС эта установка отсутствует, т.к. теплоноситель одновременно является рабочим телом. В многоконтурных схемах парогенераторы необходимы. Конструкции их многообразны. Для реакторов ВВЭР, например, наибольшее распространение имеют парогенераторы горизонтального типа с естественной многократной циркуляцией. Их поверхность нагрева выполнена нержавеющими стальными трубками диаметром 14...15 мм. Трубки находятся внутри корпуса, являющегося резервуаром для воды и пара. Теплоноситель движется внутри трубок, а рабочее тело - в объеме корпуса парогенератора. Пар, образующийся внутри корпуса, выводится по патрубкам и направляется в турбину. Парогенератор реактора ВВЭР имеет паропроизводителъностъ 1470 т/ч, давление пара 6,4 МПа, мощность 250 МВт.

Турбина. Выбор турбины АЭС в значительной степени зависит от типа ядерного реактора. Если реактор выдаёт пар высоких начальных рабочих параметров, то турбины АЭС идентичны турбинам ТЭС при условии, что поступающий в них пар нерадиоактивен. На АЭС с реакторами, выдающими воду под высоким давлением с дальнейшей генерацией пара в парогенераторе, в турбину поступает насыщенный или слабо перегретый пар. В этом случае турбина имеет конструктивные особенности, связанные с организацией сепарации и промежуточного перегрева пара. Такие особенности имеют, например, турбины одноконтурных АЭС.

Рис.1.8. Конструкция ядерных реакторов:

а - реактор ВВЭР; б - реактор РБМК

1 - корпус; 2 - крышка; 3 - нажимное кольцо; 4 - защитный колпак; 5 - активная зона; 6 - стержневой привод; 7 - нижние патрубки; 8 - подвесная корзина; 9 - верхние патрубки; 10 - тепловой экран; 11 - тракт теплоносителя; 12 - замедлитель; 13 - плита нижняя; 14 - плита верхняя; 15 - бак биологической защиты; 16 - трубы технологических каналов; 17 - ТВЭЛ.

Надёжность АЭС. Строительство и эксплуатация АЭС невозможны без всеобъемлющего разрешения вопросов надёжности. Радиоактивное излучение опасно. В определённых дозах оно вызывает серьезные заболевания и смерть людей, приводит к негативному генетическому воздействию. Основной источник радиоактивности на АЭС содержится внутри ТВЭЛов. Отработанное ядерное топливо также радиоактивно. В процессе работы АЭС образуются радиоактивные жидкости, газы, твердые вещества. Все это требует принятия особых мер защиты от возможного облучения и обеспечения высокой надёжности работы АЭС.

Важнейшим элементом обеспечения радиоактивной безопасности является биологическая защита реактора и первого контура. Она выполняется в виде толстого слоя бетона (несколько метров) с внутренними каналами, по которым циркулирует вода или газ.

Существенным фактором надёжности АЭС является автоматизация управления режимами работы основного оборудования, дублирование этого оборудования, постоянная готовность и автоматическое включение аварийных систем при возникновении соответствующих ситуаций.

Необходимо соблюдать все предписанные меры безопасности и предосторожности при транспортировке ядерного топлива, загрузке его в реактор и выгрузке из реактора.

Особой проблемой является хранение радиоактивных отходов АЭС. Эту задачу пока нельзя считать полностью разрешенной.

Кроме того, необходимо своевременно, полно и объективно информировать население о состоянии АЭС, в том числе и о возникающих аварийных ситуациях.

Перспективы развития атомной энергетики. Ядерная энергетика способна сгладить остроту реально надвигающегося мирового энергетического кризиса. По оценкам учёных запасов органического топлива на планете в необходимых человечеству количествах хватит примерно до середины текущего столетия. Ядерное же горючее, например, для реакторов на быстрых нейтронах, практически неисчерпаемо. Кроме того, сжигание одного грамма каменного угля дает 3...7 калорий, а деление одного грамма урана-235 в три миллиона раз больше. Это почти пропорционально снижает расходы по транспортировке топлива, позволяет строить АЭС без привязки к его месторождениям, достигать большой единичной мощности блоков -1000 МВт и более. АЭС, в отличие от ТЭС, не загрязняют окружающую среду выбросами серы, азота, золы и целого ряда других вредных веществ. Атомные ТЭЦ (АТЭЦ) снабжают потребителей и тепловой энергией, например, в 1973 г. была запущена Билибинская АТЭЦ. Радиационная безопасность на АТЭЦ достигается за счет трехконтурной схемы. Для получения высоких параметров рабочего пара в качестве теплоносителя первого контура на АТЭЦ применяют жидкие металлы. В этом случае защитная зона составляет 30 км от крупных городов, что требует большой длины теплотрасс, влечёт за собой избыточный расход труб, потери тепла и дополнительные затраты. Проблема во многом решается строительством атомных станций теплоснабжения (АСТ), на которых используется отработавшее топливо АЭС. Трехконтурная АСТ может располагаться на расстоянии 2...3 км от города, т.к. использует ядерное горючее пониженной активности. Таким образом, ядерная энергетика может обеспечивать потребности, как в электрической, так и в тепловой энергии.

