Синхронный генератор
Свойства и характеристики синхронного генератора. Потеря энергии при преобразовании в синхронном генераторе механической энергии в электрическую. Устойчивость и увеличение перегрузочной способности генератора. Особенности параллельной работы генератора.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 14.10.2010 |
Размер файла | 206,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Синхронный генератор
1 Характеристики генератора
О свойствах синхронного генератора (СГ) судят по его характеристикам:
1. Характеристика холостого хода: E(Iв) при I=0 и при n= nном.
При Iв=0 остаточным магнитным потоком наводится небольшая ЭДС Eх.
При (т.к. ).
Наступает насыщение магнитопровода - излом кривой. Точка (Uном, Iв ном) расположена до насыщения - так проектируют СГ.
2. Внешняя характеристика: U(I) при Iв = Iв ном; cos=const; n= nном.
При I =0 U= U0.
С ростом тока I при активной нагрузке напряжение U падает.
Изменение напряжения происходит в основном из-за реакции якоря. Если нагрузка активная, то поток изменяется незначительно.
При активно-индуктивной нагрузке реакция якоря - продольно-размагничивающая. Поток изменяется значительно, что приводит к сильному изменению напряжения.
При активно-емкостной нагрузке реакция якоря будет продольно-намагничивающая, поток будет возрастать, что приводит к небольшому увеличению напряжения.
Стабилизация напряжения достигается регулированием тока возбуждения.
3. Регулировочная характеристика: Iв (I) при U =const; cos=const; n= nном. U= Uном.
Эта характеристика показывает, как надо регулировать ток возбуждения при изменении нагрузки СГ, чтобы напряжение на его зажимах оставалось неизменным (искусственная характеристика).
Обычно регулировка напряжения, для того, чтобы U =const оставалось неизменным при изменении нагрузки I, осуществляется автоматически по схеме, где ТТ - трансформатор тока; Т - понижающий трансформатор.
Принцип регулирования:
При увеличении нагрузки I напряжение U падает (по внешней характеристике), но при этом ток Iу возрастает, что приводит к увеличению тока возбудителя Iв и к увеличению магнитного потока , ЭДС и напряжения U.
2 Потери и КПД синхронного генератора
В СГ преобразование механической энергии в электрическую сопровождается потерями энергии. К синхронному генератору со стороны вала подведена механическая мощность P1.
В роторе и статоре имеются следующие потери:
1) потери на возбуждение; Rв - сопротивление цепи возбуждения.
2) - механические потери, вызванные всеми видами трения;
3) - потери магнитные в сердечнике статора (перемагничивание и вихревые токи);
,
(3 в формуле т.к. 3 фазы). Эта электромагнитная мощность передается на статор.
4) - потери в обмотке статора: .
P2 - полезная мощность, отдаваемая в сеть.
Потери , , - постоянные (не зависят от нагрузки) и составляют потери холостого хода ХХ синхронного генератора.
,
где - сумма всех потерь в СГ.
.
Из этой формулы следует, что КПД зависит от cos.
КПД СГ зависит не только от мощности нагрузки, но и от коэффициента мощности cos.
КПД СГ достигает 98-99 %.
Для этих генераторов применяют охлаждение газообразным водородом, водой и др.
Регулирование активной мощности. Угловые характеристики
Электромагнитная мощность равна
.
Но из подобия треугольников расставляем углы на векторной диаграмме. Катет bd равен:
.
ac E0, bc I, значит угол bca = . Отсюда:
.
Подставляем это значение в формулу (*) получаем:
При неизменном токе возбуждения Iв =const.
СГ включен в сеть и обеспечивает U=Uсети=const.
Момент
, где . Но
Поэтому
. ,
где - угловая скорость вращения СГ;
- угловая частота тока;
p - число пар полюсов СГ.
,
.
Зависимость Pэм() или Mэм() - называется угловыми характеристиками СГ.
- характеризует устойчивость СГ.
; .
