Использование табличного процессора MS Excel для реализации численных методов в инженерных и экономических расчетах
Примеры инженерных и экономических задач, технологию их решения с использованием MS Excel. Задача максимизации прибыли предприятия. Модель Леонтьева, схема межотраслевого баланса. Предельный анализ и оптимизация прибыли, издержек и объема производства.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | лабораторная работа |
Язык | русский |
Дата добавления | 05.06.2012 |
Размер файла | 891,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования РФ
Нижегородский государственный технический университет им. Р.Е. Алексеева
Факультет Экономики, Менеджмента и Инноваций
Кафедра: "Менеджмент"
Курсовая работа на тему:
Использование табличного процессора MS Excel для реализации численных методов в инженерных и экономических расчетах
Выполнил: студент группы 10-МЕНк
Селина Анастасия Сергеевна
Проверил: Зубов Николай Викторович
Нижний Новгород 2011 год
Содержание
- Введение
- Лабораторная работа № 1. "Задача максимизации прибыли предприятия"
- Лабораторная работа № 2. "Модель Леонтьева"
- Лабораторная работа № 3. "Предельный анализ и оптимизация прибыли, издержек и объема производства"
- Заключение
- Используемая литература
Введение
При решении многочисленных инженерных и экономических задач обычно реальное явление заменяется математической моделью. Модель является упрощенным представлением реальности и обычно содержит некоторое количество уравнений. Главной задачей моделирования является максимальное приближение к реальности при достаточной простоте модели. В ряде случаев удается найти аналитическое решение задачи. Однако в большинстве своем приходится использовать численные методы. Эти методы предполагают, применение ЭВМ и сводятся к некоторым действиям над числами. При этом в большинстве случаев решение является приближенным.
Существуют различные подходы к реализации численных методов. Традиционный подход предполагает построение алгоритма метода с последующим программированием на языке высокого уровня. В последнее время широко используются специализированные программные продукты - математические пакеты типа MathCad, которые существенно упрощают процесс составления алгоритма и обладают встроенными библиотеками и графическими возможностями. В данной работе описан еще один подход, позволяющий в ряде случаев существенно ускорить процесс решения задачи. Он основан на использовании табличного процессора Excel, широко распространенного среди пользователей. Вместе с тем, применение данного программного продукта для реализации численных методов до сих пор не нашло соответствующего отражения в литературе.
Методическая разработка содержит краткое описание некоторых численных методов, примеры инженерных и экономических задач и технологию их решения с использованием пакета Excel. Предполагается наличие у студентов основных навыков работы с электронными таблицами типа Excel.
Лабораторная работа № 1. "Задача максимизации прибыли предприятия"
Одной из распространенных экономических задач является задача максимизации прибыли предприятия. Известно, что балансовая прибыль есть разница между выручкой и затратами на производство продукции P=N-Z. В общем случае выручка от реализации продукции может быть представлена полиномом 2-й степени от количества продукции N=a0Q+a1Q2. Нелинейность может быть связана с тем, что в условиях монополии цена единицы продукции k может уменьшаться с ростом количества выпущенной продукции Q: k=a0+a1Q (a0>0, a1<0). В свою очередь, функция затрат может быть представлена полиномом 3-й степени Z=b0+b1Q+b2Q2 +b3Q3. Кубическая нелинейность может объясняться тем, что при производстве малой партии товаров издержки быстро растут, затем с ростом Q темп роста издержек уменьшается, но по достижении некоторого критического значения Q начинает работать "закон убывающей отдачи", в соответствии с которым издержки вновь начинают расти ускоренными темпами. Прибыль максимальна, когда dP/dQ = 0. С помощью пакета Excel решим данную задачу, полагая заданными коэффициенты: b0 = 0, b1=1, b2= 7, b3 = - 0,15, a0= 15, a1= 3, a2=-0,1, a3=0,01.
Последовательность действий при реализации в пакете Excel
1. Оформить заголовок в строке 1 "Максимизация прибыли".
2. В ячейки A3, ВЗ, СЗ, D3 и ЕЗ записать заголовки рядов - соответственно Q, N, Z, P, и dP/dQ.
3. В ячейки F3, F4, F5, F6, F9, F10 записать названия коэффициентов - соответственно b0, b1, b2, b3, a0, a1.
4. В ячейки G3, G4, G5, G6, G9, G10, G11 записать значения коэффициентов - соответственно 15; 3; - 0,1; 0,01; 0; 7; - 0,15.