Вместе с тем, очевидны и проблемы, связанные со строительством и эксплуатацией АЭС: необходимы жесткие меры по предотвращению возможного радиоактивного заражения в зоне станции; ограничен срок эксплуатации реакторов АЭС (в настоящее время около 30…40 лет), после чего необходимо решать вопросы их утилизации; потребность АЭС в больших количествах охлаждающей воды может приводить к нарушению экологического баланса водоёмов; требуют решения проблемы захоронения радиоактивных отходов АЭС.

Объективное сопоставление достоинств и недостатков АЭС позволяет выработать стратегию развития ядерной энергетики. Оптимальным представляется подход, предусматривающий не закрытие работающих и прекращение строительства новы АЭС, а действенные усилия по улучшению технико-экономических характеристик атомных станций и в первую очередь по обеспечению безопасности их работы.

1.4 Гидравлические электрические станции

Использование энергии текущей и падающей воды известно издревле. Принцип преобразования этой энергии в электрическую достаточно прост, если учесть, что прообраз гидротурбины, - «водяное колесо», - давно используется людьми. Остается подключить синхронный генератор.

В настоящее время ГЭС представляют собой объекты комплексного назначения, обеспечивающие нужды энергетики, водного транспорта, сельского хозяйства, рыбоводства, коммунального хозяйства и других отраслей. Во многих случаях строительство мощных ГЭС связано с освоением новых районов, например, в Сибири, на Дальнем Востоке.

Понятие "гидравлические станции" включает в себя и морские приливные электростанции (ПЭС) и гидроаккумулирующие электростанции (ГАЭС), которые рассматриваются ниже.

Сразу отметим ряд достоинств ГЭС, обеспечивающих высокую эффективность этого типа станций.

ГЭС работают на возобновляемом энергоресурсе, использование которого не истощает топливных запасов Земли.

Агрегаты ГЭС обладает очень высокой манёвренностью, способны быстро изменять выдаваемую в энергосистему электрическую мощность. Таким образом, ГЭС способны эффективно работать в периоды кратковременных максимумов (пиков) нагрузки. В аварийных условиях дефицита электрической мощности в энергосистеме ГЭС обеспечивают быстрый ввод дополнительной мощности, что значительно повышает надёжность работы всей системы в целом и позволяет уменьшить резервные мощности на ТЭС.

ГЭС лучше других электростанций приспособлена к автоматическому управлению и требуют меньше эксплуатационного персонала, чем аналогичной мощности ТЭС (в четыре раза) и АЭС (в шесть раз). Некоторые ГЭС сравнительно небольшой мощности работают вообще без постоянного обслуживающего персонала полностью в автоматическом режиме.

Существенно и то, что на ГЭС отсутствуют вредные выбросы в атмосферу, воду, почву.

Однако существует и ряд проблем при использовании ГЭС. Прежде всего, ограниченность гидроэнергетических ресурсов, неравномерность их распределения, в том числе наличие мощных источников гидроэнергии в удалённых и труднодоступных местах. При сооружении ГЭС приходится выполнять большие объемы строительных работ, возводить высокие плотины и т.д., что увеличивает сроки строительства до 10...15 лет. Оказывает гидроэнергетика и негативное влияние на экологию, что подробнее рассмотрено ниже.

Как и для других типов электростанций, расчёт технико-экономического обоснования строительства ГЭС производится в комплексе задач развитии региона и энергетики в целом.

Наиболее эффективное использование водотока возможно при концентрации перепадов уровней воды на относительно коротком участке. При наличии естественного водопада решение этой задачи упрощается, однако подобные условия встречаются крайне редко. Для использования падения уровня рек, распределённого по значительной длине водотока, прибегают к искусственному сосредоточению перепада, что может быть осуществлено различиями способами.

