Проектирование локальной сети для рабочих мест на базе сети Ethernet
Концепция построения, назначение и типы компьютерных сетей. Архитектура локальной сети Ethernet. Обзор и анализ сетевого оборудования и операционных систем. Обоснование выбора аппаратно-программной платформы. Принципы и методы проектирования ЛВС Ethernet.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 24.06.2010 |
Размер файла | 162,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Министерство образования и науки Республики Беларусь
Белорусский Государственный Университет Информатики и Радиоэлектроники
Кафедра СиУТ
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
к дипломному проекту
на тему:
«Проектирование локальной сети для рабочих мест на базе сети Ethernet»
Минск 2005
Содержание
1. Концепция построения, назначение и типы сетей
1.1 Архитектура локальной сети Ethernet
1.2 Два типа сетей
1.2.1 Одноранговые сети
1.2.2 Сети на основе сервера
1.3 Обзор топологии сетей
1.3.1 Шина
1.3.2 Звезда
1.3.3 Кольцо
1.3.4 Комбинированные топологии
Выводы
2. Обзор и анализ сетевого оборудования и операционных систем
2.1 Обзор сетевых кабелей и компонентов кабельной системы
2.1.1 Витая пара
2.1.2 Коаксиальный кабель
2.1.3 Волоконно-оптический кабель
2.1.4 Обзор кабельных соединений и компоновки Ethernet.
2.2 Анализ и выбор сетевого оборудования
2.2.1 Платы сетевого адаптера
2.2.2 Сетевые серверы
2.2.3 Анализ источников бесперебойного питания
2.2.4 Концентраторы
2.3 Обзор операционных систем
2.3.1 Unix/Linux
2.3.2Windows NT 4
2.3.3 NetWare
Выводы
3. Обоснование выбора аппаратно-программной платформы
3.1 Обоснование выбора среды передачи
3.2 Обоснование выбора сетевого оборудования
3.3 Обоснование выбора операционной системы
Выводы
4. Проектирование ЛВС Ethernet
4.1 Проектирование структурированной кабельной системы
4.1.1 Принцип построения СКС
4.1.2 Анализ кабельной системы
4.1.3 Расчет длины кабеля
4.2 Установка активного оборудования
4.3 Расчет потребляемой мощности источника бесперебойного питания
5. Анализ характеристик ЛВС Ethernet
6. Технико-экономическое обоснование проекта
6.1 Характеристика проекта
6.2 Сетевое планирование при проектировании локальной сети
6.3 Расчёт сметы затрат
7. Охрана труда и экологическая безопасность
7.1 Основные требования к освещению с учётом труда
7.2 Обоснование организации освещения и нормативного уровня освещённости рабочего места
7.3 Средства и способы обеспечения требуемой освещённости и равномерности светораспределения
7.4 Расчёт освещения рабочего места
Заключение
Литература
Введение
В наше время в условиях быстрого развития информационно-вычислительной техники информация выступает как один из важнейших товаров. Успех коммерческой и предпринимательской деятельности связан с банковскими, муниципальными, банковскими информационными системами, работа которых базируется на локальных вычислительных сетях (ЛВС).
Прошедшее десятилетие характеризовалось бурным развитием сетевых систем. Сети предоставляют самый эффективный в ценовом отношении способ использования компьютерной техники - коллективный. Соединив благодаря сравнительно небольшим затратам кабелями имеющиеся серверы, компьютеры, принтеры, модемы, вы получаете возможность сократить простой дорогого оборудования до минимума, сэкономив существенные суммы на его закупке и обслуживании.
В своей первоначальной форме локальные сети (Local Area Network - LAN) представляли собой не что иное, как коаксиальный кабель, соединяющий серверы с настольными терминалами, пользователи которых работали исключительно с текстовой информацией, отображаемой на монохромном мониторе с низкой разрешающей способностью.
В середине 90-х годов сети архитектуры Ethernet и Token Ring достигли пика своего развития. Однако, в отличии от первого поколения локальных сетей, кризис производительности возник отнюдь не из-за недостаточной пропускной способности. В сетях Ethernet, в частности, пропускная способность вообще не является проблемой. Напротив снижение эффективности функционирования было обусловлено другими причинами:
жёстокой конкуренцией за доступ к локальной сети;
насыщенностью доступной полосы пропускания не обязательными служебными сообщениями.
Принципиально новые типы программного обеспечения так же внесли свою лепту в раскрытие недостатков существующих сетей. Требования программного обеспечения к производительности сетей отличались от тех параметров, которые были в состоянии предоставить сети.
В настоящее время LANs превратились в локальные сети с пропускной способностью и производительностью, достаточной для традиционных форм обработки данных (например, электронной почты) и даже для таких требовательных к производительности процессора и сети клиент - приложение, как интерактивные голосовые и видеоконференции в реальном масштабе времени.
Сегодня сетевые технологии охватывают все вопросы, касающиеся совместного использования данных, программного обеспечения и компьютерной периферии, включая принтеры, модемы, многофункциональные копировальные и факсовые машины, накопители на компакт-дисках, стримеры, винчестеры и другое оборудование для хранения данных, средства доступа к Internet.
Относительно небольшая сложность и стоимость ЛВС, использующих в основном ПК, обеспечивают широкое применение сетей в автоматизации коммерческой, банковской и другой деятельности.
Всё это делает тему дипломного проекта очень актуальной в наше время.
Целью данного проекта является проектирование локальной сети для рабочих мест офиса на базе протокола Ethernet. Данная сеть должна обеспечивать подключение 48 компьютеров с учётом роста сети до 30% от существующего парка ПК(до 62 компьютеров), взаимодействие с ЛВС Token Ring. Сеть должна обеспечивать обмен между пользователями текстовой, графической информации а так же работу и использование некоторых мультимедийных приложений. Кроме этого сеть должна обеспечивать достаточную степень конфиденциальности и сохранности информации, защиту от несанкционированного доступа.
Локальную сеть необходимо спроектировать в двухэтажном здании с заданным расположением рабочих мест.
Для решения поставленной задачи необходимо было изучить структуру существующих сетей, общие принципы их построения, выбрать необходимое активное оборудование, спроектировать структурированную кабельную систему.
В первом разделе были рассмотрены основные типы сетей, существующие топологии построения сетей, дан краткий обзор ЛВС на базе протокола Ethernet 10BaseT и рассмотрены особенности работы этой сети.
Во втором разделе был дан обзор сетевых кабелей и основных компонент кабельной системы, активного сетевого оборудования не и сетевой операционной системы.
