Компьютерное моделирование системы в пакете Model Vision Studium
Создание математической модели бистабильной системы "нагреватель-охлаждающая жидкость". Решение задачи Коши для дифференциального уравнения второго порядка. Обзор особенностей компьютерного построения модели динамической системы развития двух популяций.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 20.10.2014 |
Размер файла | 1,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
ВВЕДЕНИЕ
В последнее время вычислительная техника приобретает всё большее значения в самых разных областях человеческой деятельности, начиная с повседневной жизни и заканчивая сложнейшими работами инженеров и учёных.
Вычислительная техника, и в частности компьютеры, облегчает задачи исследователей, связанных с математическими расчётами. Построение математической и компьютерной модели системы, работать в этой области стало проще, поскольку математические расчёты и выкладки без применения ЭВМ занимают много времени.
1. исследование устойчивости бистабильных систем
Бистабильные системы - это системы, имеющие при одном и том же входе (2 и более) устойчивые к малым возмущениям состояния (рис. 1). Эти состояния называются фазами.
рисунок 1. «Бистабильная система»
Высота опасного возмущения диктуется высотой перевальной точки. Метастабильная фаза - х1, устойчива в малом. Стабильная фаза - х2, устойчива в большом.
Например, режим работы системы «твердый нагреватель - кипящая жидкость» выглядит так, как представлено на рис.2 . Здесь q v - тепловыделение, u - периметр сечения нагревателя, S - площадь сечения, Т - температура.
Из рис.2 Т2 - это перевальная точка, неустойчивое состояние, а Т1 и Т3 - устойчивы к бесконечно малым возмущениям, следовательно - это бистабильная система.
рисунок 2. Система «твердый нагреватель - кипящая жидкость»
1.1 Условие задачи №1
Имеется система «нагреватель - охлаждающая жидкость». Дано дифференциальное уравнение температурного поля этой системы:
,
где W- тепловая нагрузка; u,s - периметр и площадь сечения нагревателя; c,, - теплоемкость, плотность, теплопроводность нагревателя;
Q(T)- плотность теплового потока в охладитель;
,
,
T1 - номер варианта по списку группы;
T2 - номер варианта + номер группы;
Т3 - номер варианта + утроенный номер группы.
1. Найти соответствующие температуру и размер домена: Tmax, ?L и построить профиль «горячего» домена.
2. Построить фазовый портрет стационарных решений уравнения.
Данные по варианту: a = 1, л = 1, c = 1, с = 1.
Номер моего варианта - 13, следовательно:
T1 =13, T2=16, Т3 =18
1.2 Результаты выполнения
Для того, чтобы выполнить эту задачу, во-первых, нужно решить задачу Коши для дифференциального уравнения второго порядка - дифференциального уравнения температурного поля этой системы:
Здесь начальные условия:
Все параметры дифференциального уравнения примем равными 1.
Во-вторых, изменяя начальные условия (изменять будем значение в пределах от 18 до 25) смотреть на график.
Решение, описанного выше, в математическом пакете MathCAD:
Окончательный график выглядит следующим образом:
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Из графика видно, что домен ?L=0.8, Tmax=20.28725612:
Теперь построим фазовый портрет:
Найдем тепловую нагрузку:
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Тепловая нагрузка W=7560 - сдвиг графика вниз по оси ординат.
2. компьютерное Моделирование системы в пакете Model Vision Studium
Компьютерное моделирование используют для исследования системы до того, как она спроектирована, с целью определения чувствительности ее характеристик к изменениям структуры и параметров объекта моделирования и внешней среды. На этом этапе проектирования системы компьютерное моделирование используют для анализа и синтеза различных вариантов и выбора максимально эффективного при принятых ограничениях. Также компьютерное моделирование можно применять после проектирования и внедрения системы, то есть при ее эксплуатации для дополнения натуральных испытаний и получения прогноза эволюции системы во времени.
Программный комплекс Model Vision Studium (MVS) как и ближайшая к нему по функциональным возможностям подсистема Simulink пакета Matlab, предназначен для моделирования сложных динамических систем. Но, в отличие от Simulink, MVS является представителем подхода к решению проблемы моделирования сложных динамических систем, основанного на использовании схемы гибридного автомата. Этот подход основан на использовании нового типа объекта - активного динамического объекта и специальной формы наглядного представления гибридного поведения - карты поведения.
