Разработка блока питания

Разработка структурно-функциональной, принципиальной электрической схемы блока питания. Расчёт выпрямителей переменного тока, сглаживающего фильтра, силового трансформатора. Проектирование логической схемы в интегральном исполнении по логической функции.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 26.04.2010
Размер файла 28,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

16

Содержание

Введение

1. Разработка блока питания для электронного устройства

1.1 Расчёт выпрямителей переменного тока и сглаживающих фильтров

1.2 Расчёт силового трансформатора

2. Структурное проектирование логической схемы в интегральном исполнении по заданной логической функции

Заключение

Литература

Введение

Одним из важнейших направлений развития научно-технического прогресса в настоящее время является развитие электроники. Достижения электроники влияют на развитие общества.

Современная электроника характеризуется сложностью и многообразием решаемых задач, высоким быстродействием и надёжностью.

Электронные устройства применяются во многих отраслях промышленности, транспорта, связи, а также в быту. Наиболее часто применяемыми электронными устройствами являются такие, как автоматическое технологическое оборудование, радио- и TV аппаратура, персональный компьютер, микропрцессоры, усилители сигналов, счётчики, интегральные микросхемы и т.д.

Для питания большинства радиотехнических и электронных устройств требуется выпрямленное напряжение с заданными параметрами. Для того, чтобы получить необходимое напряжение на нагрузке, его сначала надо преобразовать с помощью трансформатора. Далее преобразованное напряжение необходимо выпрямить при помощи выпрямителя собранного на вентилях. Для выпрямителей, предназначенных для питания различных радиотехнических и электронных устройств, допустимый коэффициент пульсации напряжения на нагрузке не должен превышать определённую величину. Наличие пульсаций выпрямленного напряжения ухудшает работу потребителей, питаемых выпрямленным напряжением, поэтому в большинстве случаев выпрямители содержат сглаживающие фильтры.

1. Разработка блока питания для электронного устройства

1.1 Расчёт выпрямителя переменного тока

a) Для схемы однофазного двухполупериодного выпрямителя с нулевым выводом

Действующее значение напряжения каждой полуобмотки W2 трансформатора:

U21 = U211 = 1.11· Ud = 1.11 · 12 = 13.32 В

Действующее значение тока, протекающего по обмотке W2 трансформатора:

I21 = I211 = 0.7· Id = 0.7 · 0.5 = 0.3535 А

Амплитудное значение напряжения на вентиле, находящемся в непроводящем состояний:

Uam=3.14 · Ud = 3.14 · 12 = 37.68 В

Среднее значение тока вентиля:

Ia = 0.5 · Id = 0.5 · 0.5 = 0.25 А

Амплитудное значение тока проводящего вентиля:

Iam=1 · Id = 1 · 0.5 = 0.5 А

По полученным данным в качестве вентилей для цепи 1 выбираем два диода Д226Е с параметрами Uam = 100 В; Ia = 300 мА; Iam = 2.5 А

Сделаем проверку выбранных вентилей на соответствие параметрам выпрямителя:

Uam = 100 В > 37.68 В; Ia = 300 мА > 250 мА; Iam = 2.5 А > 0.5 А

Вентили соответствуют параметрам выпрямителя.

Для выбора схемы и количества звеньев сглаживающего фильтра определяем его коэффициент сглаживания:

q1 0.667

S = - = - = 133.4 > 100, следовательно нужен многозвенный

q2 0.005 фильтр

1.3.8 Коэффициент сглаживания каждого звена фильтра:

S1 = S2 = vS = v133.4 = 11.55 < 100

Ёмкость конденсатора C1, входящего в состав первого звена фильтра, рассчитывается по методике для выпрямителя, работающего на активно - ёмкостную нагрузку:

H

C1= -

q1 0.667 q22 · rц

где: q22 = - = - = 0.0577

S1 11.55

Uн 12

rц = 0.1 · Rн = 0.1 · - = 0.1 · - = 2.4 Ом - сопротивление фазы выпрямителя

Iн 0.5

- для нахождения коэффициента Н определяем расчётный коэффициент А:

р · rц 3.14 · 2.4

A = - = - = 0.157

m · Rн 2 · 24

m = 2 - число пульсаций тока за период сетевого напряжения в нагрузке

По графику Н = f (А): H = 260

H 260

C1= - = - = 1877.53 мкФ

q22 · rц 0.577 · 2.4

По ёмкости С1 и напряжению Uн выбираем конденсатор: К50 - 3

Сном = 2000 мкФ; Uном = 12 В

Определяем параметры второго звена сглаживающего фильтра:

10 · (S2 + 1) 10 · (11.55 + 1)

LC = - = - = 31.375 Гп · мкФ

m2 4

Принимаем конденсаторы типа К50 - 3: Сном = 2000 мкФ; Uном = 12 В

LC2 31.375

Тогда, L = - = - = 0.314 Гн

C2 10

б) Для схемы однофазного двухполупериодного мостового выпрямителя

Для выбора схемы и количества звеньев сглаживающего фильтра определяем его коэффициент сглаживания:

q1 0.667

S = - = - = 0.89 < 100

q2 0.75

Для данной схемы применим С - фильтр

Определяем коэффициент А:

р · rц 3.14 · 4.8

A = - = - = 0.157

m · Rн 2 · 48

Для нахождения сопротивления нагрузки используем выражение:

Uн 24

Rн = - = - = 48 Ом

Iн 0.5

Сопротивление фазы выпрямителя:

rц = 0.1 · Rн = 0.1 · 48 = 4.8 Ом - сопротивление фазы выпрямителя

m = 2 - число пульсаций тока за период сетевого напряжения в нагрузке

Из графиков зависимостей В = f(A); D = f(A); F = f(A); H = f(A) находим вспомогательные коэффициенты В = 0.45; D = 2.35; F = 7.2; H = 260

ЭДС обмотки трансформатора Е3 = B · Ud = B · Uн = 0.95 · 24 = 22.8 В

Максимальное обратное напряжение на вентиле, находящемся в непроводящем состоянии:

Uобрm= 2v2 · Е3 = 2v2 · 22.8 = 64.488 В

Среднее значение тока вентиля:

Id Iн 0.5

Ia = - = - = - = 0.25 А

2 2 2

Максимальный (амплитудный) ток вентиля:

Iam = F · Ia = 7.2 · 0.25 = 1.8 А

Действующее значение тока вторичной трансформатора:

I3 = D · Ia = 2.35 · 0.25 = 0.588 А

1.3.20 По полученным данным в качестве вентилей выбираем диоды Д226Е с параметрами:

Uam = 100 В > 64.488 В; Ia = 300 мА > 250 мА; Iперегр = 2.5 А > 1.8 А Вентили соответствуют параметрам выпрямителя.

Ёмкость конденсатора фильтра находим из выражения:

H 260

C = - = - = 72.22 мкФ

Q2 · rц 0.75 · 4.8

Принимаем стандартный оксидный (электролитический) конденсатор К50 - 3

Сном = 100 мкФ; Uном = 100 В

1.2 Расчёт силового трансформатора

Согласно исходных требований и расчёта выпрямителя расчёт трансформатора производим по следующим данным:

U2 = 13.32 В; I2 = 0.5 А; U3 = 22.8 В; I3 = 0.5 А; U4 = 220 В; I4 = 0.45 А

U5 = 10 В; I5 = 1 А

Напряжение сети: U1 = 220 В; fс = 50 Гц

Определяем габаритную мощность вторичных обмоток Sг2 и суммарную габаритную мощность Sг трансформатора с учётом выбранной схемы выпрямителя и использования остальных обмоток:

2 = 1.7 · U2I2 · U3I3 · U4I4 · U5I5 = 1.7 · 13.32·0.5 · 22.8·0.5 · 220·0.45 · 10·1 = 131.722 В·А

Суммарная габаритная мощность трансформатора с учётом его КПД (з = 0.88):

2 131.722

Sг = - = - = 149.684 В·А

З 0.88

По нонограмме мощности Sг = 149.684 В·А соответствует сердечник с площадью поперечного сечения Qс = 15.5 см2

Так как трансформатор малой мощности, то выберем обмоточный провод марки ПЭВ - провод с изоляцией лаком винифлекс

Пользуясь нонограммой, для сечения проводника Qс = 15.5 см2 и наклонной линией, построенной для использования обмоточного провода ПЭВ, определяем необходимую площадь окна магнитопровода, которая составит Qо = 12 см2

В результате расчётов принимаем стандартный магнитопровод Ш - 32 с параметрами

Qс = 19.0 см2; Qо = 25.6 см2

Для выбора диаметра провода первичной (сетевой) обмотки, определяем ток в этой обмотке: Sг2 Sг 149.684

I1 = - = - = - = 0.68

U1 · з U1 220

Учитывая габаритную мощность трансформатора Sг = 149.684 В·А и принимая сердечник выполненным из штампованных пластин получаем магнитную индукцию в сердечнике (в стали) трансформатора Bс = 1.1 Тл

По нонограмме для магнитной индукции Bс = 1.1 Тл и сечения сердечника Qс = 25.6 см2 определяем число витков на 1 В напряжения для всех обмоток (W/1B), равное 2.8 Вит/1В, и определяем число витков в каждой обмотке из соотношения:

W

Wi = Ui · - · K

1B

Ui - напряжение соответствующей обмотки

K - коэффициент, учитывающий падение напряжения на активном сопротивлении вторичных обмоток (К = 1.05…1.1)

С учётом компенсации падения напряжения на активном сопротивлении обмотки число витков вторичных обмоток увеличивают на 5%. Тогда:

W1 = 220 · 2.8 · 1.05 = 647 Вит

W2 = 13.32 · 2 · 2.8 · 1.05 =78.3 Вит

W3 = 22.8 · 2.8 · 1.05 = 67 Вит

W4 = 220 · 2.8 · 1.05 = 647 Вит

W5 = 10 · 2.8 ·1.05 = 29.4 Вит

Определяем диаметр обмоточных проводов в обмотках трансформатора. Для мощности трансформатора Sг = 149.684 В·А рекомендуемая плотность тока составляет д = 2 А/мм2.

Тогда по таблице определяем:

1) для первичной обмотки: для I1 = 0.68 А d1 = 0.748 А/мм2

2) для вторичных обмоток: для I1 = 0.5 А d1 = 0.405 А/мм2

для I1 = 0.5 А d1 = 0.405 А/мм2

для I1 = 0.45 А d1 = 0.348 А/мм2

для I1 = 1 А d1 = 1.57 А/мм2

1.4.8 Проверяем возможность размещения обмоток в окне сердечника. Определяем площадь g, занимаемую каждой обмоткой в окне сердечника.

Для первичной обмотки:

W1 = 647 витков, d1 = 0.748 А/мм2 в 1 мм2 уместится 1.72 витка

647

Общая площадь: g1 = - = 3.762 см2

1.72 · 100

Для обмотки W2:

W2 = 78.3 витков, d1 = 0.405 А/мм2 в 1 мм2 уместится 6.1 витка

78.3

Общая площадь: g2 = - = 0.128 см2

6.1· 100

Для обмотки W3:

W3 = 67 витков, d1 = 0.405 А/мм2 в 1 мм2 уместится 6.1 витка

67

Общая площадь: g3 = - = 0.11 см2

6.1· 100

Для обмотки W4:

W4 = 647 витков, d1 = 0.348 А/мм2 в 1 мм2 уместится 8 витков

647

Общая площадь: g4 = - = 0.81 см2

8· 100

Для обмотки W5:

W5 = 29.4 витка, d1 = 1.57 А/мм2 в 1 мм2 уместится 0.455 витка

29.4

Общая площадь: g5 = - = 0.06 см2

0.455· 100

Таким образом, общая площадь окна, занимаемая всеми обмотками:

Qоз = g1+g2+g3+g4+g5 = 3.762 + 0.128 + 0.11 + 0.81 + 0.06 = 4.87 см2

Возможность размещения всех обмоток в окне сердечника можно проводить с использованием коэффициента заполнения окна Ко:

Qоз 4.87

Ко = - = - = 0.19

Qо 25.6

Как показали расчёты, все обмотки в окне сердечника размещаются. Остальная оставшаяся площадь Qост = Qо - Qоз = 25.6 - 4.87 = 20.73 см2 используется для размещения каркаса и изоляционных прокладок между обмотками.

2. Структурное проектирование логической схемы в интегральном исполнении по заданной логической функции

Процесс структурного проектирования разбиваем на два последовательно выполняемых этапа:

Минимизация заданной логической функции

Синтез логической структуры

Минимизация заданной логической функции

Пользуясь аксиомами и законами алгебры логики (булевой алгебры) упрощаем заданную логическую функцию до образования конъюнкций, где присутствуют все независимые переменные исходного выражения:

-- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - ---

F = X·Y· (Z + X) + X·Y·Z + Z· (X·Y·Z + Z·Y) = X·Y·Z + X·Y·Z + X·Y·Z

Опишем логическую структуру в виде таблицы состояний (истинности) согласно упрощенного выражения логической функции F:

X

Y

Z

F

0

0

0

1

0

0

1

1

0

1

0

0

0

1

1

0

1

0

0

1

1

0

1

0

1

1

0

0

1

1

1

0

Дальнейшее упрощение (минимизацию) заданной логической функции проводим графическим методом с использованием карты Карно, где количество независимых переменных К = 3.

Результат склейки клеток 1,2 и 1,7 даёт описание логической структуры в виде минимизированной дизъюнктивной нормальной формы (МДНФ), представляющей собой алгебраическое выражение: - - - -

F = Y·Z + X·Y

Синтез логической структуры

Проведём синтез полученной логической структуры с использованием логических элементов в интегральном исполнении.

Синтезируем логическую структуру в виде структурно - функциональных схем. Для сравнительного анализа различных схемных решений рассмотрим варианты реализации логической структуры с использованием базовых логических элементов, а также с использованием элементов И-НЕ и с использованием элемента ИЛИ - НЕ. Результаты проделанной работы представлены в графической части.

Синтезируем логическую структуру в виде принципиальных электрических схем на микросхемах ТТЛ серии 155. Результаты проделанной работы представлены в графической части.

В результате анализа предложенных вариантов реализации логической структуры отдаем предпочтение варианту выполнения принципиальной электрической схемы на микросхеме К155ЛЕ1, так как этот вариант имеет лучшие технико - экономические показатели, а именно: меньшее количество внутрисхемных соединений, количество электронных компонентов минимальное (всего одна ИС), выше надежность устройства, повышенное быстродействие, минимальная потребляемая мощность.

Заключение

В данной курсовой работе был разработан блок питания для системы автоматического управления процессом транспортировки и хранения комбикормов в животноводческом комплексе и произведено структурное проектирование логической схемы в интегральном исполнении по заданной логической функции.

Для блока питания представлены принципиальная и структкрно-функциональная схемы. Он рассчитан на питание от бытовой сети с параметрами U=220 B, f=50 Гц и выдаёт два выпрямленных напряжения (U=12 В, I=0.5 А и U=24 В, I=0.05 А), и два переменных (U=220В, I=0.45 А и U=10В, I=1 А).