В третьем разделе был сделан выбор среды передачи, активного сетевого оборудования, сетевой операционной системы и дано обоснование данного выбора.
В четвёртом разделе была спроектирована структурированная кабельная система, рассчитана длина кабеля, мощность ИБП.
В пятом разделе произведён анализ характеристик локальной сети на базе протокола Ethernet.
В шестом разделе дано технико-экономическое обоснование проекта, произведено сетевое планирование при проектировании ЛВС Ethernet, приведён расчет сметы затрат.
В седьмом разделе, посвящённом охране труда и экологической безопасности, описываются требования к освещённости рабочих мест, и производится расчёт освещённости рабочего места оператора.
Таким образом в соответствии с поставленными задачами была спроектирована ЛВС Ethernet.
1. Концепция построения, назначение и типы сетей
1.1 Архитектура локальной сети Ethernet
Ethernet - самая популярная из используемых сегодня физическая архитектура сети. Созданная в 60-х годах в Гавайском университете как сеть ALOHA, она стала первой пакетной радиосетью, в которой используется метод множественного доступа с контролем несущей и обнаружением конфликтов (CSMA/CD).
В 1972 г. Роберт Меткалф и Девид Боффс реализовали в Xerox PARC сетевую архитектуру с кабельной системой и схемой передачи сигналов, а в 1975 г. они выпустили первый продукт Ethernet. Эта оригинальная сеть позволяла соединить более 100 компьютеров в сети со скоростью передачи данных менее 3 Мбит/с на расстоянии от одного километра.
На основе оригинальной спецификации компания Xerox, Intel и Digital создали расширенную спецификацию сети, позволяющую передавать данные со скоростью 10 Мбит/с. Данная спецификация стала основой для более позднего стандарта IEEE 802.3. В 1990 г. комитет IEEE 802.3 выпустил спецификацию для Ethernet, функционирующую на кабеле «витая пара».
Ethernet имеет шинную или звездообразную топологию, в которой используется передача сигнала в основной полосе частот и метод арбитража доступа к сети CSMA/CD. Среда передачи данных Ethernet пассивна, т.е.передачей сигналов по сети управляют компьютеры.
Ethernet осуществляет арбитраж доступа к сети по методу множественного доступа с контролем несущей и обнаружением конфликтов (CSMA/CD). Это означает что в каждый момент времени сеть может использовать только одна рабочая станция. CSMA/CD функционирует аналогично старым телефонным системам применявшимся в сельских районах. При необходимости поговорить по телефону нужно было снять трубку и послушать, не использует ли кто-нибудь линию. Если линия уже занята, то нельзя было уже набрать номер или разговаривать. Приходилось просто вешать трубку и ждать, а затем снова слушать, свободна ли линия. Когда два человека одновременно набирали номер, то возникал «конфликт», и им приходилось вешать трубки и пробовать снова. Первый из них, захвативший свободную линию, получал доступ и мог позвонить.
В Ethernet рабочие станции посылают сигналы (пакеты) по сети. При возникновении конфликта они они прекращают передачу, ждут в течении случайного периода времени, а затем повторяют её. Используя подобные правила, рабочие станции должны конкурировать между собой за возможность передать информацию по сети. По этой причине Ethernet называется системой с конкуренцией за захват линии. Большинство сетей Ethernet работает со скоростью 10 Мбит/с.
Кадр Ethernet IEEE 802.3
Комитет 802ю3 определил стандартный базис для всех типов кадров Ethernet. Минимальная длина кадра составляет 24 октета, максимальная ограничена 1500 октетами, включая полезные данные и заголовки. Для идентификации получателя и отправителя каждого пакета используются заголовки. Единственное ограничение идентификации - каждый адрес должен быть уникальным и состоять из шести октетов.
Первые 12 октетов каждого пакета отводятся под целевой адрес длиной 6 октетов (адрес предполагаемого получателя) и исходный адрес (адрес отправителя). Данные адреса являются кодами адресов аппаратного уровня и часто упоминаются как МАС-адреса. В качестве МАС-адреса может выступать либо уникальный «универсально настраиваемый адрес», который автоматически присваивается всем сетевым адаптерам Ethernet во время их изготовления, либо заданный при установке адрес. Автоматически присваиваемый МАС-адрес состоит из шести двузначных шестнадцатеричных чисел, разделённых двоеточием, например, 99:02:11:D1:8F:19. Первые две пары чисел являются идентификационным номером изготовителя. Каждый изготовитель сетевых адаптеров должен быть лицензирован IEEE и получить уникальный идентификационный номер и диапазон МАС-адресов.
Настраиваемые адреса известны под названием «локально настраиваемых». Они предназначены для идентификации комнаты, отдела, владельца расширения голосовой почты и т.п. Использование локально-настраиваемых адресов может вооружить сетевого администратора чрезвычайно ценной при обнаружении неисправностей информацией. К сожалению, присвоение таких адресов может оказаться чрезвычайно сложной и длительной задачей.
Соответствующие стандарту 802 кадры могут содержать адрес единственного компьютера или ссылаться на группу рабочих станций с общей, определяемой характеристикой. Передача данных к группе машин называется многоадресной передачей.
В нормальных рабочих условиях сетевые карты Ethernet получают только те кадры, адрес получателя которых соответствует уникальному МАС-адресу карты или удовлетворяет критерию многоадресной передачи. Однако большинство сетевых адаптеров могут функционировать в режиме приёма всех сетевых пакетов, соответствующем приёму абсолютно всех пакетов локальной сети вне зависимости от адресов. Использование такого режима связано с возникновением опасности несанкционированного доступа со стороны другого пользователя локальной сети, а также с проблемой снижения производительности не только сети, но и самого компьютера.
Хотя большинство усовершенствований стандарта 802.3 по отношению к предыдущим версиям Ethernet коснулись собственного протокола, одно значительное усовершенствование было внесено и в структуру кадра 802.3. Комитету 802 был необходим самодостаточный стандарт, не зависящий от хорошего поведения других протоколов. Поэтому свойственное протоколам предыдущих версий Ethernet поле Type длиной в два октета было заменено на поле Length аналогичной длины.
Располагая заданной минимальной и максимальной длиной поля, определённой с помощью временного окна передачи сообщения в худшем случае, было необязательно определять размер кадра для клиентского протокола. Вместо этого рабочая группа 802.3 изменила назначение поля длиной в два октета, которое теперь явно определяло длину поля данных кадра, и возложила задачу идентификации протокола на LLC. Структура кадра проиллюстрирована на рис.1.1.