5. В ячейку Н9 ввести текст "Издержки Z= a0+a1*Q+a2*Q^2+a3*Q^3"
6. В ячейку Н10 ввести текст "Выручка N=b0+b1*Q+b2*Q^2"
7. В ячейку Н11 ввести текст "Прибыль P=N-Z"
8. В ячейки А4 и А5 ввести первые два значения аргумента - 0 и 1.
9. Выделить ячейки А4-А5 и протащить ряд данных до конечного значения
(21), убедившись в правильном выстраивании арифметической прогрессии.10. В ячейку В4 ввести формулу "=$G$9+$G$10*A4+$G$11*A4^2".
11. Скопировать формулу на остальные элементы ряда, используя прием протаскивания. В интервале В4: В25 получен ряд результатов вычисления выручки N (Q).
12. В ячейку С4 ввести формулу " =$G$3+$G$4*A4+$G$5*A4^2+$G$6*A4^3".
13. Скопировать формулу на остальные элементы ряда, используя прием протаскивания. В интервале С4: С25 получен ряд результатов вычисления издержек Z (Q).
14. В ячейку D4 ввести формулу "=B4-C4".
15. Скопировать формулу на остальные элементы ряда, используя прием протаскивания. В интервале D4: D25 получен ряд результатов вычисления прибыли P (Q).
16. В ячейку Е4 ввести формулу "= ($G$10-$G$4) +2* ($G$11-$G$5) *A4-3*$G$6* A4^2".
17. Скопировать формулу на остальные элементы ряда, используя прием протаскивания. В интервале Е4: Е25 получен ряд результатов вычисления dP/dQ для различных значений Q.
18. Построить на одной диаграмме графики зависимостей N (Q), Z (Q) и P (Q), используя соответствующие ряды данных.
19. Построить на отдельной диаграмме зависимость dP/dQ от Q. Точка пересечения графика с осью абсцисс дает значение Q, соответствующее максимальной прибыли (шаговый метод).
Вывод:
С помощью пакета Microsoft Excel можно решить задачу максимизации прибыли. Прибыль максимальна, когда производная (dP/dQ) равна 0. При этом точка пересечения графика с осью абсцисс (в данном случае это ось Q) дает значение оптимального выпуска продукции, который соответствует максимальной прибыли. В итоге я получила оптимальный выпуск продукции, равный 13 шт, при котором максимальная прибыль равна 4 ден. ед.
excel инженерная экономическая задача
Лабораторная работа № 2. "Модель Леонтьева"
Основой многих линейных моделей производства является схема межотраслевого баланса. Идея метода впервые в явном виде была сформулирована в работах советских экономистов в 20-х годах и получила затем развитие в трудах В.В. Леонтьева по изучению структуры американской экономики. Предположим, что производственный сектор народного хозяйства разбит на п отраслей. Причем каждая отрасль выпускает продукт только одного типа, а разные отрасли выпускают разные продукты. Кроме того, в процессе производства своего вида продукта каждая отрасль нуждается в продукции других отраслей. В качестве примера рассмотрим упрощенную модель межотраслевого баланса, предполагая, что экономика страны состоит из 3-х отраслей (промышленности, сельского хозяйства и транспорта).
Введем следующие обозначения уi - конечный спрос на продукцию i-й отрасли, хi - выпуск продукции i-й отрасли. cij - доля продукции отрасли i, потребленной в процессе производства продукции отрасли j. В этом случае в соответствии с моделью Леонтьева имеем следующую систему линейных уравнений:
Задача состоит в нахождении неизвестных x1, x2, x3. Остальные величины считаются заданными. Заметим, что все коэффициенты cij изменяются в пределах от 0 до 0,3. Это обеспечивает сходимость при использовании итерационных методов.
Последовательность действий при реализации модели в пакете Excel с использованием метода простой итерации (рис.8).
1. Ввести в ячейку H1 текст заголовка "Модель Леонтьева" (выравнивание по центру).
2. Ввести в ячейку H2 текст "Данные" (выравнивание по центру).
3. В области F4: J7 ввести исходные данные как показано на рисунке.
4. Обозначить в области А9: А12 номер итерации k и названия переменных х1, х2, x3.
5. В области В9: В12 задать начальные значения переменных (нули).
6. В ячейку С9 ввести 1, выделить ячейки В9 и С9 и, используя прием протаскивания, заполнить ряд до столбца О.
