Элегазовый генераторный выключатель 10 кВ, 63 кА, 8000 А

Основные параметры генераторных выключателей. Анализ переходного восстанавливающего напряжения. Расчет и оптимизация дугогасительного устройства элегазового генераторного выключателя. Расчет трогания и торможения гидропривода, свойства элегаза.

Рубрика Физика и энергетика
Вид дипломная работа
Язык русский
Дата добавления 02.09.2010
Размер файла 2,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

91

Санкт-Петербургский государственный политехнический университет

Электромеханический факультет

Кафедра электрических и электронных аппаратов

Работа допущена к защите

Зав. кафедрой Г.Н.Александров

«___» __________2007 г.

ВЫПУСКНАЯ РАБОТА БАКАЛАВРА

Тема: Элегазовый генераторный выключатель 10кВ, 63кА,8000А

Направление:

Выполнил студент гр. 4025/1 (подпись) Д.К.Климачев

Руководитель, к.т.н., проф. (подпись) Е.Н.Тонконогов

Рецензент (подпись) В.А.Соснин

Санкт-Петербург

2007 г.

СОДЕРЖАНИЕ

Введение

Глава 1. Анализ конструкций генераторных выключателей

1.1 Основные параметры генераторных выключателей

1.2 Схемы применения генераторных выключателей

1.3 Токоведущая система и система контактов

1.4 Параметры современных генераторных выключателей

Выводы

Глава 2. Взаимодействие выключателя с сетью

2.1. Анализ переходного восстанавливающего напряжения

2.2. Расчет переходного восстанавливающего напряжения

2.3. Анализ влияния малых индуктивных токов

2.4. Анализ влияния сквозных токов короткого замыкания

Выводы

Глава 3. Расчёт и оптимизация дугогасительного устройства элегазового генераторного выключателя

3.1 Конструкция и принцип работы дугогасительного устройства

3.2 Математическая модель и расчет параметров выключателя

Выводы

Глава 4. Расчёт и оптимизация приводного устройства элегазового генераторного выключателя

4.1 Анализ начального режима разгона гидропривод

4.2.Анализ торможения гидропривода

4.3. Расчет трогания и торможения гидропривод

Выводы

Заключение

Список литературы

ПРИЛОЖЕНИЕ 1. Текст программы расчета ДУ и графики результатов расчета

ПРИЛОЖЕНИЕ 2. Свойства элегаза

Введение

В связи с необходимостью повышения номинальных параметров и надежности высоковольтного коммутационного оборудования для атомных электростанций необходима разработка современных генераторных выключателей на повышенные параметры.

Генераторными выключателями (ГВ) обычно называются выключатели на номинальный ток 3150А и более и на напряжение 10--36 кВ. Они предназначены для оперативной и аварийной коммутации нагрузочных токов и токов короткого замыкания (к.з.) в трехфазных цепях переменного тока на генераторном напряжении. Те генераторные выключатели, которые не предназначены для аварийного отключения токов к.з., называются выключателями нагрузки.

Проблема применения ГВ на электростанциях весьма сложна. На ранней стадии развития энергетики генератор электростанции соединялся с повышающим трансформатором или сборными шинами генераторного напряжения. Вырабатываемая генераторами электроэнергия выдавалась через повышающий трансформатор в сеть 110 или 220 кВ. При этом ГВ не применялись. Такой принцип конструирования распределительного устройства (РУ) использовался примерно до второй половины 60-х годов. К концу 60-ых, началу 70-ых годов мощность турбогенераторов возросла до 500 МВт и более. Вырабатываемая этими генераторами энергия стала выдаваться в сети с напряжением 330--500 кВ. Для облегчения эксплуатационного разграничения функций производства (машинный агрегат) и передачи (подстанция) энергии, а также получения существенного технико-экономического эффекта появилась целесообразность применения ГВ. По этим же причинам при реконструкции электростанций, работавших ранее без ГВ, предусматривается установка этих выключателей.

Сегодня широко используется установка генераторных выключателей между генератором и стороной низкого напряжения повышающего трансформатора, т.к. это обеспечивает лучшую защиту от перенапряжений. Одна из основных причин установки таких выключателей - улучшенная защита, которую он обеспечивает как для генератора, так и для повышающего трансформатора от повреждений от токов короткого замыкания, разбаланса нагрузки и несогласования фаз.

Однако, установка выключателя между генератором и повышающим трансформатором тем не менее оказывает влияние на тип и величину возникающих перенапряжений. Возникает вопрос о возникновении перенапряжений, инициированных выключателем в течение операций коммутации и в отключенном состоянии.

Современный генераторный выключатель должен выполнять множество различных функций, к которым относятся:

* синхронизация генератора с основной энергетической системой

* отделение генератора от энергетической системы

* отключение токов нагрузки (с величиной, доходящей до уровня тока полной нагрузки генератора)

* отключение тока короткого замыкания, независимо от того, произошло оно на стороне энергосистемы или на стороне генератора

* прерывание тока при выходе из синхронизма (при сдвигах по фазе до 180°).

Таким образом, применение ГВ влияет на технический уровень применяемых схем собственных нужд станции, обеспечивает существенное повышение надежности работы блоков и электростанции в целом.

Глава 1. Анализ конструкций генераторных выключателей

1.1 Основные параметры генераторных выключателей

Генераторные выключатели, устанавливаемые в цепях генераторов энергоблоков (генератор-трансформатор, укрупненных электрических блоках - несколько генераторов - трансформатор), осуществляют следующие функции:

- оперативные: включение, отключение генератора с рабочими токами; отключение ненагруженного трансформатора; отключение генератора в режиме синхронного двигателя, т.е. обеспечивают процессы пуска, останова агрегатов;

- защитные отключение токов КЗ в генераторе, трансформаторе и в цепях генераторного напряжения; включение на токи КЗ и отключение; включение в условиях противофазы; отключение в условиях рассогласования фаз вплоть до противофазы при ошибочной синхронизации или при выпадении генератора из синхронизма.

К характеристикам генераторных выключателей, предназначенных для работы в эксплуатации, предъявляются более высокие требования, чем к силовым выключателям на средние классы напряжения.

Проблема применения ГВ на электростанциях весьма сложна. На ранней стадии развития энергетики генератор электростанции соединялся с повышающим трансформатором или сборными шинами генераторного напряжения. Вырабатываемая генераторами электроэнергия выдавалась через повышающий трансформатор в сеть 110 или 220 кВ. При этом ГВ не применялись. Такой принцип конструирования распределительного устройства (РУ) использовался примерно до второй половины 60-х годов. К концу 60-ых, началу 70-ых годов мощность турбогенераторов возросла до 500 МВт и более. Вырабатываемая этими генераторами энергия стала выдаваться в сети с напряжением 330--500 кВ. Для облегчения эксплуатационного разграничения функций производства (машинный агрегат) и передачи (подстанция) энергии, а также получения существенного технико-экономического эффекта появилась целесообразность применения ГВ. По этим же причинам при реконструкции электростанций, работавших ранее без ГВ, предусматривается установка этих выключателей.