Преамбула длиной 7 октетов |
Октет “ограничитель начала кадра” |
“Адрес получателя” длиной в 6 октетов |
“Организационный адрес” длиной в 6 октетов |
Поле длины данных длиной 2 октета |
Поле данных переменной длины (больше 46 октетов, но меньше 1482) |
Контрольная последовательность кадра длиной в 4 октета |
Рисунок 1.1. Кадр Ethernet стандарта IEEE 802.3
В кадре Ethernet стандарта IEEE 802.3 традиционное поле Type было заменено на поле Length. Вместо этого при необходимости идентификации типа протокола используется подкадр 802.2. Ещё одним усовершенствованием кадра 802.3 от предшественников является ограничение общего размера кадра в пределах от 64 до 1500 октетов, начиная от начала поля адреса получателя и до конца контрольной последовательности кадра.
Преамбула - это строка длиной в семь октетов, предшествующая каждому кадру и позволяющая синхронизировать передачу данных. Вслед за ней идёт ограничитель начала кадра (SFD). Само название этого октета говорит о его предназначении: он уведомляет о начале кадра все устройства локальной сети. За SFD следует повторяющаяся последовательность 1010101010.
SFD иногда рассматривается в качестве интегральной части преамбулы, а не части самого кадра, увеличивая тем самым размер преамбулы до восьми октетов.
Теперь рассмотрим предназначение контрольной последовательности кадра (FCS). Вычисленное значение присваивается этому полю компьютером, отсылающим кадр. Компьютер, получающий кадр, тоже знает способ вычисления значения и проверяет таким образом целостность пакета. Пакет может быть повреждён во время передачи из-за множества причин. Электромагнитные излучения, перекрёстные помехи и т.п. могут повредить пакет, не повлияв, однако, на его доставку по корректному адресу.
После получения пакета поле FCS проверяется на целостность с помощью методики циклического контроля избыточности (CRC). Принявший пакет компьютер выполняет те же вычисления, что и отославший пакет компьютер, и сравнивает полученное значение с прочитанным из поля FCS. Если значения совпали, можно быть уверенным, что прибыли корректные данные. В противном случае посылается запрос на повторную трансляцию пакета.
Ethernet 10 Мбит/с
В Ethernet применяются многие типы кабеля. В различных типах Ethernet применяются разные характеристики передачи сигналов, но во всех используется одна и та же спецификация кадров Ethernet, скорость 10 Мбит/с и арбитраж доступа CSMA/CD. Вот четыре наиболее распространённых типа кабельных систем Ethernet 10 Мбит/с:
10 Base 5 или толстая Ethernet с толстым коаксиальным кабелем
10 Base 2 или тонкая Ethernet с тонким коаксиальным кабелем
10 Base T, где применяется кабель типа «неэкранированная витая пара»
10 Base FL, в которой используется одно- или многомодовый волоконно-оптический кабель
Ethernet 100 Мбит/с
Для некоторых приложений скорости передачи 10 Мбит/с недостаточно. Существуют два конкурирующих стандарта, позволяющих увеличить традиционную производительность до 100 Мбит/с:
100 VG - AnyLAN
Ethernet 100 Base T или Fast Ethernet
При проектировании ЛВС для рабочих мест офиса на базе протокола Ethernet будет использоваться тип кабельной системы 10 Base T, который является наиболее оптимальным для небольших предприятий.
1.2 Два типа сетей
Все сети имеют некоторые общие компоненты, функции характеристики. В их числе:
серверы - компьютеры, предоставляющие свои ресурсы сетевым пользователям;
клиенты - компьютеры, осуществляющие доступ к сетевым ресурсам, предоставляемым серверами;
среда передачи - способ соединения компьютеров;
совместно используемые данные - файлы, предоставляемые серверами по сети;
совместно используемые периферийные устройства, например принтеры, библиотеки CD-ROM и т.д., - ресурсы, предоставляемые серверами;
ресурсы - файлы, периферийные устройства и другие элементы, используемые в сети.
Несмотря на отмеченное сходство, сети разделяются на два типа:
одноранговые;
на основе сервера.
Различия между одноранговыми сетями и сетями на основе сервера принципиальны, поскольку предопределяют разные возможности этих сетей. Выбор типа сети зависит от многих факторов:
размера предприятия;
необходимой степени безопасности;
вида бизнеса;
доступности административной поддержки;
объёма сетевого трафика;
потребностей сетевых пользователей;
уровня финансирования.
1.2.1 Одноранговые сети
В одноранговой сети (рис. 1.2) все компьютеры равноправны: нет иерархии среди компьютеров и нет выделенного сервера. Обычно каждый компьютер функционирует и как клиент, и как сервер; иначе говоря, нет отдельного компьютера, ответственного за всю сеть. Пользователи сами решают, какие данные на своём компьютере сделать доступными по сети.
Одноранговые сети чаще всего объединяют не более 10 компьютеров. Отсюда их другое название - рабочая группа, т.е. небольшой коллектив пользователей.
Рисунок 1.2. Одноранговая сеть.
Одноранговые сети относительно просты. Этим обычно и объясняется меньшая стоимость одноранговых сетей по сравнению со стоимостью сетей на основе сервера.
Одноранговая сеть вполне подходит там, где:
количество пользователей не превышает 10 человек;
пользователи расположены компактно;
вопросы защиты данных не критичны;
в обозримом будущем не ожидается значительного расширения фирмы и, следовательно, сети.
Если эти условия выполняются, выбор одноранговой сети будет скорее всего правильным.
1.2.2 Сети на основе сервера
Если к одноранговой сети, где компьютеры выступают в роли и клиентов, и серверов, подключить более 10 пользователей, она может не справиться с объёмом возложенных на неё задач. Поэтому большинство сетей имеют другую конфигурацию - они работают на основе выделенного сервера (рис. 1.3). Выделенным сервером называется такой сервер, который функционирует только как сервер и не используется в качестве клиента или рабочей станции. Он оптимизирован для быстрой обработки запросов от сетевых клиентов и для повышения защищённости файлов и каталогов. Сети на основе сервера стали промышленным стандартом.
Рисунок 1.3. Сеть на основе сервера.
При увеличении размера сети и объёмов сетевого графика необходимо увеличивать количество серверов. Распределение задач среди нескольких серверов гарантирует, что каждая задача будет выполняться наиболее эффективно.