Использование карты поведения при описании переключений состояний, а также непосредственное описание непрерывных поведений системы системами алгебро-дифференциальных уравнений предоставляет большие возможности в описании гибридного поведения со сложной логикой переключений.
2.1 Условие задачи №2
Создать в пакете MVS модель следующей системы:
Даны две биологические популяции, оспаривающие одну и ту же пищу. Пусть это будут популяции медведей (численностью N1) и волков (численностью N2) (рис.3):
Рисунок 3
Пусть при количестве пищи, достаточном для полного удовлетворения рассматриваемых видов, существуют постоянные положительные коэффициенты прироста популяций: e1 = 0,7мес-1 для медведей и e2 = 0,9мес-1 для волков. Для каждого вида заданы "коэффициенты прожорливости" - g1 = 0,7кг-1 и g2 = 0,5 кг-1, соответствующие потребности в пище для каждой из двух популяций.
Пусть F(N1, N2) - количество пищи, поедаемой обеими популяциями в единицу времени. Оно задается уравнениями (1) и (2), где уравнение (1) соответствует случаю, когда обе популяции активны, а уравнение (2) - когда медведи впадают в спячку. Переключение между режимами (1) и (2) происходит периодически, причем с режима (1) на режим (2) переключение происходит через отрезок времени Time1 = 9мес, а с режима (2) на режим (1) - через Time2 = 3мес:
(1)
(2),
где l1 и l2 - некие положительные коэффициенты.
Пусть l1 = 0,01кг/(мес*шт), l2 = 0,02кг/(мес*шт).
В начальный момент времени популяции обладают начальной численностью N1' = 10шт и N2'= 20шт.
Тогда развитие популяций описывается следующими уравнениями:
медведи:
(3)
волки:
(4)
Как только численность той или другой популяции становится меньше 1 (умирает последняя особь), засекается отрезок времени Time3 = 3мес (если это медведи) или Time3' = 5мес (если это волки), по истечении которого вместо прежней популяции поселяется новая популяция с новой начальной численностью (N1' если это медведи и N2' если волки).
Построить модель данной системы, а также модель системы, состоящей из двух систем типа "две популяции", несвязанных друг с другом. Вторая система "две популяции" идентична первой, за исключением того, что в ней вместо медведей и волков в качестве конкурирующих видов рассматриваются лоси и олени, имеющие иные значения коэффициентов прироста e1'и e2', другие значения "коэффициентов прожорливости" g1' и g2',а также иные значения коэффициентов l1 и l2.
2.2 Результаты выполнения
Для решения задачи №2 в MVS, я создала один класс Cpopul (рис. 4), с выходными переменными N1, N2 и Time, то есть выходами системы будут: численность популяции медведей, численность популяции волков и время соответственно.
Рисунок 4. Класс Cpopul
Начальные значения численности популяций объявим в разделе Параметры. А все константы, использующиеся в уравнениях задачи в разделе Константы. F1 обозначим количество пищи, поедаемой обеими популяциями в период активности обоих популяций, а F2 - в период спячки медведей. Эти переменные описаны в разделе Внутренние переменные.
После описания всех переменных и констант проект Cpopul выглядит следующим образом (рис.5):
Рисунок 5. Проект Cpopul.
Алгоритм поведения системы я отобразила на Карте поведения (рис. 6). Система имеет 4 состояния:
Состояние, когда активны обе популяции (Action)
Состояние, когда медведи находятся в спячке (Spachka)
Состояние, когда популяция волков вымерла (VolkNet)
Состояние, когда вымерла популяция медведей (MedvNet)
Переход в состояние 3 происходит при условии, когда N2<0, то есть численность волков меньше нуля. Переход из него в 1-е осуществляется после истечения 5 месяцев. А переход в 4 состояние происходит, когда N1 становится меньше нуля. Из 4 в активное - после прошествия 3 месяцев.
Переход из активного (1-го состояния) в спячку (2-е состояние) происходит, каждые 9 месяцев и длится 3 месяца, затем опять возвращается в состояние 1.
Для каждого состояния описана своя система уравнений, по которым происходит изменение переменных системы (рис.7).
Рисунок 6. Карта поведения системы.
Рисунок 7. Системы уравнений состояний класса Cpopul.
Теперь можно запустить систему. Из временной диаграммы численности медведей (рис.8) видно, что они вымирают через 8 месяцев, затем поселяется новая популяция через 3 месяца, и сразу она вымирает, а дальше все также происходит периодически. Тогда, как численность волков растет примерно до 90 и колеблется около этого числа (рис.9).
