Средства электрических измерений

Методы амперметра и вольтметра, ваттметра и баллистического гальванометра при измерении емкости. Формулы определения шунтов и добавочных резисторов. Устройство и работа измерительного механизма электродинамической системы, ее достоинства и недостатки.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 05.11.2010
Размер файла 586,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Вопрос №1 Опишите устройство и работу измерительного механизма электродинамической системы, выражение величины угла отклонения подвижной части, достоинства и недостатки, область применения приборов электродинамической системы.

В измерительных механизмах электродинамической системы перемещение подвижной части происходит вследствие электродинамического взаимодействия между токами , проходящими по неподвижной и подвижной катушкам.

Рис. 1

Измерительный механизм (Рис.1) этой системы состоит из неподвижной (1) и подвижной (2) катушек. На оси, кроме катушки, крепятся указательная стрелка, крыло воздушного успокоителя и концы двух спиральных пружин для подвода тока к катушке.

В магнитном поле двух катушек с постоянными токами I1 и I2, как известно, запасается энергия:

,

где L1 и L2 - индуктивности катушек, М12 - их взаимная индуктивность.

Взаимодействие этих токов вызывает вращающий момент, стремящийся повернуть подвижную катушку в положение, при котором энергия магнитного поля катушек будет наибольшей.

Этот момент:

,

где dб - приращение угла, при котором энергия поля получает приращение dWM .

Так как индуктивности катушек L1 и L2 неизменны, то dL1 = dL2 = 0 и вращающий момент:

Отсюда следует, что вращающий момент зависит от токов I1 и I2 и от положения подвижной катушки относительно неподвижной. Зависимость скорости изменения взаимной индуктивности от угла поворота подвижной катушки dM12/dб = f(б) определяется формой катушек и их взаимным расположением.

Приняв в первом приближении отношение dM12/dб = k1 постоянным, получим выражение вращающего момента

M = k1I1I2,

вызывающего поворот подвижной части на угол, при котором он уравновесится моментом пружин, т.е.

M=Mпр или k1I1I2 = Dб,

откуда

.

Таким образом, вращающий момент и угол поворота подвижной части пропорциональны произведению токов в катушках.

Отсутствие стальных деталей в измерительном механизме, а следовательно, отсутствие погрешности от гистерезиса и вихревых токов делает возможным изготовлять механизмы этой системы, обеспечивающие высокую точность измерений. Слабое магнитное поле электродинамических механизмов обеспечивает получение только небольших вращающих моментов, что требует уменьшения трения в опорах и погрешности от трения. Последнее достигается возможным уменьшением массы подвижной части, тщательным подбором материалов для опор и осей и соответствующей их обработкой. Все это с одной стороны, повышает стоимость прибора, с другой, приводит к повышенной чувствительности механизма к перегрузкам и механическим воздействиям. Следовательно, эти механизмы требуют особого ухода и обслуживания.

Электродинамические измерительные механизмы применяются для измерения токов (амперметры), напряжения (вольтметры), мощности (ваттметры), а также для измерения энергии на постоянном токе (счетчики энергии постоянного тока).

Основными достоинствами электродинамических амперметров и вольтметров следует считать возможность измерения с высокой точностью как на постоянном так и на переменном токе; независимость показаний от формы кривой измеряемого тока или напряжения; высокую стабильность свойств.

Однако электродинамические приборы имеют низкую чувствительность (по сравнению с магнитоэлектрическими приборами), поскольку собственное магнитное поле не велико. Вследствие этого они обладают большим собственным потреблением мощности от объекта измерения, их характеризуют сильная подверженность внешних магнитных полей, а также малая перегрузочная способность по току.

Вопрос №2 Каково значение, конструктивное исполнение, схемы включения и формулы определения шунтов и добавочных резисторов.

Шунт применяется для расширения предела измерения тока измерительного механизма. Он представляет собой измерительный преобразователь, состоящий из резистора, включаемого в цепь измеряемого тока, параллельно которому присоединяется измерительный механизм.

Для устранения влияния сопротивлений контактных соединений шунты снабжаются токовыми и потенциальными зажимами.

Измеряемый ток цепи I и ток измерительного механизма IИ одной из параллельных ветвей связаны соотношением

или ,

где р=rИ/rШ+1=I/IИ - шунтирующий множитель, показывающий, во сколько раз измеряемый ток I больше тока IИ или во сколько раз расширяется предел измерения тока.

Таким образом, измеряемый ток находится умножением постоянной измерительного механизма по току СI , шунтирующего множителя р и угла поворота б подвижной части измерительного механизма.

Шунтирующий множитель является неизменным при постоянных значениях

rШ и rИ.

Из при веденного выражения шунтирующего множителя следует, что

rШ = rИ/(р - 1),

т.е. для расширения предела измерения в р раз необходим шунт с сопротивлением в (р - 1) раз меньшим сопротивления измерительного механизма.

Переносные приборы часто снабжаются много предельными шунтами. Такой шунт состоит из нескольких резисторов, переключаемых в зависимости от предела измерения штепселем, рычажным переключателем или переносом провода с одного зажима на другой.