Сегодня широко используется установка генераторных выключателей между генератором и стороной низкого напряжения повышающего трансформатора, т.к. это обеспечивает лучшую защиту от перенапряжений. Одна из основных причин установки таких выключателей - улучшенная защита, которую он обеспечивает как для генератора, так и для повышающего трансформатора от повреждений от токов короткого замыкания, разбаланса нагрузки и несогласования фаз.

Однако, установка выключателя между генератором и повышающим трансформатором тем не менее оказывает влияние на тип и величину возникающих перенапряжений. Возникает вопрос о возникновении перенапряжений, инициированных выключателем в течение операций коммутации и в отключенном состоянии.

Существуют публикации о перенапряжениях, возникающих на высоковольтной стороне повышающих трансформаторов. Такие перенапряжения возникают, например, из-за воздействия молнии, быстрого срабатывания разъединителя, токов намагничивания. Есть также сведения о перенапряжениях, появляющихся на стороне генератора и другого оборудования, подключающегося к шине генератора. Особо выделяют перенапряжения, возникающие на низковольтной стороне повышающего трансформатора на электростанции, оснащенной генераторным выключателем.

Различают:

1. Кратковременные перенапряжения

2. Коммутационные перенапряжения

3. Переходные перенапряжения, проходящие через повышающий трансформатор.

На большинстве электростанций повышающий трансформатор защищен ограничителями перенапряжения. Эти ограничители не могут во всех случаях обеспечить достаточную защиту от перенапряжений оборудования на низковольтной стороне и могут понадобиться дополнительные меры для защиты шины генератора и оборудования, подключенного к ней.

Последствия использования генераторного выключателя на подстанции при нормальных и аварийных режимах показаны в табл.1.1.

Таблица 1.1.

Последствия использования генераторного выключателя: нормальный режим и режим аварийного отключения

Режим

Соединение с генераторным выключателем

Устройства

Генераторный выключатель

Высоковольтный выключатель

Высоковольтный выключатель

Нормальный рабочий режим

1.1Разгрузка повышающего трансформатора на стороне высокого напряжения

___

Протекание пускового тока1. Возможна высокочастотная генерация на стороне высокого напряжения повышающего трансформатора (если выключатель расположен на некотором расстоянии от электростанции), феррорезонанс на стороне низкого напряжения повышающего трансформатора.

___

1.2. Устройство синхронизации со стороной высокого напряжения.

Сравнительно низкое напряжение, приложенное к выключателю перед отключением

___

Сравнительно высокое напряжение, приложенное к выключателю перед отключением (особенно плохо для выключателя наружной установки с сильным загрязнением).

1.3. Съемный блок, вышедший из строя.

Выключатель отключает небольшой ток (несколько процентов от номинального тока генератора). ПВН <1,0 pU 3

___

Выключатель отключает небольшой ток (несколько процентов от номинального тока генератора). ПВН <1,0 pU 3

1.4. Снятие возбуждения с повышающего трансформатора на стороне высокого напряжения.

___

Выключатель отключает ток намагничивания, небольшое перенапряжение переключения < 2,5pU.

___

Аварийный режим

2.1. Снятие возбуждения с повышающего трансформатора на стороне высокого напряжения

Выключатель отключает ток намагничивания, очень небольшое перенапряжение переключения < 2,0pU3

Выключатель отключает ток намагничивания, небольшое перенапряжение переключения < 2,5pU

___

2.2. Сброс нагрузки.

Временное перенапряжение (1,4 pU). Выключатель отключает ток нагрузки, ПВН<1,9 pU3

___

Временное перенапряжение (1,4 pU). Выключатель отключает ток нагрузки ПВН <1,7 pU

Аварийные отключения

3.1. К.з. между генераторным выключателем и генератором.

Выключатель отключает ток к.з. от системы ПВН <2,7pU. Для снятия возбуждения с генератора необходимо отключить ток к.з. генератора.

1 Величина пускового тока может быть снижена синхронизированным отключением

2 Использовать информацию относительно предотвращения феррорезонанса на стороне низкого напряжения повышающего трансформатора.

3 Относится только к элегазовым генераторным выключателям, т.к. воздушные и вакуумные выключатели могут вызвать большие перенапряжения.

Одним из основных параметров, определяющих выбор выключателя, является номинальный ток отключения (Iо ном), обеспечивающий выполнение защитных функций. Как правило, при выборе выключателя принимается условие отключение максимального тока КЗ, протекающего через выключатель.

Требования к номинальному току и току отключения генераторного выключателя зависят от того, в каких генераторных цепях он установлен и какие оперативные и защитные функции на него возлагаются. Примерные современные и прогнозируемые величины номинальных токов и токов к.з. приведены в табл.1.2.[4].

Номинальное напряжение должно быть в пределах 16-30 кВ. Класс изоляции генераторных выключателей обычно устанавливается один на все номинальные напряжения - 24 или 36 кВ.

Номинальный ток в пределах 12-50 кА. Номинальный ток отключения, в зависимости от защитных функций, от номинального тока генератора до 400 кА.

Таблица 1.2.

Параметры

Тип и характеристика

Гидростанций

Тепловых электростанций

АЭС

Номинальная мощность генераторов, МВА

200-300

200-1000

600-900

1650

2300

Номинальное напряжение, кВ

16

18-24

22

24-18

27

Номинальный ток, кА

7-12

7-24

16-24

40-50

50

Ток к.з. генератора, кА

50

50-100

60-100

150

180

Ток генератора, поступающий через трансформатор из сети:

Действующее значение, кА

100

200

200

310

380

Амплитудное значение, кА

270

540

540

870

1030

Ток динамической стойкости и ток включения от 270 до 1000 кА (амплитуда).

В дальнейшем предполагается работа генераторных выключателей в режиме АПВ.

Установка ГВ в цепях генераторов имеет следующие основные преимущества:

1. Достигается существенное повышение надежности эксплуатации, так как при аварийных отключениях генератора обеспечивается непрерывность питания системы собственных нужд 6--10 кВ. Без ГВ любое отключение генератора, в том числе и по режимным условиям, должно сопровождаться переключением ТСН с рабочего на резервный ТСН. Это существенно снижает надежность работы энергоблоков и электростанции в целом.

2. Обеспечивается возможность синхронизации генератора с сетью посредством ГВ, а не высоковольтными выключателями, установленными за повышающим трансформатором.

3. Обеспечивается возможность отключения генераторов по режимным условиям посредством генераторных выключателей, не затрагивая схем и высоковольтного оборудования открытого распределительного устройства (ОРУ) повышенного напряжения.

4. Представляется возможным применять более экономичные схемы электрических соединений с использованием укрупненных трансформаторов и с попарным присоединением турбогенераторов к ОРУ повышенного напряжения.

5. Обеспечивается возможность применения рабочих и резервных ТСН одинаковой мощности, что приводит к снижению токов к.з. В ряде случаев, например для тепловых электростанций с турбогенераторами мощностью 320 МВт, обеспечивается возможность применения более дешевых серий КРУ с меньшими токами отключения.