Основным аргументом, определяющим выбор сети на основе сервера, является, как правило, надёжность защиты данных. В таких сетях, как Windows NT, проблемами безопасности может заниматься один администратор: он формирует единую политику безопасности и применяет её в отношении каждого сетевого пользователя.
Сети на основе сервера способны поддерживать тысячи пользователей. Сетями такого размера, будь они одноранговыми, управлять было бы невозможно.
1.3 Обзор топологии сетей
Термин «топология», или «топология сети», характеризует физическое расположение компьютеров, кабелей и других компонентов сети. Топология - это стандартный термин, который используется профессионалами при описании основной компоновки сети. Кроме термина «топология», для описания физической компоновки употребляют также следующее:
физическое расположение;
компоновка;
диаграмма;
карта.
Топология сети обуславливает её характеристики. В частности, выбор той или иной топологии влияет:
на состав необходимого сетевого оборудования;
характеристики сетевого оборудования;
возможности расширения сети;
способ управления сетью.
Чтобы совместно использовать ресурсы или выполнять другие сетевые задачи, компьютеры должны быть подключены друг к другу. Для этой цели в большинстве сетей применяется кабель.
Однако просто подключить компьютер к кабелю, соединяющему другие компьютеры, недостаточно. Разные типы кабелей в сочетании с различными сетевыми платами, сетевыми операционными системами и другими компонентами требуют и различного взаимного расположения компьютеров.
Каждая топология сети налагает ряд условий. Например, она может диктовать не только тип кабеля, но и способ его прокладки.
Топология может также определять способ взаимодействия компьютеров в сети. Различным видам топологий соответствуют различные методы взаимодействия, и эти методы оказывают большое влияние на сеть.
Все сети строятся на основе трёх базовых топологий:
шина;
звезда;
кольцо.
Если компьютеры подключены вдоль одного кабеля (сегмента), топология называется шиной. В том случае, когда компьютеры подключены к сегментам кабеля, исходящим из одной точки, или концентратора, топология называется звездой. Если кабель, к которому подключены компьютеры, замкнут в кольцо, такая топология называется кольца.
Хотя сами по себе базовые топологии несложны, в реальности часто встречаются довольно сложные комбинации, объединяющие свойства нескольких топологий.
1.3.1 Шина
Топологию «шина» часто называют «линейной шиной». Данная топология относится к наиболее простым и широко распространённым топологиям. В ней используется один кабель, именуемый магистралью или сегментом, вдоль которого подключены все компьютеры сети (рис. 1.4).
Рисунок 1.4. Простая сеть с топологией «шина»
В сети с топологией «шина» компьютеры адресуют данные конкретному компьютеру, передавая их по кабелю в виде электрических сигналов. Что бы понять процесс взаимодействия компьютеров по шине, необходимо уяснить следующие понятия:
передача сигнала;
отражение сигнала;
терминатор.
Данные в виде электрических сигналов передаются всем компьютерам сети; однако информацию принимает только тот, адрес которого соответствует адресу получателя, зашифрованному в этих сигналах (рис.1.5). Причём в каждый момент времени только один компьютер может вести передачу.
Рисунок 1.5. Данные посылаются всем компьютерам, но принимает их только адресат
Так как данные в сеть передаются лишь одним компьютером, её производительность зависит от количества компьютеров, подключённых к шине. Чем их больше, т.е. чем больше компьютеров, ожидающих передачи данных, тем медленнее работает сеть.
Однако вывести прямую зависимость между пропускной способностью сети и количеством компьютеров в ней нельзя. Ибо, кроме числа компьютеров, на быстродействие сети влияет множество факторов, в том числе:
характеристики аппаратного обеспечения компьютеров в сети;
частота, с которой компьютеры передают данные;
тип работающих сетевых приложений;
тип сетевого кабеля;
расстояние между компьютерами в сети.
Шина - пассивная топология. Это значит, что компьютеры только «слушают» передаваемые по сети данные, но не перемещают их от отправителя к получателю. Поэтому, если один из компьютеров выйдет из строя, это не скажется на работе стальных. В активных топологиях компьютеры регенерируют сигналы и передают их по сети.
Данные, или электрические сигналы, распространяются по всей сети - от одного конца кабеля к другому. Если не предпринимать никаких специальных действий, сигнал, достигая конца кабеля, будет отражаться и не позволит другим компьютерам осуществлять передачу. Поэтому, после того как данные достигнут адресата, электрические сигналы необходимо погасить.
Чтобы предотвратить отражение электрических сигналов, на каждом конце кабеля устанавливают терминаторы, поглощающие эти сигналы.
Все концы сетевого кабеля должны быть к чему-нибудь подключены, например, к компьютеру или к баррел-коннектору - для увеличения длины кабеля. К любому свободному - не подключённому - концу кабеля должен быть подсоединён терминатор, чтобы предотвратить отражение электрических сигналов.
Разрыв сетевого кабеля происходит при его физическом разрыве или отсоединении одного из его концов. Возможна также ситуация, когда на одном или нескольких концах кабеля отсутствуют терминаторы, что приводит к отражению электрических сигналов в кабеле и прекращению функционирования сети. Сеть «падает».
Сами по себе компьютеры в сети остаются полностью работоспособными, но до тех пор, пока сегмент разорван, они не могут взаимодействовать друг с другом.
Увеличение участка, охватываемого сетью, вызывает необходимость её расширения. В сети с топологией «шина» кабель обычно удлиняется двумя способами.
Для соединения двух отрезков кабеля можно воспользоваться баррел-коннектором. Но злоупотреблять ими не стоит, так как сигнал при этом ослабевает. Лучше купить один длинный кабель, чем соединять несколько коротких отрезков. При большом количестве «стыковок» нередко происходит искажение сигнала.
Для соединения двух отрезков кабеля служит репитер. В отличие от коннектора, он усиливает сигнал перед передачей его в следующий сегмент. Поэтому предпочтительнее использовать репитер, чем баррел-коннектор или даже один длинный кабель: сигналы на большие расстояния пойдут без искажений.
1.3.2 Звезда
При топологии «звезда» все компьютеры с помощью сегментов кабеля подключаются к центральному компоненту, именуемому концентратором (рис. 1.6). Сигналы от передающего компьютера поступают через концентратор ко всем остальным. Эта топология возникла на заре вычислительной техники, когда компьютеры были подключены к центральному, главному, компьютеру.
Рисунок 1.6. Простая сеть с топологией «звезда"
В сетях с топологией «звезда» подключение кабеля и управление конфигурацией сети централизованы. Но есть и недостаток: так как все компьютеры подключены к центральной точке, для больших сетей значительно увеличивается расход кабеля. К тому же, если центральный компонент выйдет из строя, нарушится работа всей сети.