Рисунок 8. Временная диаграмма численности медведей.
Рисунок 9. Временная диаграмма численности волков.
Графически эту модель можно представить в виде двух шаров в 3D пространстве (рис. 10). Где радиус шара равен кубическому корню из численности популяции, умноженной на 3, и деленной на 4 (1):
(1)
Рисунок 10. 3D-анимация системы Cpopul.
бистабильный дифференциальный компьютерный популяция
ЗАКЛЮЧЕНИЕ
в результате выполнения работы были созданы математическая модель бистабильной системы «нагреватель - охлаждающая жидкость» и компьютерная модель динамической системы развития двух популяций.
В первой задаче изучено поведение стационарных решений уравнения теплопроводности в характерных точках внутри диапазона бистабильности, построены фазовые портреты, найдена тепловая нагрузка.
Во второй задаче изучено компьютерное построение модели системы, представление системы в виде 2D и 3D-анимации.
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
1. Советов, Яковлев. Моделирование систем.:2001 г.
2. Бенькович Е.С., Колесов Ю.Б., Сениченков Ю.Б. Практическое моделирование сложных динамических систем. С. Петербург, БХВ, 2001.- 441с
3. Петров Г.Н. Использование пакета “Model Vision” для создания компьютерных лабораторных работ.: Изд-во СПбГТУ , 2001. - с.53-54.
Размещено на Allbest.ru
Подобные документы
Понятие и условие устойчивости бистабильной системы. Исследование модели "нагреватель - охлаждающая жидкость", построение фазового портрета стационарных состояний нагревателя. Компьютерное моделирование данной системы в пакете model vision studium.
курсовая работа [1,1 M], добавлен 07.06.2013Компьютерное моделирование - вид технологии. Анализ электрических процессов в цепях второго порядка с внешним воздействием с применением системы компьютерного моделирования. Численные методы аппроксимации и интерполяции и их реализация в Mathcad и Matlab.
курсовая работа [1,1 M], добавлен 21.12.2013Стационарные решения уравнения теплопроводности в характерных точках внутри диапазона бистабильности, построение фазового портрета. Создание компьютерной модели динамики материальной точки в поле кольца Тора. Представление системы в виде 3D-анимации.
курсовая работа [500,3 K], добавлен 26.12.2014Идентификация реальных объектов, выбор и обоснование вида моделей. Динамическая система. Периоды и фазы клеточного цикла, контрольные точки, нарушение, значение, продолжительность. Регуляции перехода фаз. Компьютерное моделирование системе в пакете MVS.
дипломная работа [2,0 M], добавлен 17.02.2014Принципы построения систем с переменной структурой для управления свободным движением линейных объектов с постоянными параметрами. Разработка модели системы с переменной структурой с применением инструментов Model Vision Studium и Simulink пакета MathLab.
дипломная работа [4,3 M], добавлен 26.10.2012Создание дискретной модели популяции и определение развития численности популяции в зависимости от начального числа особей. Составление карты поведения системы. Процесс проектирования информационных систем, реализующих новую информационную технологию.
дипломная работа [1002,8 K], добавлен 09.10.2013Построение математической модели динамики популяций при помощи электронной таблицы MS Excel. Применение уравнения Лотка-Вольтерра как модели динамики системы "хищник-жертва". Контроль над численностью популяций живых организмов в экологических системах.
контрольная работа [659,9 K], добавлен 02.04.2017Численное решение задачи Коши для обыкновенного дифференциального уравнения первого и второго порядка методом Эйлера и Рунге-Кутты и краевой задачи для ОДУ второго порядка с применением пакета MathCad, электронной таблицы Excel и программы Visual Basic.
курсовая работа [476,2 K], добавлен 14.02.2016Моделирование имитационной модели системы управления, состоящей из ПИ-регулятора и инерционного объекта второго порядка. Прогон и оптимизация модели на системе имитационного моделирования ИМОДС. Оценка параметров системы до и после оптимизации.
курсовая работа [1,3 M], добавлен 17.02.2013Написание программы на языке SAS для построения модели скалярной динамической дискретной стохастической системы, анализ этой системы. Особенности использования фильтра Ф.К.1 с резервированием. Построение схемы резервирования датчиков для матрицы.
контрольная работа [32,7 K], добавлен 28.09.2013