7. Ввести в ячейку С10 формулу "= ($J$5+$H$5*B11+$I$5*B12) / (1-$G$5) Получим значение переменной х1 на первой итерации.
8. Ввести в ячейку С11 формулу "= ($J$6+$G$6*B10+$I$6*B12) / (1-$H$6)". Получим значение переменной х2 на первой итерации.
9. Ввести в ячейку С12 формулу "= ($J$7+$G$7*B10+$H$7*B11) / (1-$I$7) Получим значение переменной х3 на первой итерации.
10. Выделить диапазон С10: С12 и скопировать его до столбца О, используя прием протаскивания
11. В области A14: O33 построить диаграмму, показывающую процесс приближения значений переменных х1, х2, х3 к решению системы. Диаграмма строится в режиме "Точечная", где по оси абсцисс откладывается номер итерации.
Вывод:
Задачу межотраслевого баланса можно решить с помощью пакета Excel. Решив данную задачу при помощи Модели Леонтьева, были найдены значения х1. х2, х3 (x1?616; x2?934; x3?746) - выпуска продукции 3-х отраслей (промышленности, сельского хозяйства и транспорта). По графику, можно определить какая из отраслей обладает наибольшим выпуском продукции.
Лабораторная работа № 3. "Предельный анализ и оптимизация прибыли, издержек и объема производства"
Вернемся к задаче максимизации прибыли предприятия. Математическое решение данной задачи сводится к максимизации функции прибыли:
P = kQ - Z
Функция имеет экстремум, когда ее производная равна нулю:
Анализ зависимости между ценой продукта и его количеством в динамике позволяет выбрать для функции спроса линейную форму вида k = a0 + a1Q. Анализируется n периодов, в каждом из которых считаются заданными параметры ki и Qi. По методу наименьших квадратов определяются неизвестные параметры a0 и a1 на основе составления и решения системы нормальных уравнений вида
Аналогично проводится анализ зависимости между издержками и количеством выпускаемой продукции, который позволяет определить для функции издержек линейную форму связи вида Z = b0 + b1Q. Неизвестные b0 и b1 также находятся на основе решения системы нормальных уравнений вида:
Оптимальные параметры определяются из соотношений:
Qopt = (b1 - a0) / (2a1); Zopt = b0 + b1Qopt; kopt = a0 + a1Qopt;
Nopt = koptQopt.; Popt = Nopt. - Zopt = (a0+a1Qopt) Qopt - (b0+b1Qopt)
Обычно предельный анализ проводится с использованием метода наименьших квадратов путем решения систем линейных уравнений для нахождения функций спроса и издержек. Табличный процессор Excel позволяет существенно уменьшить объем вычислений путем использования встроенных функций линейной регрессии.
Найденные функции спроса k (Q) и издержек Z (Q) позволяют определить функцию прибыли P (Q). Максимальное значение этой функции может быть найдено средствами пакета анализа "что-если" Excel. Команда Он позволяет находить значение параметра-переменной, при котором зависящее от него значение функции в целевой ячейке достигает максимума или любого другого заданного значения (рис.13).
Последовательность действий:
1. Введем исходные данные (табл.1).
2. Применим функцию ЛИНЕЙН для вычисления коэффициентов a1, a0 функции спроса k (Q):
· выделить интервал A17: B17;
· напечатать формулу =ЛИНЕЙН (B9: G9; B8: G8);
· нажать <Ctrl+Shift+Enter>.
Результат в ячейке A17 - значение коэффициента a1, в ячейке B17 - значение коэффициента a0.
3. Аналогично находим коэффициенты b1, b0 функции издержек Z (Q):
· выделить интервал D17: E17;
· напечатать формулу =ЛИНЕЙН (B10: G10; B8: G8);
· нажать <Ctrl+Shift+Enter>.
Результат в ячейке D17 - значение коэффициента b1, в ячейке E17 - значение коэффициента b0.
4. Найденные функции спроса k (Q) и издержек Z (Q) позволяют определить функцию прибыли P (Q). Максимальное значение этой функции (оптимальная прибыль Popt при некотором значении Q (Qopt) может быть найдено средствами оптимального решения анализа "что-если" пакета Excel.
Вывод:
Исходя из данных таблицы 2 и графика зависимости прибыли от объема производства, видно, что максимальная прибыль (P=631,80) достигается при объеме производимой продукции равной 59.
Заключение
Основной целью данной работы является использование численных методов. Данные методы предполагают, использование пакета Microsoft Excel и сводятся к некоторым действиям над числами, при этом множество решений являются приближенными.