А если выйдет из строя только один компьютер (или кабель, соединяющий его с концентратором), то лишь этот компьютер не сможет передавать или принимать данные по сети. На остальные компьютеры в сети это не повлияет.
1.3.3 Кольцо
При топологии «кольцо» компьютеры подключаются к кабелю, замкнутому в кольцо. Поэтому у кабеля просто не может быть свободного конца, к которому надо подключать терминатор (рис. 1.7). Сигналы передаются по кольцу в одном направлении и проходят через каждый компьютер. В отличие от пассивной топологии «шина», здесь каждый компьютер выступает в роли репитера, усиливая сигналы и передавая их следующему компьютеру. Поэтому, если выйдет из строя один компьютер, прекращает функционировать вся сеть.
Рисунок 1.7. Простая сеть с топологией «кольцо»
Передача маркера
Один из принципов передачи данных в кольцевой сети носит название передачи маркера. Суть его такова. Маркер последовательно, от одного компьютера к другому, передаётся до тех пор, пока его не получит тот, который «хочет» передать данные. Передающий компьютер изменяет маркер, помещает электронный адрес в данные и посылает их по кольцу.
Данные проходят через каждый компьютер, пока не окажутся у того, чей адрес совпадает с адресом получателя, указанным в данных.
После этого принимающий компьютер посылает передающему сообщение, где подтверждает факт приёма данных. Получив подтверждение, передающий компьютер создаёт новый маркер и возвращает его в сеть.
На первый взгляд кажется, что передача маркера отнимает много времени, однако на самом деле маркер передвигается практически со скоростью света. В кольце диаметром 200 м маркер может циркулировать с частотой 10000 оборотов в секунду.
1.3.4 Комбинированные топологии
В настоящее время часто используются топологии, которые комбинируют компоновку сети по принципу шины, звезды и кольца.
Звезда-шина
Звезда-шина - это комбинация топологий «шина» и «звезда». Чаще всего это выглядит так: несколько сетей с топологией «звезда» объединяются при помощи магистральной линейной шины (рис.1.8).
В этом случае выход из строя одного компьютера не оказывает никакого влияния на сеть - остальные компьютеры по-прежнему взаимодействуют друг с другом. А выход из строя концентратора повлечёт за собой остановку подключённых к нему компьютеров и концентраторов.
Рисунок 1.8. Сеть с топологией «звезда-шина»
Звезда-кольцо
Звезда-кольцо кажется несколько похожей на звезду-шину. И в той, и в другой топологии компьютеры подключены к концентратору, который фактически и формирует кольцо или шину. Отличие в том, что концентраторы в звезде-шине соединены магистральной линейной шиной, а в звезде-кольце на основе главного концентратора они образуют звезду (рис.1.9).
Рисунок 1.9. Сеть с топологией «звезда-кольцо»
Выводы
В этом разделе были рассмотрены основные концепции построения, назначение и типы сетей, архитектура ЛВС Ethernet. На основании этого можно сделать следующие выводы:
сеть Ethernet является одной из наиболее популярных современных локальных сетей и отвечает всем предъявляемым требованиям;
сеть Ethernet использует топологию «звезда-шина», что позволяет ей без особых трудностей изменять, расширять и модернизировать сеть с минимальными трудовыми и денежными затратами;
ЛВС Ethernet имеет высокую пропускную способность, что позволяет работать с современными мультимедийными приложениями.
2. Обзор и анализ сетевого оборудования и операционных систем
2.1 Обзор сетевых кабелей и компонентов кабельной системы
Для локальных сетей существует три принципиальные схемы соединения: с помощью витой пары, коаксиального или волоконно-оптического кабеля. Для передачи информации так же могут использоваться спутники, лазеры, микроволновое излучение и т.п., но подобная экзотика выходит за область рассмотрения этого курсового проекта.
2.1.1 Витая пара
Витая пара в настоящее время является самой распространённой средой передачи и представляет собой пару свитых проводов. Кабель, составленный из нескольких витых пар, как правило, покрыт жёсткой пластиковой оболочкой, предохраняющей его от воздействия внешней среды и механических повреждений. Схема витой пары представлена на рис. 2.1 .
Рисунок 2.1. Кабель из витых пар
В нормальных условиях витая пара поддерживает скорость передачи данных от 10 до 100 Мбит/с. Однако ряд факторов может существенно снизить скорость передачи данных, в частности, потеря данных, перекрёстное соединение и влияние электромагнитного излучения.
Для уменьшения влияния электрических и магнитных полей применяется экранирование (кабель из витых пар покрывается фольгой или оплёткой). Но после экранирования витой пары в значительной степени увеличивается затухание сигнала. Под затуханием сигнала подразумевается его ослабление при передаче из одной точки сети в другую. Экранирование изменяет сопротивление, индуктивность и ёмкость таким образом, что линия становится склонной к потере данных. Подобные потери могут сделать витую пару нежелательной и ненадёжной средой передачи. И экранированная, и неэкранированная витая пара используется для передачи данных на несколько сотен метров.
В соответствии со спецификациями ассоциации электронной и телекоммуникационной промышленности вводится пять стандартных категорий кабеля из витых пар. При определении категорий кабеля используется только неэкранированная витая пара (UTP).
Кабель первой категории используется для передачи голосовых данных. С начала 80-х годов кабель САТ 1 используется в основном в качестве проводки телефонных линий. Кабель первой категории не сертифицирован для передачи данных любого типа и в большинстве случаев не рассматривается как среда для передачи цифровых данных.
Кабель второй категории используется для передачи информации со скоростью не более 4 Мбит/с. Этот тип проводки характерен для сетей устаревшей сетевой топологии, использующих протокол с передачей маркера. Кабель тактируется частотой 1 Мгц.
Кабель третьей категории в основном используется в локальных сетях с устаревшей архитектурой Ethernet 10base-T и сертифицирован для передачи данных со скоростью до 16 Мбит/с. Кабель тактируется частотой 16 МГц.
Кабель четвёртой категории используется в качестве среды соединения сетей с кольцевой архитектурой или архитектурой 10base-T/100base-T. Кабель САТ 4 сертифицирован для передачи данных со скоростью до 16Мбит/с и состоит из четырёх витых пар. Тактируется частотой 20 МГц.