Положительное значение соответствует генераторному режиму.
При =const увеличение тока возбуждения Iв СГ приводит к возрастанию электромагнитной мощности Pэм.
Если угол отрицательный - это соответствует режиму работы синхронной машины в двигательном режиме.
В режиме генератора Mэм противодействует вращению ротора, т.е. является тормозным.
В режиме генератора поле ротора ведущее, а поле статора - ведомое. В режиме двигателя - наоборот.
При увеличении момента силовые линии все больше деформируются (растягиваются), растет угол .
Если > 90, то силовые линии рвутся, магнитная сила между ротором и статором нарушается, ротор вращается как болванка, т.к. он ничего не вращает. Это явление называется выпаданием из синхронизма.
При - синхронный генератор работает устойчиво.
Изменение мощности параллельно работающего с сетью СГ достигается воздействием на первичный приводной двигатель.
Пусть СГ работал при угле 1. После увеличения подачи пара ротор ускорился, и угол возрос, т.к. увеличился момент приводного двигателя.
Когда угол возрос, то увеличился тормозной момент и при определенном угле 2 снова наступит равновесие моментов при новой мощности. Значит мы увеличили мощность.
При чрезмерном увеличении момента приводного двигателя тормозной момент не достигнет такой большой величины, т.е. они не уравновесятся и СГ выпадет из синхронизма.
- синхронизирующая мощность. Она показывает, насколько устойчив СГ при данном угле .
3 Устойчивость синхронного генератора
От нас зависит, где мы будем работать, при каком угле . При малом угле мала мощность P; если большой, то мы можем перегрузить СГ и он выпадет из синхронизма. Выбирают .
- статическая перегрузочная способность СГ.
Так как
, то или .
Обычно .
Таким образом, для того, чтобы повысить статическая перегрузочная способность Кс надо повысить максимальную мощность Pmax. А для этого нужно уменьшить Xc.
Но индуктивное сопротивление ,
где w - число витков обмотки;
а - проводимость воздушного зазора.
Значит надо увеличить зазор между статором и ротором. При этом уменьшатся и а и индуктивное сопротивление Xc.
Именно поэтому в синхронных генераторах выполняется большой зазор - для повышения устойчивости, т.е. для увеличения перегрузочной способности.
При очень большом воздушном зазоре - возрастают габариты СГ и нужно много ампер-витков на роторе (большая МДС).
Можно поднять Pmax форсировкой. Eфор вызывается током Iв - так повышается динамическая устойчивость генератора.
4 Параллельная работа СГ
При параллельной работе на одну линию включается несколько генераторов.
Включение СГ в сеть
Для безаварийного включения СГ в сеть необходимо, чтобы:
1) ЭДС, вырабатываемая СГ равнялась напряжению сети, и в момент включения находилась в противофазе к этому напряжению. В противном случае возникнет уравнительный ток.
Регулировка ЭДС E производится током возбуждения.
2) Частота СГ равнялась частоте сети. Регулировать при этом нужно скорость вращения СГ.
3) Чередование фаз СГ и сети соответствовали друг другу. Иначе возникнет КЗ.
4) Форма ЭДС СГ и форма напряжения сети были одинаковыми - синусоидальными.
Регулирование активной мощности мы уже рассматривали .
Любое изменение активной мощности при неизменной ЭДС E0 возможно при изменении угла . Регулируется первичным приводным двигателем.
Чтобы осуществить перевод части нагрузки с одного СГ на другой, следует уменьшить вращающийся момент первичного двигателя СГ и увеличить момент для второго. Тогда после перераспределения генераторы будут работать с постоянной частотой. Иначе изменится частота вращения всех агрегатов, напряжение и частота тока в сети.
Регулирование реактивной мощности СГ
После выполнения условий синхронизации синхронный генератор работает в режиме ХХ. Воспользуемся уравнением
.
Так как , то , отсюда
. (*)
У нас мощность постоянна P=const.
Но , а ток возбуждения меняется Iв - var.