На рисунках 1 - 3 изображены схемы шунтов.

Рис. 1

Рис. 2

Многопредельный шунт со штепсельным переключателем.

Рис. 3

Многопредельный шунт с отдельными выводами.

Многопредельный шунт с рычажным переключателем.

Шунты изготавливаются из манганина и других материалов и снабжаются двумя парами зажимов: токовыми для включения в цепь и потенциальными для присоединения измерительного механизма. Такое включение устраняет погрешности от контактных сопротивлений.

Добавочный резистор, представляет собой измерительный преобразователь, применяется для расширения предела измерения напряжения и для исключения влияния температуры на сопротивление вольтметра rV . Добавочный резистор изготовляется из манганина и включается последовательно с измерительным механизмом.

Рис. 4

Если предел измерения напряжения измерительного механизма необходимо расширить в р раз, то используя обозначения на рис. 4, запишем:

U = UИр= UИ + UД = IИ (rИ+rД),

откуда сопротивление добавочного резистора

rД = (UИр - IИ rИ)/IИ = (IИ rИ р - IИ rИ) /IИ

или

rД = rИ(р - 1),

т.е. оно должно быть в (р - 1) раз больше сопротивления измерительного механизма

Если сопротивление измерительного механизма и добавочного резистора известны, то множитель добавочного сопротивления

Вопрос№3 Опишите методы амперметра и вольтметра, ваттметра и баллистического гальванометра при измерении емкости

Схема для измерения емкости амперметром и вольтметром

Пренебрегая потерями в диэлектрике конденсатора, емкость его можно определить методом амперметра и вольтметра.

Измерив ток и напряжение и зная частоту переменного тока, емкость можно определить по формуле

С = I / (щU)

При измерении емкости этим методом напряжение должно быть синусоидальным, так как в противном случае за счет высших гармоник может произойти значительное искажение кривой тока, что может привести к большим погрешностям измерения.

Схема для измерения емкости амперметром, вольтметром и ваттметром

Определив по показанию приборов ток, напряжение и мощность, можно вычислить сначала активное сопротивление r = P/I2 , полное сопротивление цепи

z = U/I =

а затем и искомую емкость:

С = 1/(щ)

Точность измерений при этом методе такая же или несколько выше, чем у предыдущего.

Схема для измерения емкости баллистическим гальванометром

Если переключатель П1 и П2 установить в положение 1, то образцовый конденсатор С0 получит заряд Q0 = U1C0, где U1 - показания вольтметра.

Если перевести переключатель П2 в положение 2, то конденсатор С0 разрядится и через баллистический гальванометр пройдет заряд

Q0 = U1C0 = Сqб1,

где б1 - угол отклонения подвижной части гальванометра.

Баллистическая постоянная гальванометра

Сq = U1C0/ б1.

Если при положении 1 переключателя П2 в положении 2 переключателя П1 поднять напряжение до значения U2, то испытуемый конденсатор получит заряд

Q = U2CX.

Перебросив нож переключателя П2 из положения 1 в положение 2, конденсатор разрядится через гальванометр, т.е. через него пройдет заряд

Q = U2CX. = Сqб2

и подвижная часть его будет отброшена на угол б2. Измеряемую емкость находят по формуле

CX = .

При измерении этим методом возможны значительные погрешности вследствие остаточного заряда (неполный разряд конденсатора).

Задача 1. Для термопары ХА (хромель - алюмель) определить показания прибора и термо - ЭДС при измерении температуры 400є С, если свободные концы термопары находятся в помещении, имеющем температуру 20єС.

Решение:

Переход t° холодного и горячего спаев термопары составляет

400 - 20 = 380°

По таблице №16.1 (литература №3) термо ЭДС термопары (хромель - алюмель) 4,1 мВ на 100°С

Определим термо ЭДС при измерении температуры 400є С

Е = В

Ответ

Е = 15,58 В

Задача 2. Для измерения активной мощности, равной 6 кВт, трехфазной симметричной трехпроводной цепи, соединенной звездой, с фазным напряжением 127 В и cosц = 0,8 использованы два одинаковых ваттметра электродинамической системы со шкалами на 150 делений. Составить схему измерения, используя при необходимости измерительные трансформаторы тока. Подобрать ваттметры по току и напряжению, определить показания каждого ваттметра, начертить в масштабе векторную диаграмму токов и напряжений для выбранной схемы ваттметров.

Решение

При соединении звездой и симметричной нагрузке активная мощность цепи будет равна

где IФ - фазный ток; UФ - фазное напряжение

Определим фазный ток

А

показания ваттметров будут:

где IЛ - линейный ток; UЛ - линейное напряжение

Определим и

Определим IЛ · UЛ из выражения

В·А

Определим показания ваттметров:

= Вт ? 4,3 кВт

Вт ?1,7 кВт

Ваттметры выбираем с номинальными значениями

U = 250 В

I = 20 А

Схема измерения

Ответ

4,3 кВт

1,7 кВт

Ваттметры с номинальными значениями U = 250 В; I = 20 А

Для построения векторной диаграммы зададимся масштабами токов и напряжений

МU = 50 В/см

МI = 5 А/см

Рис. 1 Векторная диаграмма токов и напряжений

Задача 3. Какую из схем измерения сопротивления на следует предпочесть, если измеряемое сопротивление мало? Велико? Ответ пояснить.