Приплотинная схема. На равнинных реках с большим расходом воды и малым уклоном сооружают плотины, что обеспечивает подпор уровня водотока (рис.1.9). Образующееся при этом водохранилище может использоваться в качестве регулирующей ёмкости, позволяющей периодически накапливать запасы воды и более полно использовать энергию водотока. При этом различают две схемы расположения здания ГЭС: русловая и собственно приплотинная.

Русловая ГЭС. Ее здание входит в состав водонапорных сооружений и воспринимает давление воды со стороны верхнего бьефа.

Конструкция здания в этом случае должна удовлетворять всем требованиям устойчивости и прочности, предъявляемым к плотинам. ГЭС с русловым зданием строятся при сравнительно небольших напорах - до 40м. Классическим примером такой станции является Волжская ГЭС.

Приплотинная ГЭС. Ее здание располагается за плотиной и не воспринимает давление воды. На крупных современных ГЭС такого типа напор доходит до 300 м. Например, на Саяно-Шушенской ГЭС - 242 м.

Деривационная схема. Сосредоточенный перепад воды получается за счет отвода воды из естественного русла по искусственному водоводу, имеющему меньший продольный уклон. Благодаря этому уровень воды в конце водовода выше, чем в реке. Эта разность уровней и является напором ГЭС. Различают станции с безнапорной и напорной деривацией.

При безнапорной деривации отвод воды от реки осуществляется по открытому каналу или по тоннелю. Для забора воды в деривационный канал в русле реки возводится невысокая плотина, создающая водохранилище. Вода в канал поступает без напора, а сам канал заканчивается напорным бассейном, из которого вода по трубам подаётся к турбинам. Отработавшая вода отводится обратно в русло реки.

При нагорной деривации используются напорные трубопроводы, куда вода подается насосами. Из трубопроводов вода поступает к турбинам, а затем возвращается в реку ниже по течению.

Сооружение деривационных ГЭС целесообразно в горной местности при больших уклонах рек и относительно малых расходах воды. В этом случае можно получить напор до 1000 метров и, соответственно, большую мощность.

Гидротурбины. Для любого типа ГЭС вырабатываемая одной турбиной мощность равна

кВт, (1.10)

где Q - расход воды через турбину, м3/с; Н - напор, равный разности отметок горизонтов верхнего и нижнего бьефа, м; ? - КПД, зависящий от типа и режима работы турбины.

Пример расчета. Определить как изменится мощность пропеллерной турбины, работающей с Nт1=100%Nт, если при неизменном напоре расход воды уменьшается на 30%.

Решение. Изменение мощности, обусловленное уменьшением расхода воды, находится по (1.10)

Изменение КПД определяется по номограммам [3, 4]: при Nт1 =100% Nт ?1=90%, а при Nт2 = 70% Nт ? 2=80%. Таким образом,

Здесь индекс 1 соответствует исходному режиму, а индекс 2 - новому режиму работы гидротурбины.

Для наиболее полного преобразования энергии воды в механическую энергию для всех типов турбин скорость движения лопаток выбирается такой, что на их выходе абсолютная скорость движения воды равна нулю. При этом частота вращения вала турбины

, 1/мин (1.11)

где ns - коэффициент быстроходности турбины, численно равный частоте вращения вала турбины данного типа при мощности и напоре соответственно 0,736 кВт и 1 метр.

По конструкции различают два класса гидротурбин: активные и реактивные. В активной турбине используется динамическое давление воды. Потенциальная энергия гидростатического давления в суживающейся насадке превращается в кинетическую энергию движения воды. Это, как правило, высоконапорные турбины. В реактивной турбине используется статическое давление воды при реактивном эффекте, что предпочтительней на равнинных реках с большим расходом воды и относительно малым напором.

Наиболее распространенные активные турбины - ковшовые. Рабочее колесо (рис.1.10) такой турбины выполняется в виде диска 1, закреплённого на валу 2. Оно вращается в воздухе. По окружности диска равномерно расположены ковшовые лопасти 3. Подвод воды осуществляется посредством сопла 4, внутри которого расположена регулирующая игла 5. В соплах энергия воды обращается в кинетическую и, создавая давление на лопатки, приводит во вращение рабочее колесо. Изменение положения иглы регулирует подачу (расход) воды и мощность турбины.

Рис.1.9. Компоновка ГЭС

а - русловая компоновка; б - приплотинная компоновка

ГВБ, ГНБ - горизонты верхнего и нижнего бьефа

1 - решетка; 2 - затвор турбинного водовода; 3 - затвор водосброса; 4 - канал водосброса; 5 - гидротурбина; 6 - направляющий аппарат; 7 - аварийный затвор; 8 - генератор; 9 - кабель генераторного напряжения; 10 - трансформатор; 11 - ЛЭП; 12 - турбинный водовод; 13 - спиральная камера; 14 - отсасывающая труба; 15 - тело плотины; 16 - машинный зал.