Поскольку U=const, меняем ток возбуждения. При этом меняется ЭДС (см. зависимость E(Iв)).
Небаланс между ЭДС E0 и напряжением U в формуле (*) должен погаситься за счет тока I. Но так как U и P постоянны, то должно быть постоянно произведение I cos=const, т.е. активный ток остается постоянным, а появляется реактивный ток, который влияет на cos сети (при изменении Iв).
Если у СГ cos=1, то генератор нормально возбужден. При изменении тока возбуждения Iв потечет реактивный ток.
P1<P2<P3.
Это семейство U-образных характеристик при различных мощностях.
При изменении тока возбуждения Iв потечет уравнительный индуктивный или емкостной ток.
Это семейство U-образных характеристик СГ. Они показывают зависимость тока СГ от тока возбуждения при постоянной мощности, а значит и угле .
Современные СГ работают с перевозбуждением.
ном >0.
В этом случае СГ обеспечивает приемники сети (асинхронные двигатели, трансформаторы и др.) необходимой энергией индуктивного характера.
Подобные документы
Генератор - машина, преобразующая механическую энергию в электрическую. Принцип действия генератора. Индуктирование ЭДС в пелеобразном проводнике, вращающемся в магнитном поле. График изменения индуктированного тока. Устройство простейшего генератора.
конспект урока [385,8 K], добавлен 23.01.2014Параллельная работа синхронного генератора с сетью, регулирование его активной и реактивной мощности. Построение векторных диаграмм при различных режимах нагрузки. Схема подключения синхронного генератора к сети с помощью лампового синхроноскопа.
контрольная работа [92,0 K], добавлен 07.06.2012Общие понятия и определения в математическом моделировании. Основные допущения при составлении математической модели синхронного генератора. Математическая модель синхронного генератора в фазных координатах. Реализация модели синхронного генератора.
дипломная работа [339,2 K], добавлен 05.10.2008Устройство синхронного генератора, экспериментальное подтверждение теоретических сведений о его свойствах. Сбор схемы генератора, пробный пуск и проверка возможности регулирования параметров. Анализ результатов эксперимента, составление отчета.
лабораторная работа [221,2 K], добавлен 23.04.2012Конструкция синхронного генератора и приводного двигателя. Приведение генератора в состояние синхронизации. Способ точной синхронизации. Процесс синхронизации генераторов с применением лампового синхроноскопа. Порядок следования фаз генератора.
лабораторная работа [61,0 K], добавлен 23.04.2012Установившийся режим трехфазного короткого замыкания синхронного генератора. Физические явления при внезапном трехфазном коротком замыкании в цепи синхронного генератора без автоматического регулятора напряжения. Процессы изменения магнитных потоков.
лекция [76,5 K], добавлен 11.12.2013Назначение системы автоматического регулирования (САР) и требования к ней. Математическая модель САР напряжения синхронного генератора, передаточные функции разомкнутой и замкнутой системы. Определение предельного коэффициента усиления системы.
курсовая работа [670,0 K], добавлен 09.03.2012Расчет и оптимизация геометрических и электрических параметров трехфазных обмоток статора синхронного генератора. Конструирование схемы обмотки, расчет результирующей ЭДС с учетом высших гармонических составляющих. Намагничивающие силы трехфазной обмотки.
курсовая работа [2,1 M], добавлен 24.04.2014Експериментальні способи зняття характеристик трифазного синхронного генератора. Схема вмикання генератора. Зовнішня характеристика як залежність напруги від струму навантаження при сталому струмі збудження. Регулювальна характеристика, коротке замикання.
лабораторная работа [204,2 K], добавлен 28.08.2015Расчет пазов и обмотки статора, полюсов ротора и материала магнитопровода синхронного генератора. Определение токов короткого замыкания. Температурные параметры обмотки статора для установившегося режима работы и обмотки возбуждения при нагрузке.
курсовая работа [1,6 M], добавлен 20.06.2014