В выпрямителе этого блока питания могут использоваться диоды следующих марок: для схемы выпрямителя с нулевым выводом - Д226Е, для мостовой схемы - Д226Е. В схеме выпрямителя с нулевым выводом используется многозвенный фильтр с двумя звеньями. В первом звене используется конденсатор К50 - 3 с Сном = 2000 мкФ; Uном = 12 В. Во втором звене используется конденсатор К50 - 3 с Сном = 2000 мкФ; Uном = 12 В и катушка индуктивности с индуктивностью L = 0.314 Гн. В мостовой схеме выпрямления используется С - фильтр с маркой конденсатора: К50 - 3, Uном = 25 В, Сном = 100 мкФ.

Литература

1. Макаров А.А. Электроника. Учебно-методическое пособие. - Кострома: изд. КГСХА, 2003.-67 с.

2. Арестов К.А. Основы электроники и микропроцессорной техники. - М.: Колос, 2001


Подобные документы

  • Расчёт трансформатора и параметров интегрального стабилизатора напряжения. Принципиальная электрическая схема блока питания. Расчет параметров неуправляемого выпрямителя и сглаживающего фильтра. Подбор выпрямительных диодов, выбор размеров магнитопровода.

    курсовая работа [151,6 K], добавлен 14.12.2013

  • Совмещение функций выпрямления с регулированием или со стабилизацией выходного напряжения. Разработка схемы электрической структурной источника питания. Понижающий трансформатор и выбор элементной базы блока питания. Расчет маломощного трансформатора.

    курсовая работа [144,0 K], добавлен 16.07.2012

  • Разработка проекта схемы выдачи мощности атомной электростанции при выборе оптимальной электрической схемы РУ повышенного напряжения. Разработка и обоснование схемы электроснабжения собственных нужд блока АЭС и режима самопуска электродвигателей блока.

    курсовая работа [936,1 K], добавлен 01.12.2010

  • Разработка функциональной схемы устройства для измерения фокусного расстояния гибкого зеркала. Выбор и технические характеристики фотоприемника, двигателя, блока питания и микроконтроллера. Представление электрической принципиальной схемы устройства.

    курсовая работа [3,0 M], добавлен 07.10.2014

  • Основные источники и схемы постоянного оперативного тока. Принципиальная схема распределительной сети постоянного тока. Контроль изоляции сети постоянного тока. Источники и схемы переменного оперативного тока. Схемы и обмотки токового блока питания.

    научная работа [328,8 K], добавлен 20.11.2015

  • Применение силового трансформатора переменного тока для преобразования энергии в электрических сетях. Преимущества и недостатки автотрансформаторной схемы соединения обмоток. Использование сдвоенного дросселя в качестве входного фильтра блоков питания.

    презентация [1,2 M], добавлен 30.11.2013

  • Обоснование, выбор и описание функциональной и структурной схемы электропривода. Разработка и характеристика принципиальной электросхемы и конструкции блока, определенного техническим заданием. Расчет и выбор элементов автоматизированного электропривода.

    курсовая работа [198,1 K], добавлен 04.11.2012

  • Внедрение нового АТХ форм-фактора в конструкцию системного блока персонального компьютера, введенного фирмой IBM. Назначение импульсного блока питания DTKXAD 819AR, описание его конструкции и принцип работы. Описание схемы электрической принципиальной.

    дипломная работа [755,2 K], добавлен 14.10.2012

  • Выбор тепловой схемы станции, теплоэнергетического и электрического оборудования, трансформаторов. Определение расхода топлива котлоагрегата. Разработка схем выдачи энергии, питания собственных нужд. Расчет тепловой схемы блока, токов короткого замыкания.

    дипломная работа [995,3 K], добавлен 12.03.2013

  • Структурный анализ разрабатываемой схемы. Разработка и расчет электрических схем отдельных структурных блоков. Формирование и анализ оптимальности общей электрической принципиальной схемы. Расчет потребляемой мощности и разработка источника питания.

    курсовая работа [3,0 M], добавлен 04.02.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.