6. При наличии на электростанции более двух генераторов согласно нормам технологического проектирования ТЭС допускается установка одного резервного ТСН. Без ГВ требуется установка двух ТСН, что увеличивает стоимость и усложняет схему питания системы собственных нужд станции.

1.2 Схемы применения генераторных выключателей

Выбор типа и места установки ГВ определяется схемой и режимом работы блока электростанции, а также способом питания и ответственностью системы собственных нужд. При чисто блочной схеме выдачи мощности (генератор Г--повышающий трансформатор ПТ) генераторный выключатель в ряде случаев можно не устанавливать, а выполнение необходимых коммутационных операций возложить на коммутационный аппарат со стороны высшего напряжения. На рис. 1.2 показана схема соединения генератора с повышающим трансформатором без ГВ [5].

Рис.1.2. Схема блока генератор - повышающий трансформатор без генераторного выключателя

Питание системы собственных нужд блока в нормальных условиях обеспечивается через выключатель высшего напряжения (В1). В случае планового или аварийного отключения блока питание системы собственных нужд автоматически переключается с трансформатора собственных нужд ТСН1 на ТСН2 через выключатели В2, ВЗ и В4. Во время строительства и ввода в эксплуатацию станции питание ее системы собственных нужд также осуществляется от общестанционного ТСН2. При повреждении ТСН1 ток к.з., текущий от генератора через место повреждения в ТСН1, отключается на стороне высшего напряжения выключателем В1. За счет большой энергии, выделяемой в ТСН1 при повреждении, бак его может быть разрушен до отключения тока к.з. выключателем В1. Для защиты от повреждений в системе собственных нужд генератора Г и ПТ применяется ГВ (рис. 1.3).

Рис.1.3.

Для схем с укрупненными электрическими блоками на ГЭС (рис.1.4 - 1.6) токи КЗ от системы и других генераторов через выключатель превышают токи КЗ от генератора в 3-6 раз.

Установка ГВ в схеме блока Г--ПТ уменьшает перегрузки генератора и ТСН при несимметричных к.з. в сети высшего напряжения и при неправильной синхронизации. Это связано с тем, что выключатели на стороне высшего напряжения имеют обычно меньшее время отключения по сравнению со временем отключения ГВ. Поэтому при повреждении в цепи ГВ сначала отключается выключатель В1 па стороне высшего напряжения, а затем ГВ. ТСН коммутируется выключателем В2 схемы собственных нужд. Защита от повреждений в ПТ или ТСН может осуществляться либо с помощью ГВ, либо снятием возбуждения с генератора. Применение ГВ в данном случае предпочтительно, так как позволяет сократить продолжительность тока к.з. с 4--5 с до 0,06--0,1 с. При этом на несколько порядков уменьшается выделяемая энергия, пропорциональная , где I--ток к.з., t--длительность тока к.з., что позволяет резко уменьшить объем и последствия повреждений.

Имеются решения, когда по указанным причинам в цепи генератора установлен выключатель нагрузки - аппарат, рассчитанный на выполнение только оперативных функций выключателя, а защитные функции возложены на выключатель ВН. Это облегчает условия работы выключателя ВН и управления агрегатом.

Как показывают расчеты, указанные решения недостаточны для защиты трансформатора при внутренних КЗ, так как продолжительность тока КЗ при отсутствии выключателя определяется временем гашения поля генератора, которое составляет порядка 1,5 с. Такое время подпитки дуги КЗ в трансформаторе приводит к разрушению бака, возгоранию масла и обмоток трансформатора. Отечественный и зарубежный опыт это подтверждает, после такой аварии трансформатор не восстанавливается.

При наличии выключателя в цепи генератора ток КЗ прерывается за 0,05-0,1 с. В этом случае, как показывает практика, разрушение бака трансформатора не происходит и поврежденный трансформатор восстанавливается.

Поэтому установку в цепи генератора выключателя, обеспечивающего отключение тока КЗ от генератора, следует считать обязательной и это будет соответствовать ГОСТ 12.1.010 "Взрывобезопасность. Общие требования." Пункт 2.6 "Предотвращение возникновения источника инициирования взрыва должно быть обеспечено: ...применением быстродействующих средств защитного отключения возможных электрических источников инициирования взрыва."

Что касается отключения тока КЗ от системы, то как показывает практика, оно может быть возложено на выключатель ВН, при этом время воздействия на оборудование тока подпитки КЗ от энергосистем будет снижено, а ощутимых последствий по снижению надежности из-за перевода питания сети собственных нужд на резервный трансформатор не ожидается.

Применение ТСН на станциях выполняется по схемам с верхней (вариант I) и нижней (вариант II) перемычкой (рис. 1.7). Особенности упомянутых схем хорошо иллюстрируются в схеме объединенного блока. При повреждении ТСН1 или ТСН2 в схеме с верхней перемычкой необходимо отключать весь блок. При повреждении ТСН1 или ТСН2 в схеме с нижней перемычкой ГВ1 или ГВ2 соответственно отключают аварийно только один блок из двух. Оба варианта по надежности и затратам практически равноценны. Выбор схемы включения ТСН определяется ответственностью системы собственных нужд. В связи с этим на АЭС предпочтение отдается схеме с нижней перемычкой.

Рис.1.7. Упрощенная схема электростанции с двумя повышающими трансформаторами.

Имеются и другие схемы, в которых применение ГВ обеспечивают высокую гибкость, надежность системы и экономическую эффективность. Так, в схеме объединенных и укрупненных блоков применяется чередование схем с верхней и нижней перемычками. Ряд отечественных и зарубежных станций с крупными блоками для повышения надежности питания системы собственных нужд комплектуется дополнительным резервным дизель-генераторным источником питания.

Для схем с генераторными выключателями, обеспечивающими отключение токов КЗ только от генераторов, необходимо применение соответствующей логики действия электрических защит.

Проведенные предварительные проработки показывают, что изменения в логике действия защит будут в основном касаться дифференциальных защит генератора, блочного трансформатора и блока.

Дифференциальная защита генератора и дифференциальная защита блока должны сначала действовать на отключение выключателя ВН в укрупненных электрических блоках и на отключение выключателей неповрежденных цепей генераторов. После отключения указанных выключателей должен отключаться выключатель поврежденной цепи, затем должен включаться выключатель ВН для восстановления питания собственных нужд, а в укрупненных электрических блоках могут включаться в сеть генераторы с неповрежденными цепями.

Дифференциальная защита блочного трансформатора должна действовать одновременно на отключение выключателя ВН и выключателя генератора поврежденной цепи.

В зону действия дифференциальной защиты генератора следует включать генераторный выключатель.

1.3 Токоведущая система и система контактов

Выпускаемые промышленностью ГВ имеют различные электрические схемы. Рассмотрим основные из них, поясняющие принцип работы ГВ.

Наиболее простая схема (рис. 1.8, а) содержит главные 1 и дугогасительные 2 контакты. Для этой схемы в отключенном положении выключателя контакты 2 всегда разомкнуты.