При измерении сопротивления применяют две схемы включения амперметра и вольтметра как показано на рисунках а) и б).

В случае а) измеряемое сопротивление

где UV - показание вольтметра; UА- напряжение на зажимах амперметра; IA - показание амперметра; rA - сопротивление амперметра

т.е. появляется погрешность измерения, равная rA , по этому данную схему применяют для измерений сопротивлений, больших по сравнению с сопротивлением амперметра в 100 раз и более.

В случае б) показание амперметра IА равно сумме токов в сопротивлении и вольтметре а измеряемое сопротивление

где UV - показание вольтметра; IA - показание амперметра; IV - ток в вольтметре;

rV - сопротивление вольтметра

эту схему применяют для измерения сопротивлений, меньших по сравнению с сопротивлением вольтметра в 100 раз и более. В этом случае током в вольтметре можно пренебречь, т.е. zX = UV/IA/

Задача 4. Определить наибольшую вероятную относительную и наибольшую абсолютную погрешности при измерении тока амперметром класса точности 1,5 если номинальный ток амперметра 50 А, а показание - 20А

Решение

наибольшая абсолютная погрешность

где гд - относительная погрешность прибора, в нашем случае для класса точности 1,5 гд = 1,5% ; Iн - номинальный ток амперметра; I - показание амперметранаибольшая абсолютная погрешность

А

Ответ

А

Литература

1. «Электрические измерения» В.С. Попов (М. 1974г.)

2. «Электротехника и электроника» под ред. проф. Б.И.Петленко М.2003 г.

3. «Электрические измерения» под редакцией Малиновского 1983 г.

4. «Метрология, Стандартизация, сертификация и электроизмерительная техника под редакцией К.К.Кима 2006 г.


Подобные документы

  • Устройство и назначение амперметра, ваттметра, вольтметра, фазометра, частотомера, осциллографа. Понятие чувствительности и точности средств измерений, порядок отсчета величин. Управления технологическими процессами передачи результатов измерений.

    реферат [6,2 M], добавлен 29.11.2012

  • Метод расчета параметров измерительного механизма магнитоэлектрической системы, включенного в цепь посредством шунта. Определение мощности вольтметра и амперметра. Измерение активной мощности в цепях трехфазного тока. Выбор измерительной аппаратуры.

    курсовая работа [647,1 K], добавлен 26.04.2014

  • Измерение электрических величин: мощности, тока, напряжения. Область применения электроизмерительных приборов. Отличие прямых и косвенных измерений. Требования к измерительному прибору. Схема включения амперметра, вольтметра. Расчет сопротивления цепи.

    лабораторная работа [48,0 K], добавлен 24.11.2013

  • Ознакомление с методом компенсации в практике измерений физических величин. Погрешности при введении в электрическую цепь амперметра или вольтметра. Компенсационные методы и их суть. Мост постоянного тока Уитстона.

    лабораторная работа [83,9 K], добавлен 18.07.2007

  • Определение всех токов, показаний вольтметра и амперметра электромагнитной системы. Мгновенные значения тока и напряжения первичной обмотки трансформатора. Определение индуктивностей и взаимных индуктивностей. Построение графиков напряжения и тока.

    курсовая работа [1,0 M], добавлен 11.12.2012

  • Основные методики поверки показывающих приборов постоянного тока. Измерительный механизм с подвижной катушкой. Класс точности измерительных приборов, работающих на постоянном токе. Проверка изоляции напряжением 2 кВ. Расчет погрешности измерений.

    лабораторная работа [22,2 K], добавлен 18.06.2015

  • Методика определения систематической составляющей погрешности вольтметра в точках 10 и 50 В. Вычисление значения статистики Фишера для двух значений напряжений. Расчет погрешности измерительного канала, каждого узла с учетом закона распределения.

    курсовая работа [669,2 K], добавлен 02.10.2013

  • Проектирование этапов методики выполнения измерений средневыпрямленного значения напряжения сложной формы на выходе резистивного делителя напряжения. Использование вольтметра переменного тока. Определение класса точности средства измерения (вольтметра).

    курсовая работа [122,9 K], добавлен 25.11.2011

  • Законы изменения и сохранения момента импульса и полной механической энергии системы. Измерение скорости пули с помощью баллистического маятника. Период колебаний физического маятника. Расчет погрешности прямых и косвенных измерений и вычислений.

    лабораторная работа [39,7 K], добавлен 25.03.2013

  • Магнитные измерения и нахождение электрических величин на основе второго уравнения Максвелла. Средства определения сопротивления электрической цепи и изоляции преобразователей, требования безопасности и выполнение опытов. Активная и реактивная мощность.

    контрольная работа [34,9 K], добавлен 20.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.