Кабель пятой категории является самой распространённой средой передачи для Ethernet. Кабель поддерживает скорость передачи данных до 100Мбит/с и используется в сетях с архитектурой 100base-T и 10base-T. Кабель тактируется частотой 100 МГц.
2.1.2 Коаксиальный кабель
Коаксиальный кабель является широко распространённой и достаточно удобной средой передачи данных. Такое название кабель получил вследствие того, что состоит из двух проводников. Один проводник (цельная или витая жила) экранируется вторым, который тоже может быть сплошным или переплетённым. Проводники, как правило, разделены слоем диэлектрического материала. Сам кабель покрыт пластиковой оболочкой. Коаксиальный кабель лучше защищён от помех и позволяет увеличить длину сегмента сети. Использующие коаксиальный кабель сети стандартов 10base-2 - приблизительно 180 м. На рис. 2.2 и 2.3 показан коаксиальный кабель в разрезе.
Рисунок 2.2. Сечение коаксиального кабеля.
Рисунок 2.3. Продольный разрез коаксиального кабеля.
С увеличением диаметра коаксиального кабеля пропускная способность повышается. Однако одновременно с этим увеличиваются затраты на выполнение проводки из такого кабеля, поскольку необходимо использовать специальные инструменты. Характерные свойства коаксиального кабеля:
Он менее подвержен влиянию шума по сравнению с витой парой.
Кабель состоит из двух концентрических проводников, разделённых слоем диэлектрического материала.
Импеданс коаксиального кабеля может быть равен 75 Ом (кабель толщиной Ѕ дюйма) или 50 Ом (кабель толщиной 3/8 дюйма).
2.1.3 Волоконно-оптический кабель
Это тонкая и гибкая среда, позволяющая передавать данные в виде световых волн по стеклянному «проводнику» или кабелю. Волоконно-оптические линии связи используются на расстояниях свыше одного километра. Характерной их особенностью является высокая защищённость от несанкционированного подключения (что не удивительно, поскольку для передачи данных не используются электрические сигналы). Существует две разновидности кабеля: одномодовый и многомодовый.
Устройство волоконно-оптического кабеля
Коаксиальный и волоконно-оптический кабель устроены почти одинаково. Сердечник последнего состоит из сплетения тонких стеклянных волокон и заключён в пластиковую оболочку, отражающую свет обратно к сердечнику. Плакирование покрыто концентрическим защитным слоем пластика. На рис. 2.4 показано устройство волоконно-оптического кабеля.
Рисунок 2.4. Волоконно-оптический кабель
Все данные в компьютере представляются с помощью нулей и единиц. Все стандартные кабели передают бинарные данные с помощью электрических импульсов. И только волоконно-оптический кабель, используя тот же принцип, передаёт данные с помощью световых импульсов. Источник света посылает данные по волоконно-оптическому «каналу», а принимающая сторона должна преобразовать полученные данные в необходимый формат (см. рис. 2.5).
Одномодовый и многомодовый кабель
В относительно тонком волоконно-оптическом канале свет будет распространяться вдоль продольной оси канала. В учебниках физики этот эффект упоминается в следующей формулировке - «импульсы света распространяются в осевом (аксиальном) направлении». Именно это и происходит в одномодовом кабеле (см. рис. 2.6).
Однако преимущества этого типа передачи ограничены. С целью устранения подобных ограничений стали выпускать подобный кабель. Но тут возникла другая проблема - лучи света имеют свойство входить в канал под различными углами волны проходят различное расстояние и прибывают к получателю в разное время. Этот эффект, проиллюстрированный на рис. 2.7, получил название модальной дисперсии.
Источник света Волоконно-оптический кабель Приёмник 1
Рисунок 2.5. Принцип работы волоконно-оптического кабеля.
Оболочка Плакирование
Рисунок 2.6. В тонком кабеле свет распространяется по одномодовому пути
Оболочка Плакирование
Аксиальный луч
Рисунок 2.7. В толстом кабеле неаксиальные лучи подвержены модальной дисперсии
Чем больше количество мод света в канале, тем уже полоса пропускания. В дополнение к тому, что различные импульсы достигают получателя практически одновременно, усиление дисперсии приводит к наложению импульсов и введению получателя в «заблуждение». В результате снижается общая пропускная способность. Одномодовый кабель передаёт только одну моду световых импульсов. Скорость передачи данных при этом достигает десятков гигабит в секунду. Одномодовый кабель в состоянии поддерживать несколько гигабитных каналов одновременно, используя для этого световые волны разной длины. Следовательно, пропускная способность многомодового волоконно-оптического кабеля ниже, чем у одномодового.
Простейший способ уменьшения дисперсии - нивелирование волоконно-оптического кабеля. В результате лучи света синхронизируются таким образом, что дисперсия на стороне приёмника уменьшается. Дисперсия также может быть уменьшена путем ограничения количества длин световых волн. Оба метода позволяют в некоторой степени уменьшить дисперсию, но не в состоянии привести скорость передачи данных в соответствие с одномодовым волоконно-оптическим кабелем.
В США широко используется многомодовый волоконно-оптический кабель 62.5/125. Обозначение «62.5» соответствует диаметру сердечника, а обозначение «125» - диаметру плакирования (все величины приведены в микронах). Из одномодовых распространены кабели с маркировкой 5-10/125. Ширина полосы пропускания обычно приводится в МГц/км. Хорошей моделью взаимоотношений полосы пропускания и дальности передачи служит резиновый жгут - с увеличением расстояния полоса пропускания сужается (и наоборот). В случае передачи данных на расстояние 100 метров полоса частот многомодового кабеля составляет 1600 Мгц при длине волны 850 нм. Аналогичная характеристика одномодового кабеля составляет приблизительно 888 ГГц.
Основные характеристики волоконно-оптического кабеля:
Абсолютный иммунитет к электромагнитным излучениям.
Возможна передача данных на расстояние до 10 км.
В лабораторных условиях реально достичь скорости передачи до 4 Гбит/с.
В качестве источника света может использоваться светоизлучающий диод или лазер.
2.1.4 Обзор кабельных соединений и компоновки Ethernet
Существует четыре основные схемы кабельных соединений, используемых в среде Ethernet: толстая Ethernet, тонкая Ethernet, Ethernet на витой паре, волоконно-оптическая Ethernet. Различиями в их спецификации, компоновки и количестве узлов обусловлена разница производительности конкретных систем Ethernet.
Скорость передачи для всех типов Ethernet одинакова и составляет 10 Мбит/с. Схемой соединения для каждого типа может быть конфигурация либо в виде шины, либо в виде звезды.