В процессе создания данной работы я приобрела новые знания в сфере решения экономических задач при помощи пакета Microsoft Excel численных методов. С первым, с чем я столкнулась в курсовой работе это задача максимизации прибыли предприятия. Прибыль максимальна, когда производная (dP/dQ) равна 0. При этом точка пересечения графика с осью абсцисс (в данном случае это ось Q) дает значение оптимального выпуска продукции, который соответствует максимальной прибыли. В процессе работы я использовала модель Леонтьева. Задача заключалась в рассмотрении упрощенной модели межотраслевого баланса, предполагая, что в экономике только 3 отрасли. Для этого нужно было найти выпуск продукции в каждой отрасли. Так же в течение работы я находила предельный анализ оптимизацию прибыли, издержек и объема производства. В данном примере я анализировала зависимости между ценой продукции и его количеством в первом случае, а во втором зависимость между издержками и количеством выпускаемой продукции.
Используемая литература
1. Методическая разработка по курсу "Информатика" для студентов всех форм обучения "Использование табличного процессора Excel для реализации численных методов в инженерных и экономических расчетах". Составители: В.Ф. Билюба, В.Н. Ершов, С.Н. Митяков, О.И. Митякова, С.П. Никитенкова, Н.Я. Николаев. 2000год
2. "Основные технологии работы с табличным процессом Excel". Составители: Н.В. Зубов, И.В. Лапшин, С.Н. Митяков, С.П. Никитенкова, А.Н. Демин.
Размещено на Allbest.ru
Подобные документы
Описание средств электронной таблицы Excel для проведения экономических расчетов, работа с формулами. Предметная область, математическая модель и технология решения задачи с использованием табличного процессора, проверка решения аналитическим способом.
курсовая работа [668,2 K], добавлен 13.12.2012Характеристика принципов решения инженерных задач с помощью различных информационных компьютерных комплексов. Решение задачи на языке программирования Pascal, с помощью средств математического пакета MathCAD, так же с помощь табличного процессора Excel.
курсовая работа [218,1 K], добавлен 22.08.2013Изучение систем линейных алгебраических уравнений (СЛАУ) с использованием табличного процессора MS Excel 2007. Пример решения системы линейных алгебраических уравнений методом Крамера. Прикладное программное обеспечение, применяемое для решения СЛАУ.
курсовая работа [184,5 K], добавлен 20.11.2013Использование таблиц Excel и математической программы Mathcad при решении инженерных задач. Сравнение принципов работы этих пакетов программ при решении одних и тех же задач, их достоинства и недостатки. Обоснование преимуществ Mathcad над Excel.
курсовая работа [507,0 K], добавлен 15.12.2014Обзор встроенных функции табличного процессора Microsoft Excel, особенности их практического использования. Создание таблиц и их заполнение данными, построение графиков. Применение математических формул для выполнения запросов пакетов прикладных программ.
курсовая работа [3,9 M], добавлен 25.04.2013Использование табличного процессора Excel и пакета символьных вычислений MathCad в приложении к инженерным расчетам. Расчёт показателей движения грузов в заданном регионе на языке Pascal. Описание переменных, текст программы. Режим отображения значений.
курсовая работа [767,9 K], добавлен 15.08.2013Метод Гаусса и одно из его приложений в экономике (простейшая задача о рационе). Модель Леонтьева межотраслевого баланса. Алгебраический метод наименьших квадратов. Анализ данных эксперимента. Метод наименьших квадратов в Excel и аппроксимация данных.
курсовая работа [598,7 K], добавлен 11.07.2015Использование MS Excel для математических расчетов. Описание численных методов решения системы линейных алгебраических уравнений. Решение систем линейных алгебраических уравнений с методами Крамера и Зейделя и с помощью табличного процессора MS Excel.
курсовая работа [1,6 M], добавлен 14.02.2021Использование информационных технологий для решения транспортных задач. Составление программ и решение задачи средствами Pascal10; алгоритм решения. Работа со средствами пакета Microsoft Excel18 и MathCad. Таблица исходных данных, построение диаграммы.
курсовая работа [749,1 K], добавлен 13.08.2012Функции для проведения финансово-экономических расчетов в пакете Excel. Будущая и текущая стоимость вклада. Экономический регрессионный анализ на основе собранных статистических данных. Модель Леонтьева многоотраслевой экономики (балансовый анализ).
контрольная работа [372,4 K], добавлен 23.07.2009