Включение выключателя выполняют либо главными контактами 1 (контакты 2 при этом могут оставаться в разомкнутом состоянии или замыкаться после замыкания контактов 1), либо дугогасительными контактами 2, после которых замыкают главные контакты 1.

Порядок оперирования при отключении: размыкаются контакты 1, ток из главной цепи переходит в цепь контактов 2, а затем размыкаются контакты 2. Если во включенном положении контакты 2 разомкнуты, то по команде на отключение выключателя до начала размыкания контактов 1 замыкаются контакты 2 (только на время оперирования). После этого отключение происходит, как описано выше.

Рис.1.8. Основные электрические схемы генераторных выключателей.

В схеме рис. 1.8, б при включенном положении выключателя контакты 1, 2 и 3 замкнуты. Обязательным элементом такого выключателя является отделитель 3. Порядок оперирования при отключении: размыкаются контакты 1, после этого -- контакты 2 и затем уже без тока размыкаются контакты 3, после чего замыкаются контакты 2. Контакты 2, размыкающиеся только на время оперирования, принято называть импульсными. Включение осуществляется либо главными контактами 1, либо контактами отделителя 3.

Схемы рис. 1.8, а и б обычно применяются при Iо.ном, не большем 100 кА. Электрическая схема ГВ с Iо.ном, большим 100 кА, приведена на рис. 1.8,в. По сравнению с описанными выше схемами она снабжена шунтирующим резистором 4 и вспомогательным контактом 5. Включение ГВ осуществляется либо контактом 1, либо контактом 3. Отключение отличается тем, что после размыкания дугогасительных контактов 2 ток переходит в цепь резистора 4, ограничивается им, а затем прерывается вспомогательным контактом 5. [5].

Одним из основных недостатков ГВ является проблема переброса тока из главной токоведущей цепи в цепь дугогасительных контактов. Так как генераторное напряжение не велико, а мощность большая, то возникают большие токи. При перебросе 95% тока должно быть отправлено в дугогасительную цепь, что вызывает большое возмущение в системе. За счет этого возмущения возникает, так называемая дуга переброса, что приводит к оплавлению контактов.

Так как ГВ являются выключателями на большие токи, то возникает проблема с контактными системами. Происходит оплавление, сваривание контактов, что приводит к отказу аппарата при отключении. Решением является использование контактов из тугоплавких материалов (кирита); использование нескольких ярусов контактов в токоведущей системе с целью последовательного переброса тока из большего контура в меньший, что уменьшает индуктивность и облегчает условия переброса, при которых не возникает дуга переброса. Необычное решение этой проблемы реализовано в выключателе НЕ фирмы «АВВ» на напряжение 24кВ, отключаемый ток до 100кА, номинальный ток 12кА. На рис. 1.9 изображена схема его дугогасительного устройства.

Рис. 1.9. Дугогасительное устройство генераторного выключателя НЕ «АВВ»

I - вводы; 2 - катушка магнитного дутья; 3 - неподвижный дугогасительный контакт, он же металлическое дугогасительное сопло; 4 - подвижной дугогасительный контакт, он же - второе сопло; 5 - главный неподвижный контакт; 6 - главный мостиковый контакт; 7 - изоляторы; 8 - компрессионный поршень; 9 - изоляционный вал-тяга; 10 - камера высокого давления;

При отключении производится перемещение детали, которая выполняет одновременно функции Главного и дугогаситепьного контакта, дугогасительного сопла и компрессионного поршня. Сначала размыкаются главные контакты 5 и 6, потом дугогаситепьные 3 и 4. Внутри неподвижного соплообразного дугогаситепьного контакта помещена катушка магнитного дутья 2. При размыкании контактов дуга приходит в движение в магнитном поле и перекачивает газ в камеру высокого давления. Благодаря этому снижается эрозия и разрушение дугогасительных контактов. В случае, когда приходится отключать малый ток, небольшое давление в этой камере создается с помощью компрессионного поршня.

Также при отключении присутствует большое значение апериодической составляющей. На примере французкого генераторного выключателя FKG2S 24кВ, 63кА на рис. 1.10 видно что ток не проходит через ноль.

Рис. 1.10 Ток короткого замыкания с апериодической составляющей

На рис. 1.11,1.12 показано отключение дуги выключателем FKG2S за 18.4 мс, напряжение на дуге достигает 4.8 кВ в момент отключения.

Рис. 1.11. Осциллограммы тока Рис. 1.12. Напряжение на дуге в короткого замыкания и напряжения момент отключения.

Благодаря запасу давления газа за счет энергии дуги и эффекта автогенерации выключатель FKG2S успешно гасит дугу при повторном проходе тока через ноль. Это дает возможность отключать токи с большой постоянной времени апериодической составляющей.

В качестве примера отключения можно рассмотреть отключение генераторного блока 800 МВт выключателем нагрузки КАГ-24 [7].

Выключатель нагрузки КАГ-24 имеет четыре контакта, размыкающихся в определенной последовательности. Схема контактов полюса выключателя нагрузки КАГ-24 показана на рис. 1.10. При отключении генератора сначала начинает расходиться главный токоведущий контакт выключателя нагрузки 1. Через 20 - 30 мс после начала расхождения главного токоведущего контакта начинает отключаться основной дугогасительный контакт 2. Еще через 20 - 30 мс начинает расходиться вспомогательный дугогасительный контакт 3, последовательно с которым включен резистор 140 Ом. К этому времени должно произойти отключение тока основным дугогасительным контактом. Ток генератора, ограниченный резистором, окончательно гасится вспомогательными дугогасительными контактами. Затем отключаются контакты отделителя 4.

Рис. 1.10 Схема контактов выключателя нагрузки КАГ-24:

I - главный токоведущий контакт; 2 - контакт основной дугогасительной камеры; 3 - контакт вспомогательной дугогасительной камеры; 4 - контакт отделителя

Ни в одном из случаев отказов выключателя нагрузки КАГ-24 повреждений его дугогасительных камер не было. Все повреждения отмечались только в камере главных токоведущих контактов. Эти контакты размыкаются без напряжения на них, поскольку в начале расхождения контактов они шунтированы замкнутыми контактами основной дугогасительной камеры. Отключение тока нагрузки дугогасительными камерами происходит при еще не полностью разошедшихся главных токоведущих контактах. Камера главных токоведущих контактов не имеет дутья. Все эти обстоятельства требуют определения выдерживаемого напряжения главных токоведущих контактов в процессе коммутаций.

Осциллограммы токов и напряжений генератора в момент отключения показаны на рис. 1.11.

Рис. 1.11. Осциллограммы токов и напряжений в процессе отключения КАГ-24 НВГРЭС с применением РОМ

Из рис. 1.11 видно, что до отключения амплитуды фазных токов генератора составляли 450 - 470 А при амплитуде фазного напряжения 18,6 кВ. Приблизительно за два периода до отключения выключателя нагрузки амплитуды токов возрастают до 3,5 кА, а амплитуда фазного напряжения несколько снижается (до 18,2 кВ). Такое увеличение тока связано, видимо, с работой автомата гашения поля и переходом генератора из режима синхронного двигателя в режим асинхронного электродвигателя, в результате чего генератор набирает нагрузку (до 90 Мвар)

Ток отключения, измеряемый через трансформатор тока, практически воспроизводит ток отключения основной дугогасительной камерой, поскольку ток, отключаемый вспомогательной дугогасительной камерой, несоизмеримо меньше и воспринимается на осциллограмме как нулевая линия.