Толстая Ethernet - 10Base5
передача данных - 10 Мбит/с, однополосная;
схема соединений - в виде шины;
тип кабеля, используемого в среде толстой Ethernet, - как правило, широкий коаксиальный (диаметром 4 дюйма);
максимальная длина сегмента - 500 м;
сегменты кабеля толстой Ethernet должны иметь 50-омную оконечную нагрузку;
для удлинения сегмента можно использовать повторители и другие устройства, также как кабельные концентраторы;
рабочие станции и сетевые устройства подключаются к сети через внешние трансиверы, или MAU;
для подключения трансивера к кабельной среде используется разъём типа отвод-вампир;
к сегменту толстой Ethernet можно подключить до 100 рабочих станций или устройств LAN;
система кабельных соединений толстой Ethernet обеспечивает более надёжную защиту от электрических помех.
Тонкая Ethernet
передача данных - 10 Мбит/с, однополосная;
схема соединений - в виде шины;
тип кабеля, чаще всего используемый в этой среде, - RG58A;
максимальная длина сегмента - 185 м;
сегменты кабеля тонкой Ethernet должны иметь 50-омную оконечную нагрузку;
для удлинения сегмента можно использовать повторители и другие устройства, также как кабельные концентраторы;
рабочие станции и сетевые устройства подключаются к сети через внешние трансиверы, или MAU. Они могут быть внешними или внутренними по отношению к сетевым платам;
для подключения трансивера к кабельной среде используется адаптер типа BNC-T;
к одному сегменту тонкой Ethernet посредством трансиверов может подключаться не более 30 рабочих станций или сетевых устройств.
Ethernet на витой паре - 10Base-T
передача данных - 10 Мбит/с, однополосная;
схема соединений - в виде звезды;
тип кабеля, чаще всего используемый в этой среде, - неэкранированная витая пара, уровни 3, 4 и 5;
центральные кабельные концентраторы служат для подключения отдельных кабелей - отводов 10Base-T к рабочим станциям и устройствам локальной сети;
максимальная длина сегмента на один UTP кабель-отвод Ethernet - 100 м. Эта величина может меняться в зависимости от изготовителя конкретного кабельного концентратора и сетевого адаптера;
сетевые платы Ethernet, основанные на UTP, обычно поставляются с внутренними UTP-трансиверами. В случае отсутствия внутренних UTP-трансиверов можно подобрать соответствующее внешнее устройство, с помощью которого стандартные платы для толстой и тонкой Ethernet смогут работать в схеме UTP;
в качестве разъёма сетевой платы обычно используется модульное гнездо RJ45 с положительными и отрицательными парами приёма и передачи, основанными на 8-игольчатых соединениях;
кабельные соединения UTP легко монтировать и обслуживать, их относительная стоимость невысока. Они восприимчивы к электрическим помехам и должны монтироваться в соответствии со спецификацией.
Волоконно-оптическая Ethernet 10Base-F
передача данных - 10 Мбит/с, однополосная;
схема соединений - в виде звезды;
обычно используется 50- или 100-микронный волоконно-оптический кабель;
для подключения отдельных кабелей-отводов 10Base-F к рабочим станциям и устройствам локальной сети используются центральные волоконно-оптические кабельные концентраторы или многопортовые повторители;
максимальная длина сегмента на один волоконно-оптический кабель-отвод Ethernet - до 2100 м;
волоконно-оптический кабель обеспечивает максимальную защиту от помех со стороны источников электроэнергии.
Кабельные разъёмы Ethernet.
В зависимости от типа Ethernet, для соединения с сетевыми платами, трансиверами, повторителями и концентраторами используются различные типы кабельных разъёмов.
Все устройства, предназначенные для работы с толстой Ethernet, снабжены 15-игольчатым AUI- или DIX-разъёмом. Рабочая станция или другое устройство подключается к трансиверу Ethernet посредством кабеля интерфейса подключения устройства, соединяющего DIX-разъём на сетевой плате Ethernet с DIX-разъёмом на трансивере. Трансивер, в свою очередь, подключается к коаксиальному кабелю Ethernet либо с помощью разъёмов, либо с помощью отвода-вампира, который вгрызается непосредственно в кабель. Для соединения двух коаксиальных кабелей используется целый ряд разъёмов коаксиальных кабелей.
Для подключения кабелей Ethernet непосредственно к разъёму на рабочей станции или другому устройству в среде тонкой Ethernet служит Т-образный разъём BNC. Надо отметить, что разъём часто является источником различных проблем с тем или иным кабельным сегментом в среде тонкой Ethernet. Чтобы избежать их, необходимо проверить, правильно ли он подсоединён к коаксиальному кабелю.
Ethernet 10 Base-T используется для соединений между сетевыми платами 10Base-T и интеллектуальными кабельными концентраторами, базирующимися на UTP Ethernet, стандартный разъём телефонного типа RJ45.
На обычном кабельном концентраторе довольно часто встречаются различные разъёмы типа Ethernet для организации соединений между разнотипными сетями. Например, на задней панели обычного кабельного концентратора 10 Base-T очень часто можно увидеть DIX-разъём для подключения AUI толстой Ethernet, а также BNC-разъём для подключения стандартной толстой Ethernet. Это позволяет интегрировать системы различных типов Ethernet с целью организации их совместной работы. На одной плате Ethernet очень часто размещаются разъёмы BNC, RJ45 и AUI.
Рисунок 2.8. Основные разъёмы для различных сред Ethernet
На рис. 2.8 показаны основные виды разъёмов, встречающихся в системах различных типов Ethernet, в том числе DIX-разъём толстой Ethernet, разъём тонкой Ethernet и разъём RJ45 10Base-T, для UTP.
2.2 Анализ и выбор сетевого оборудования
При проектировании локальной сети Ethernet будет использовано следующее оборудование:
платы сетевого адаптера;
активные концентраторы;
сервер;
источник бесперебойного питания;
мост.
2.2.1 Платы сетевого адаптера
Платы сетевого адаптера выступают в качестве физического интерфейса между ПК и средой передачи. Платы вставляются в ISA и PCI слоты расширения всех сетевых ПК и серверов.
Чтобы обеспечить физическое соединение между ПК и сетью, к соответствуюшему разъёму, или порту, платы подключается сетевой кабель.
Платы сетевых адаптеров предназначены для :
подготовки данных, поступающих от ПК, к передаче по сетевому кабелю;
передачи данных к другим ПК;
управления потоками данных между ПК и кабелем.