Конструкции ковшовых турбин разнообразны и отличаются по расположению вала (горизонтальное и вертикальное) по числу сопл и рабочих колёс на одном валу и т. д. Такие турбины используются в диапазоне напора 300...1000 метров, при диаметре рабочего колеса до 7,5 метров и мощности до 170…200 МВт.

Реактивные турбины по конструкции могут быть поворотно-лопастными (рис.1.10), радиально-осевыми, пропеллерными, двухперoвыми, диагональными. Эти турбины работают полностью погружёнными в воду. Энергия воды отдаётся всем лопастям 6 рабочего колеса одновременно. Лопасти крепятся на втулке 7 и могут поворачиваться вокруг своей оси, перпендикулярной оси вала. Вода подаётся на лопатки из спиральной камеры 8 через направляющий аппарат 9. Спиральная камера обеспечивает равномерный подвод воды ко всем лопаткам одновременно, а направляющий аппарат обеспечивает необходимые углы подачи воды. Двойное регулирование угла подачи вода (направляющим аппаратом и поворотом лопастей) обеспечивает автоматическое поддержание высокого КПД турбины в широком диапазоне изменения мощности. Поворотно-лопастные турбины используются в диапазоне напоров 3...75 метров. Их мощность достигает 200 МВт.


Подобные документы

  • Потребление тепловой и электрической энергии. Характер изменения потребления энергии. Теплосодержание материальных потоков. Расход теплоты на отопление и на вентиляцию. Потери теплоты с дымовыми газам. Тепловой эквивалент электрической энергии.

    реферат [104,8 K], добавлен 22.09.2010

  • Роль электроэнергии в производственных процессах на современном этапе, метод ее производства. Общая схема электроэнергетики. Особенности главных типов электростанций: атомной, тепловой, гидро- и ветрогенераторы. Преимущества электрической энергии.

    презентация [316,3 K], добавлен 22.12.2011

  • Промышленная и альтернативная энергетика. Преимущества и недостатки гидроэлектростанций, тепловых и атомных электростанций. Получение энергии без использования традиционного ископаемого топлива. Эффективное использование энергии, энергосбережение.

    презентация [1,2 M], добавлен 15.05.2016

  • Основы энергосбережения, энергетические ресурсы, выработка, преобразование, передача и использование различных видов энергии. Традиционные способы получения тепловой и электрической энергии. Структура производства и потребления электрической энергии.

    реферат [27,7 K], добавлен 16.09.2010

  • Классификация альтернативных источников энергии. Возможности использования альтернативных источников энергии в России. Энергия ветра (ветровая энергетика). Малая гидроэнергетика, солнечная энергия. Использование энергии биомассы в энергетических целях.

    курсовая работа [3,9 M], добавлен 30.07.2012

  • Полезный отпуск теплоты с коллекторов станции ТЭЦ, эксплуатационные издержки. Выработка и отпуск электрической энергии с шин станции. Расход условного топлива при однотипном оборудовании. Структура затрат и себестоимости электрической и тепловой энергии.

    курсовая работа [35,1 K], добавлен 09.11.2011

  • Расчет потребности в тепловой и электрической энергии предприятия (цеха) на технологический процесс, определение расходов пара, условного и натурального топлива. Выявление экономии энергетических затрат при использовании вторичных тепловых энергоресурсов.

    контрольная работа [294,7 K], добавлен 01.04.2011

  • Описания отрасли энергетики, занимающейся производством электрической и тепловой энергии путём преобразования ядерной энергии. Обзор работы атомной электростанции с двухконтурным водо-водяным реактором. Вклад ядерной энергетики Украины в общую выработку.

    реферат [430,1 K], добавлен 28.10.2013

  • Расчет годовой потребности в электрической энергии и электрических нагрузок потребителей. Расчет годовой потребности района теплоснабжения в тепловой энергии. Выбор турбинного и котельного оборудования. Выработка электроэнергии по теплофикационному циклу.

    курсовая работа [459,3 K], добавлен 04.04.2012

  • Типовые источники энергии. Проблемы современной энергетики. "Чистота" получаемой, производимой энергии как преимущество альтернативной энергетики. Направления развития альтернативных источников энергии. Водород как источник энергии, способы его получения.

    реферат [253,9 K], добавлен 30.05.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.