В зависимости от времени подачи импульса на автомат гашения поля отключение выключателем нагрузки генератора может происходить как при достаточно малом токе, так и при большом.

Для выяснения влияния отключаемого тока на восстанавливающееся напряжение были проведены расчеты по общепринятой методике. Программа расчета учитывала параметры всех основных элементов схемы генераторного присоединения:

генератор (индуктивность Ld" и эквивалентная емкость Соэ);

блочный трансформатор (индуктивность рассеяния с учетом ее уменьшения при высоких частотах и эквивалентная емкость на землю с учетом емкости между обмотками ВН и НН);

емкости оборудования генераторного блока на стороне 24 кВ.

Основные результаты расчетов при отключении генераторного блока 800 МВт в двигательном режиме приведены далее (числитель - восстанавливающееся напряжение на контактах основной дугогасительной камеры, знаменатель - вспомогательной).

Расчеты показывают, что восстанавливающиеся напряжения при отключении генераторного блока в двигательном режиме, хотя и зависят от отключаемого тока (500 или 3500 А), но существенно ниже нормируемой величины ПВН (переходного восстанавливающегося напряжения).

Следует, однако, учитывать, что расчеты проводились для отключения токов при естественном переходе его через нуль. Мощное дутье в дугогасительных камерах, которое рассчитано на отключение номинального тока нагрузки (24 кА), существенно меньшая амплитуда отключаемых токов с применением РОМ по сравнению с номинальным током не позволяют исключить возможность среза тока.

Расчеты показывают, что срез тока 90 А дополнительной дугогасительной камерой (амплитуда тока, отключаемая дополнительной дугогасительной камерой в рассматриваемом режиме) может увеличить перенапряжения на контактах выключателя нагрузки до 18 кВ, что ниже нормированной величины ПВН 24,5 кВ.

Если отключение генератора происходит до повышения токов, т.е. при токах до 500 А, то снижается ток, отключаемый вспомогательной дугогасительной камерой, до 10 - 20 А. Срез таких токов не приводит к перенапряжениям выше 5 кВ.

Меньшие отключаемые токи могут сократить время гашения дуги дугогасительными камерами. В этом случае расстояния между главными токоведущими контактами уменьшаются по сравнению с таковыми при гашении номинального тока, а следовательно, отключение может происходить при более низком значении межконтактной электрической прочности.

1.4 Параметры современных генераторных выключателей

Элегазовый выключатель с двумя ступенями давления изготовляется японской фирмой Mitsubishi на напряжение 24 и 36 кВ, номинальные токи 16кА при естественном охлаждении и 36 кА при обдуве воздухом совместно с токопроводом пофазно-экранированного шинопровода. Давление элегаза 1,5/0,3 МПа. Он может применяться как выключатель на ГАЭС и ГЭС с генераторами до 300 МВА, на ТЭС и АЭС он может применяться как генераторный выключатель нагрузки, или как генераторный выключатель с ограниченной мощностью отключения отключающий только ток к.з. генератора мощностью до1000 МВА. Достоинством этого выключателя является относительная бесшумность в работе и допустимость большого количества отключений номинального тока (16кА - 1000 раз). Недостатком являются относительная сложность конструкции, наличие компрессора (для рекомпрессии элегаза), значительно осложненная процедура ревизии и ремонта, заключающаяся в необходимости откачки элегаза, затрудненности доступа к токоведущим деталям при ревизии и ремонте и необходимости осушки внутренней поверхности кожуха и элегаза перед повторным вводом в эксплуатацию. Масса полюса выключателя в два раза превышает массу полюса выключателя Brown, Boveri на такие же параметры.

Фирма Brown, Boveri (Швейцария) начала выпускать мощные генераторные выключатели серии DR с 1969 г. Благодаря постоянно проводимым исследованиям и опытно-конструкторским работам номинальный ток выключателей серии DR доведен до 50000 А, а ток отключения до 250 кА.

Токи от 10 до 50 кА охватывает 7 типоисполнений. Главная токоведущая система выключателя и отделителя состоит из подвижного контакта, выполненного в виде медной трубы, и неподвижных контактов в виде розетки, содержащей около 200 посеребренных, подпружиненных контактных пальцев. Это основное типоисполнение при естественном охлаждении обеспечивает номинальный ток 10 кА при частоте 60 Гц и 11 кА при частоте 50 Гц. При установке выключателя в пофазно-экранированный продольно-продуваемый шинопровод, когда выключатель обдувается тем же потоком воздуха, что и шинопровод, номинальный ток выключателя увеличивается до 20 кА. Номинальный ток 24 кА достигается охлаждением токоведущего контура деионизированной проточной водой. Если выключатель установлен в продольно-продуваемый шинопровод, то его номинальный ток достигает 34 кА.

У выключателей на номинальные токи 40 и 45 кА, кроме водяного охлаждения токоведущих частей, охлаждается также и кожух.

Номинальный ток 50 кА обеспечивается, если выключатель водяного охлаждения смонтирован в продольно-продуваемом шинопроводе. Все контакты главной токоведущей цепи имеют надежное серебряное покрытие, поэтому максимальное превышение температуры нагрева принято равным 65 при расчетной окружающей температуре 40(допустимая температура нагрева 105).

Допустимы кратковременные температуры нагрева до 150 без повреждения изоляции, ухудшения переходных сопротивлений и нарушения механических характеристик.

Характеристики, присвоенные выключателям серии DR, были подтверждены типовыми испытаниями. Испытания на механическую стойкость проводились 5000 циклами ВО при нагретой контактной системе до предельно допустимой по нормам температуре.

Фирма Mitsubishi разработала генераторный выключатель тип 20-SFW-110.В табл.1.3. приведены основные параметры выключателя [4].

Таблица 1.3.

Параметры

Значения

Номинальное напряжение, кВ

24 и 36

Номинальный ток, кА

при естественном охлаждении

16

при принудительной конвекции, охлаждение потоком продольно обдуваемого шинопровода

36

Номинальный ток отключения, кА

симметричный ток

110

асимметричный ток

144

Время отключения, периоды

5

Время включения, с

0,15

Ток включения и динамической стойкости, кА (амплитуда)

360

Двухсекундная термическая стойкость, кА

144

Выключатель прошел все предусмотренные нормами виды типовых испытаний.

При испытании на нагрев оболочка выключателя выполняла роль «обратного» провода.

При длительной нагрузке током 16 кА и естественном охлаждении наибольшее превышение температуры контактных деталей было равно 44(при допустимой норме 65 для посеребренных контактов). При длительном токе нагрузки 36 кА и продольном обдуве шинопровода и выключателя воздухом, при производительности вентилятора 250 наибольшее превышение температуры было в пределах 53. Как показали дополнительные расчеты, выключатель будет соответствовать номинальному току 36 кА, если длина пофазно-экранированных шинопроводов не превышает 35 м.