Плата сетевого адаптера состоит из аппаратной части и встроенных программ, записанных в ПЗУ. Эти программы реализуют функции подуровней управления логической связью и управления доступом к среде канального уровня OSI.
Перед тем как послать данные в сеть, плата сетевого адаптера должна перевести их из формы, понятной ПК, в форму в которой они могут передаваться по сетевому кабелю.
Плата сетевого адаптера принимает параллельные данные и организует их для последовательной, побитовой передачи. Этот процесс завершается переводом цифровых данных ПК в электрические и оптические сигналы, которые и передаются по сетевым кабелям. Отвечает за эти преобразования трансивер (приёмопередатчик).
Плата сетевого адаптера, помимо преобразования данных, должна указать своё местонахождение, или адрес, - чтобы её могли отличить от остальных плат. Для этого на плате сетевого адаптера существуют переключатели, которыми устанавливается номер (адрес) ПК.
Основными элементами сетевых адаптеров являются:
приёмопередатчик (трансивер);
сетевой контроллер;
память микропрограмм;
оперативная память.
Сетевые адаптеры Ethernet бывают двух типов: со скоростью передачи 10 Мбит/с и 100 Мбит/с. Они известны высокой надёжностью, а возникающие проблемы с кабелем и адаптерами легко поддаются диагностике.
2.2.2 Сетевые серверы
Под сервером понимается компьютер, предоставляющий свои ресурсы другим компьютерам. Сервер осуществляет обработку и хранение основной информации, находящейся в компьютерной сети. В связи с разнообразием используемой информации и видов её обработки существуют различные типы серверов, наиболее распространённым из которых является файловый сервер.
Под файловым сервером понимается компьютер, подключённый к сети используемый для хранения файлов данных к которым обращаются рабочие станции. С точки зрения пользователя файловый сервер рассматривается как центральный архив, в котором хранится общая ля всех рабочих станций информация. Централизованное хранение данных позволяет более эффективно осуществлять контроль над данными, а также доступ к ним со стороны пользователей.
В более сложных компьютерных сетях кроме файлового сервера могут присутствовать и другие виды серверов, например: сервер печати, сервер базы данных, Web-сервер, почтовый сервер и др.
По составу оборудования серверы мало чем отличаются от рабочих станций, однако к самому оборудованию предъявляются более высокие требования. Это связано с тем, что файловый сервер должен достаточно быстро обрабатывать множество запросов от всех рабочих станций. С увеличением числа рабочих станций и сложности решаемых задач значительно возрастают требования к серверу по производительности, объёму памяти, надёжности. В табл 2.1 представлены минимальные требования к аппаратному обеспечению для сетевого сервера.
Таблица 2.1 Требования к аппаратному обеспечению для сетевого сервера
Категория |
Требования для Intel-платформ |
Требования для RISC-платформ |
|
Тип процессора |
32-битный х86 (80486/33 или выше) |
Поддерживаемый RISC-процессор |
|
Объём оперативной памяти |
Минимум 16 Мб |
Минимум 16 Мб |
|
Объём жёсткого диска |
Один или несколько жёстких дисков минимум с 125 Мб свободного пространства для Windows NT Server |
Один или несколько жёстких дисков минимум с 160 Мб свободного пространства для Windows NT Server |
|
Другие дисковые устройства |
3,5” дисковод высокой плотности плюс CD-ROM дисковод |
CD-ROM дисковод |
|
Видеосистема |
Видеоадаптер VGA (или лучше) |
Подобные документы
Обзор и анализ возможных технологий построения сети: Ethernet, Token Ring, FDDI, Fast Ethernet. Основные виды кабелей и разъемов. Выбор архитектуры, топологии ЛВС; среды передачи данных; сетевого оборудования. Расчет пропускной способности локальной сети.
дипломная работа [476,4 K], добавлен 15.06.2015Обоснование выбора оптимальных сетевых решений на базе многозадачных операционных систем для построения компьютерной сети стандартов Fast Ethernet с учетом необходимых требований к сети. Методы расчета спроектированной конфигурации сети на корректность.
курсовая работа [3,1 M], добавлен 06.12.2012Выбор и обоснование технического обеспечения для разрабатываемой локальной сети в школе с использованием технологии Ethernet и топологией "звезда". Перечень активного и пассивного технического оборудования, необходимого для локальной вычислительной сети.
курсовая работа [190,4 K], добавлен 15.11.2012Анализ зоны проектирования, информационных потоков, топологии сети и сетевой технологии. Выбор сетевого оборудования и типа сервера. Перечень используемого оборудования. Моделирование проекта локальной сети с помощью программной оболочки NetCracker.
курсовая работа [861,6 K], добавлен 27.02.2013Понятие локальной вычислительной сети. Активное и пассивное сетевое оборудование. Топологии "Шина", "Кольцо", "Звезда". Структурированная кабельная система. Математическая модель компьютерной сети. Основные стандарты реализации Ethernet и Fast Ethernet.
курсовая работа [441,2 K], добавлен 21.12.2014Преимущества и недостатки сетевого соединения компьютеров. Компоненты компьютерной сети. Оборудование Ethernet, характеристика классов коммутаторов Ethernet, кабельных систем. Монтаж и настройка сети, решение проблем, связанных с сетевым оборудованием.
курсовая работа [482,5 K], добавлен 29.06.2010Проектирование компьютерной локальной сети по технологии Ethernet 10Base-T, 1000Base-LX , выбор топологии и необходимого аппаратное и программное обеспечение. Расчет затрат на сетевое оборудование, проектирование и монтаж локальной сети организации.
курсовая работа [73,5 K], добавлен 09.07.2014Логическая структуризация и проектирование сети. Основные недостатки сети, построенной на одной разделяемой среде. Преодоление ограничений из-за использования общей разделяемой среды. Структуризация с помощью повторителей и мостов. Размер сети Ethernet.
реферат [24,0 K], добавлен 28.11.2010Структура локальной компьютерной сети организации. Расчет стоимости построения локальной сети. Локальная сеть организации, спроектированная по технологии. Построение локальной сети Ethernet организации. Схема локальной сети 10Base-T.
курсовая работа [126,7 K], добавлен 30.06.2007Способы связи разрозненных компьютеров в сеть. Основные принципы организации локальной вычислительной сети (ЛВС). Разработка и проектирование локальной вычислительной сети на предприятии. Описание выбранной топологии, технологии, стандарта и оборудования.
дипломная работа [2,3 M], добавлен 19.06.2013