Возможность отключения токов с большой апериодической составляющей, когда ток в одной из фаз не переходит через нулевое значение, было проверено расчетным путем, при том в расчет были введены величины падения напряжения на дуге, полученные экспериментальным путем (порядка 9 мОм при отключаемом токе 110 кА и 25 мОм при токе 60 кА). Большое внимание при исследованиях было уделено коммутационному ресурсу контактов. В условиях эксплуатации выключателей на ГАЭС дважды в сутки происходит переключение с генераторного на двигательный режим, причем по условиям работы гидротурбин при этом практически должен отключаться номинальный ток 16 кА.

Поскольку по техническим условиям ревизия и смена контактов должна осуществляться не чаще, чем один раз в три года, то ресурс контактов должен обеспечить не менее 365*2*3=2200 отключений до ревизии.

Для подтверждения этого требования было проведено 1000 отключений в однофазном режиме тока 16,3 кА при длительности горения дуги 0,65-0,75 периода. В процессе испытаний была установлена минимальная длительность горения дуги 0,2-0,35 периода.

Технические характеристики элегазовых генераторных выключателей, выпускаемых компанией АББ представлены в табл.1.4 и табл. 1.5. Конструкции выключателей и их основные размеры показаны на рис.1.17 - 1.19.

Рис 1.17. Генераторный выключатель типа HEK

1 - трансформатор тока, 2 - заземлитель, 3 - силовой выключатель, 4 - разъединитель, 5 - корпус выключателя.

Таблица 1.4.

Технические данные выключателя типа HEK/HEI.

Параметры выключателя

HEK1

HEI1

HEK2

HEI2

HEK3

HEK4

HEK5

HEK6

Номинальное напряжение

кВ

24

24

24

24

24

24

24

24

Испытательное напряжение относительно земли 50Гц, 1 мин

кВ

60

60

60

60

80

80

80

80

Для промежутка разъединителя 1

кВ

70

70

70

70

88

88

88

88

Испытательное напряжение грозового импульса 1,2/50 мкс

кВ

125

125

125

125

150

150

150

150

Для промежутка разъединителя 1

кВ

145

145

145

145

165

165

165

165

Номинальный ток2 3 при естественном охлаждении 50 Гц

А

7000

8000

8500

10000

11000

13000

11500

13500

Номинальный ток2 3 при естественном охлаждении 60 Гц

А

7000

8000

8000

9500

11000

12500

11500

13000

Номинальный ток2 3 при вынужденном охлаждении 50+60 Гц

А

-

-

-

-

16500

20000

16500

20000

Номинальный ток отключения

кА

63

63

63

63

100

100

120

120

Номинальный ток включения

кА

190

190

190

190

300

300

360

360

1 только для варианта с разъединителем

2 номинальный ток соответствует окружающей температуре мах 40оС.

3 Температура для токоведущей части выключателя: для проводников 90 оС;

Рис 1.18. Генераторный выключатель типа НЕК с встраиваемым заземлителем и трансформатором тока в баковом исполнении.

1 - трансформатор тока, 2 - заземлитель, 3 - силовой выключатель, 4 - привод силового выключателя, 5 - разъединитель, 6 - бак высокого давления, 7 - компрессор, 8 - блок управления, 9 - окно для ремонта, 10 - предохранительные окна.

Таблица 1.5.

Монтажные параметры для генераторного выключателя типа НЕК, мм.

Тип

A1

B3

C3

D

F2

G

H

HEK1

HEK2

1200

396

4133

900

1600-

2867

740

1320

HEK3

HEK4

1400

4020

4800

1124

1600-

2867

872

1320

HEK5

HEK6

1400

4020

4800

1124

1700-

2967

872

1320

1 Возможны другие размеры

2 После установки

3 Зависит от расстояния между фазами

Рис 1.19. Схема генераторного выключателя типа HG в баковом исполнении с встраиваемыми трансформатором тока и трансформатором напряжения.

1 - дугогасительная камера, 2 - привод, 3 - портал, 4 - камера (бак), 5 - блок управления, 6 - шина заземления, 7 - заземлительный выход для корпуса, 8 - подножник, 9 - механический указатель положения, 10 - основной токоподвод, 11 - трансформатор напряжения, 12 - трансформатор тока электромагнитный.

Таблица 1.6.

Технические данные для генераторных выключателей типа HG.

Параметры

Номинальное напряжение

кВ

17,5

Испытательное напряжение относительно земли 50/60Гц, 1 мин

кВ

50

Испытательное напряжение грозового импульса 1,2/50 мкс

кВ

110

Номинальный ток 50/60 Гц1 для конструкции в корпусе при естественном охлаждении

А

5000

Номинальный ток отключения

кА

50

Номинальный ток включения (амплитуда)

кА

138

1 Номинальный ток соответствует окружающей температуре мах 40оС. Температура для токоведущей части выключателя: для проводников 90 оС;

Для выявления областей больших токов и больших потерь, а также степени ограничения тока на разных частотах под влиянием поверхностного эффекта был проведен двумерный конечно-элементный анализ распределения тока в отдельных компонентах.

Для повышения точности модели итерационный процесс подкреплялся физической проверкой результатов, что позволило в конечном итоге найти оптимальное поперечное сечение проводника и идеальное распределение тепловых нагрузок в конструкции.

Ребра специальной конструкции, расположенные вокруг корпуса выключателя, увеличивают площадь его поверхности, способствуя тем самым максимальной теплоотдаче. Принудительное воздушное охлаждение, улучшающее конвективный теплообмен, позволяет повысить номинальный ток с 24 кА (при естественном охлаждении) до 38 кА.

Выводы

В данной главе рассмотрены особенности конструкции генераторных выключателей и преимущества установки их в генераторных цепях. При анализе отключаемых токов генераторных выключателей на различные классы напряжения при протекании токов к.з. от генератора и от системы выяснено, что современные генераторные включатели на напряжение 16-30 кВ способны отключить токи к.з. до 275кА . На основании этого были рассмотрены основные схемы включения ГВ на подстанциях. Приведены параметры и конструкции элегазовых генераторных выключателей ведущих зарубежных фирм. На основе чего можно говорить об актуальности проектирования элегазового генераторного выключателя 10кВ, 63кА, 8000А.

Глава 2. Взаимодействие выключателя с сетью

2.1 Анализ переходного восстанавливающего напряжения

При отключении короткого замыкания любого вида на контактах выключателя после погасания дуги восстанавливается переходное напряжение, обусловленное собственными параметрами сети в месте установки выключателя.

Формы ПВН в реальных сетях могут быть обобщены и заданы в виде огибающих, определяемых двумя параметрами: напряжением , условным временем его достижения ПВН (рис.2.1) для выключателей с кВ. Из-за влияния емкости со стороны источника питания происходит запаздывание роста ПВН на нормированное время [1].

Рис. 2.1. Номинальные характеристики ПВН, определяемого двумя параметрами

1 - условная граничная линия ПВН; 2 - линия запаздывания ПВН (параллельная граничной линии)

Параметры ПВН определяются следующими соотношениями:

(2.1)

, (2.2)

для выключателей с кВ:

(2.3)

(2.4)

где - полюсное возвращающее напряжение, - коэффициент первого гасящего полюса (при трехфазном коротком замыкании), - коэффициент превышения амплитуды.

Для выключателей с 35 кВ =1,5.

Значения , составляющее от 1,4 до 1,54, приведены в ГОСТ Р 5265 - 2006.

Номинальные характеристики ПВН для генераторных выключателей приведены в табл. 2.1

Таблица 2.1

Номинальные характеристики генераторных выключателей

,

кВ

,

кА

,

кВ

,

мкс

,

мкс

,

кВ/мкс

6/7,2

80

13,3

3,8

1

3,5

10/12

50

22,0

6,2

1

3,5

10/12

63

22,0

5,5

1

4,0

15/17,5

100

32,2

7,2

1

4,5

20/24

100

44,2

9,9

1

4,5

20/24

125

44,2

8,8

1

5,0

20/24

160

44,2

8,8

1

5,0

24/26,5

160

48,8

8,9

1

5,5

24/26,5

200

48,8

8,9

1

5,5

- скорость ПВН.

2.2 Расчет переходного восстанавливающего напряжения

По данным табл. 2.1

=22 кВ, =5,5 мкс, =1 мкс и =4 кВ/мкс

Находим:

кВ

мкс

мкс

По полученным данным строим характеристику ПВН (рис. 2.2)

Рис. 2.2. Характеристика переходного восстанавливающего напряжения

1 - условная граничная линия ПВН; 2 - линия запаздывания ПВН; 3 - кривая реального ПВН

2.3 Анализ влияния малых индуктивных токов

При отключении малых токов, дуга, как правило, подвергающаяся интенсивному воздействию дугогасящего вещества, может погаснуть ранее момента перехода отключаемого тока через нулевое значение. Это явление, называемое обычно срезом тока, возникает чаще всего при отключении токов намагничивания холостых трансформаторов или реакторов, составляющих единицы-десятки ампер.

Физическая картина рассматриваемого явления может быть проанализирована в расчетной схеме рис.2.1,а.

В этой схеме , - индуктивность и емкость источника ЭДС; - индуктивность соединительных шин; , и - параметры схемы замещения отключаемого электрооборудования (трансформатора или реактора).

Рис. 2.3. Стилизованные осциллограммы тока и напряжения (б) в схеме замещения (а)

Срез тока, как правило, происходящий на ниспадающей части отключаемого синусоидального тока (рис.2.3,б), обусловлен возбуждением высокочастотных колебаний в контуре - - при интенсивной деионизации канала дуги и резком изменении падения напряжения на нем. При этом суммарный ток (высокочастотная составляющая, наложенная на составляющую промышленной частоты) проходит через нулевое значение и дуга гаснет. После обрыва тока в выключателе возникает колебательный процесс в контуре - , обусловленный энергией, в основном запасенной в магнитной цепи трансформатора или реактора - ( - ток в индуктивном элементе в момент обрыва тока в выключателе). В колебательном процессе обмена эта энергия оказывается запасенной в электростатическом поле емкости , что может привести к существенному повышению напряжения на ней. Максимальное напряжение на отключаемом оборудовании может быть определено, исходя из выражения для энергетического баланса (при пренебрежении потерями энергии во время переходного процесса, моделируемыми в виде потерь на сопротивлении ( рис. 2.3,а):

, (2.5)

где - напряжение на емкости в момент обрыва тока в выключателе.

Из выражения (2.5) следует

(2.6)

где - характеристическое сопротивление схемы замещения отключаемого элемента.

Стилизованные осциллограммы отключаемого тока и напряжений показаны на рис. 2.3,б.

Со стороны источника также возникает высокочастотный процессобмена энергии определяемый относительно небольшой энергией, запасенной в индуктивности источника, и, следовательно, характеризующийся малой амплитудой колебаний. Частота высокочастотных колебаний в схеме замещения отключаемого оборудования определяется как . Напряжение, восстанавливающееся на контактах выключателя, показано на рис. 2.3,б штриховкой. Первый пик этого напряжения называется пиком гашения, второй - восстановления напряжения, зависящим в основном от величины тока среза и параметров отключаемой цепи.

Повышение коммутационного ресурса комбинированных генераторных выключателей может быть достигнуто путем применения вакуумных дугогасительных камер, характеризующихся нестабильностью горения дуги при малых отключаемых токах. Ток среза в этих камерах колеблется в диапазоне 5…30 А. Согласно экспериментальным данным ток среза зависит не только от типа дугогасительного устройства, но и от величины емкости, шунтирующей выключатель :

(2.6)

( - в фарадах, - в амперах),

где - экспериментальный коэффициент; =0,5 - для воздушных, маломасляных и элегазовых выключателей, =0,03 - для вакуумных выключателей.

Явление среза тока является актуальным не только для элегазовых выключателей. Одним из способов решения это проблемы является установка ограничителей перенапряжения, по обе стороны от выключателя.

2.4 Анализ влияния сквозных токов короткого замыкания

Стойкость аппарата при сквозных токах к.з. определяет его способность противостоять механическим и тепловым воздействиям, возникающим при прохождении этих токов через включенный аппарат. Стойкость аппарата характеризуется наибольшим пиком (электродинамическая стоимость) , равные , начальным действующим значением периодической составляющей равным , среднеквадратическим значением тока за время его протекания (термическая стойкость) , которое обычно не менее , и временем протекания тока к.з. (временем к.з.).

Учитывая сказанное, параметр выключателя может приниматься по току КЗ от генератора при условии обеспечения выключателем электродинамической и термической стойкости к сквозному току КЗ - току КЗ от системы.

В качестве примера в табл.2.2 приведены параметры выпускаемых в настоящее время в РФ и фирмами "ABB High voltage Technologies" и "GEC ALSTHOM" выключателей, которые выбраны отдельно с привязкой к токам КЗ от системы и к току КЗ от генератора, последние отмечены знаком *.

Таблица 2.2

Параметры генераторных цепей

Параметры выключателей

Тип

Изготовитель

, кВ

, А

Токи КЗ, кА

, кВ

, А

, А

К-1

К-2

1

18,0

6640

93,6

27,3

20,0

20,0

24,0

17,5

12500 12500

8000 12000

8000

160 *63 *63 100

*63

2,55 3,79 3,79 3,00

3,79

ВВГ-20

ВЭГ-20 НЕК2

НЕСЗ

HG1 3

ОАО, ЭА, С-П

ОАО, ЭА, С-П

ABB

ABB

ABB

2

15,75

9490

79

38,6

20,0

20,0

24,0

12500 12500 10000

160

*63

100

2,55

3,2

2,55

ВВГ- 20 ВЭГ- 20 IKCNI

ОАО, ЭА, С-П ОАО, ЭА, С-П

G-A

3

20,0

11950

92,0

55,0

20,0

20,0 24,0

12500 12500 12000

160

*63

100

2,55 3,72 3,00

ВВГ- 20 ВЭГ- 20 НЕСЗ

ОАО, ЭА, С-П ОАО, ЭА, С-П ABB

4

20,0

18700

138

76,6

20,0

36,0 24,0

20000 24000 24000

160

160

*100

2,55 2,55 3,52

ВВГ- 20 НЕС 7/8 НЕС 4

ОАО, ЭА, С-П

ABB

ABB

5

24,0

23500

154

99,1

36,0

24,0

24000 24000

160

*100

2,55 3,93

НЕС 7/8 НЕС 4

ABB

ABB

6

24,0

23500

169

99,1

36,0

24,0

24000 24000

*160

*100

2,69 4,30

НЕС 7/8 НЕС 4

ABB

ABB

7

10,5

7400

140

20,3

20,0

20,0

17,5

20,0

12500

12500

8000

8000

160

*63

*63

*90

2,55 5,66 5,66 4,00

ВВГ- 20 ВЭГ- 20 HG1 3 ВГМ-20

ОАО, ЭА, С-П ОАО, ЭА, С-П ABB

ОАО, ЭА, Н-Т

8

10,5

3600

80

15,0

20,0

10,0

24,0

17,5

6300

5000

10000

8000

90

*63

100

*63

2,55 3,23 2,80 3,20

МГУ-20 МГГ- 10 IKCNI HG1 3

ОАО, ЭА, Н-Т ОАО, ЭА, Н-Т

G-A

ABB

9

13,8

5350

100

16,1

20,0

20,0

20,0

24,0

17,5

12500 12500

6300 12000

6300

160

*63

105

100

*50

2,55 4,00 2,55 3,00 5,10

ВВГ-20

ВЭГ- 20 МГУ-20 НЕСЗ HG12

ОАО, ЭА, С-П ОАО, ЭА, С-П ОАО, ЭА, Н.Т ABB

ABB

10

13,8

7700

170

32,0

20,0

24,0

17,5

12500 12000

8000

*63

*100

*63

6,88 4,34 6,88

ВЭГ- 20 НЕСЗ HG1 3

ОАО, ЭА, С-П ABB

ABB

11

15,75

10400

190

42,0

20,0 24,0

12500 12000

*63

*100

7,69 4,85

ВЭГ- 20 НЕСЗ

ОАО, ЭА, С-П ABB

ОАО, ЭА, С-П - ОАО высоковольтного оборудования, С-Петербург;

ОАО, ЭА, Н-Т - ОАО "Нижнетуринский электроаппаратный завод";

ABB - "ABBHigh Voltage Technologies";

G - A - "GEC ALSTHOM"

Из табл.2.2 видно, что - коэффициенты электродинамической стойкости выключателей, обеспечивающих отключение только тока КЗ от генератора, должны превышать стандартное значение 2,5 в 1,05-3 раза для обеспечения электродинамической стойкости выключателей к токам КЗ от системы. Термическая стойкость должна быть увеличена в раза или должно быть уменьшено время протекания тока КЗ от системы по отношению к нормативу (3 с) в раза. Последнее целесообразно использовать, если время протекание тока КЗ сокращается не более чем до 1,5 с, что при современных средствах защиты вполне приемлемо. В остальных случаях следует учитывать совместно уменьшение времени воздействия тока КЗ и конструктивное увеличение термической стойкости выключателя.

Исполнение выключателей с повышенной электродинамической и термической стойкостью предусматривается пп. 3.5.1, 3.5.2 ГОСТ 687 "Выключатели переменного тока на напряжение свыше 1000 В. Общие технические условия".

Анализ конструкций современных выключателей показывает, что эти требования выполнимы, у ряда выключателей =3, а установленный на Усть-Илимской ГЭС выключатель нагрузки имеет =13.

Повышение требований к электродинамической и термической стойкости для существующего ряда генераторных выключателей и доработка выпускаемых выключателей до уровня, отвечающего этим требованиям, позволит применять один и тот же аппарат в электрических схемах с разными значениями токов КЗ.


Подобные документы

  • Расчет колонкового элегазового выключателя. Расчет внешней изоляции с расчетом длины изоляционных промежутков. Особенности элегаза, как изоляционной среды. Определение контактных соединений. Расчет газодинамических характеристик процесса отключения.

    дипломная работа [2,2 M], добавлен 25.10.2016

  • Использование элегаза в качестве дугогасящей среды на современном этапе, оценка его главных преимуществ по сравнению со сжатым воздухом и маслом. Понятие и внутреннее строение, конструкция элегазового выключателя, строение и функциональность привода.

    презентация [509,2 K], добавлен 09.12.2013

  • Изучение масляных выключателей. Выключатели по компоновке с дугогасительными камерами внизу и с камерами, расположенными сверху. Общий вид маломасляного генераторного выключателя. Применение искусственного обдува контактной системы и подводящих шин.

    лабораторная работа [2,6 M], добавлен 12.01.2010

  • Параметры выключателей высокого напряжения. Физико-химические свойства элегаза. Конструкция элегазовых выключателей, характеристика его составных частей. Преимущества, принцип работы и устройство выключателей серии ВГТ-110-40/2500 У1 И ВГТ-220-40/2500 У1.

    курсовая работа [1,6 M], добавлен 06.04.2012

  • Основные достоинства элегазового оборудования, определяемые уникальными физико-химическими свойствами элегаза. Принципиальное отличие элегазовых выключателей от других типов. Гашение дуги в выключателях типа LF. Измерение сопротивления изоляции.

    реферат [3,5 M], добавлен 14.01.2015

  • Технические характеристики и основные преимущества элегазового комплектного распределительного устройства. Общий вид конструкции основных элементов. Трансформатор напряжения для элегазовой ячейки. Конструкция элегазового ограничителя перенапряжений.

    презентация [2,1 M], добавлен 07.11.2013

  • Назначение и основные элементы масляного выключателя, его виды. Конструкции, преимущества и недостатки масляных многообъемных и малообъемных выключателей. Транспортировка и осмотр выключателя до монтажа, его установка на фундамент и заливка маслом.

    реферат [1,8 M], добавлен 31.01.2014

  • Выключатель высокого напряжения как основной коммутационный аппарат в электрических установках: основное назначение, рассмотрение особенностей. Общая характеристика электромагнитных выключателей и масляных с открытой дугой, анализ конструктивной схемы.

    курсовая работа [1,6 M], добавлен 22.03.2013

  • Выключатели нагрузки (ВН), предназначенные для отключения токов нормального режима. Принцип действия электромагнитного выключателя. Мероприятия по предотвращению отказов выключателей. Гашение электрической дуги в элегазовых и масляных выключателях.

    презентация [705,0 K], добавлен 04.10.2012

  • Устройство автоматического выключателя. Однолинейная магистральная схема электроснабжения производственного помещения (цеха). Расчет номинального тока электродвигателя. Выбор шин и проводов для линий электроснабжения. Расчет токов короткого замыкания.

    курсовая работа [453,2 K], добавлен 09.01.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.