Алгоритм криптографического преобразования в режиме простой замены

Принцип работы и назначение основного шага криптопреобразования, его параметры, базовые циклы и их принципиальное устройство. Пошаговый алгоритм действия криптопреобразования. Пример реализации процесса криптопреобразования в режиме простой замены.

Рубрика Программирование, компьютеры и кибернетика
Вид лабораторная работа
Язык русский
Дата добавления 26.08.2009
Размер файла 1,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

15

Кафедра: АСОИиУ

Лабораторная работа

На тему: "Алгоритм криптографического преобразования в режиме простой замены"

Москва 2009 г.

Алгоритм работы

Основной шаг криптопреобразования

Основной шаг криптопреобразования (рис. 1) по своей сути является оператором, определяющим преобразование 64-битового блока данных. Дополнительным параметром этого оператора является 32-битовый блок, в качестве которого используется какой-либо элемент ключа.

Рис. 1. Схема основного шага криптопреобразования алгоритма ГОСТ 28147-89.

Шаг 0. Определение исходных данных для основного шага криптопреобразования, где N - преобразуемый 64-битовый блок данных, в ходе выполнения шага его младшая (N1) и старшая (N2) части обрабатываются как отдельные 32-битовые целые числа без знака. Таким образом, можно записать N=(N1, N2), а X - 32-битовый элемент ключа.

Шаг 1. Сложение с ключом. Младшая половина преобразуемого блока складывается по модулю 232 с используемым на шаге элементом ключа, результат передается на следующий шаг.

Шаг 2. Поблочная замена. 32-битовое значение, полученное на предыдущем шаге, интерпретируется как массив из восьми 4-битовых блоков кода: S= (S0, S1, S2, S3, S4, S5, S6, S7). Далее значение каждого из восьми блоков заменяется на новое, которое выбирается по таблице замен следующим образом: значение блока Sm заменяется на Sm-ный по порядку элемент (нумерация с нуля) m-ного узла замен (т.е. m-ной строки таблицы замен, нумерация также с нуля). Другими словами, в качестве замены для значения блока выбирается элемент из таблицы замен с номером строки, равным номеру заменяемого блока, и номером столбца, равным значению заменяемого блока как 4-битового целого неотрицательного числа.

Шаг 3. Циклический сдвиг на 11 бит влево. Результат предыдущего шага сдвигается циклически на 11 бит в сторону старших разрядов и передается на следующий шаг. На схеме алгоритма символом И11 обозначена функция циклического сдвига своего аргумента на 11 бит в сторону старших разрядов.

Шаг 4. Побитовое сложение: значение, полученное на шаге 3, побитно складывается по модулю 2 со старшей половиной преобразуемого блока.

Шаг 5. Сдвиг по цепочке: младшая часть преобразуемого блока сдвигается на место старшей, а на ее место помещается результат выполнения предыдущего шага.

Шаг 6. Полученное значение преобразуемого блока возвращается как результат выполнения алгоритма основного шага криптопреобразования.

Базовые циклы криптографических преобразований

Базовые циклы построены из основных шагов криптографического преобразования, рассмотренного в предыдущем разделе. В процессе выполнения основного шага используется только один элемент ключа, в то время как ключ ГОСТ содержит восемь таких элементов. Следовательно, чтобы ключ был использован полностью, каждый из базовых циклов должен многократно выполнять основной шаг с различными его элементами.

Базовые циклы заключаются в многократном выполнении основного шага с использованием разных элементов ключа и отличаются друг от друга только числом повторения шага и порядком использования ключевых элементов. Ниже приведен этот порядок для различных циклов.

Цикл шифрования 32-З:

K0, K1, K2, K3, K4, K5, K6, K7, K0, K1, K2, K3, K4, K5, K6, K7, K0, K1, K2, K3, K4, K5, K6, K7, K7, K6, K5, K4, K3, K2, K1, K0.

Цикл дешифрования 32-Р:

K0, K1, K2, K3, K4, K5, K6, K7, K7, K6, K5, K4, K3, K2, K1, K0, K7, K6, K5, K4, K3, K2, K1, K0, K7, K6, K5, K4, K3, K2, K1, K0.

Каждый из циклов имеет собственное буквенно-цифровое обозначение, соответствующее шаблону «n-X», где первый элемент обозначения (n), задает число повторений основного шага в цикле, а второй элемент обозначения (X), буква, задает порядок шифрования («З») или дешифрования («Р») в использовании ключевых элементов. Цикл дешифрования должен быть обратным циклу шифрования, то есть последовательное применение этих двух циклов к произвольному блоку должно дать в итоге исходный блок. Для выполнения этого условия для алгоритмов, подобных ГОСТу, необходимо и достаточно, чтобы порядок использования ключевых элементов соответствующими циклами был взаимообратным (рис. 2а, рис. 2б).

Схемы базовых циклов приведены на рисунках 2а, 2б. Каждый из них принимает в качестве аргумента и возвращает в качестве результата 64-битный блок данных, обозначенный на схемах N. Символ Шаг (N, Kj) обозначает выполнение основного шага криптопреобразования для блока N с использованием ключевого элемента K.

Рис. 2а. Схема цикла шифрования 32-З.

Рис. 2б. Схема цикла дешифрования 32-Р.

Исходный текст

unit Unit3;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, StdCtrls, Math, Grids, Dre_Proc_Common;

type

TForm1 = class(TForm)

Edit1: TEdit;

Label1: TLabel;

Edit2: TEdit;

Label2: TLabel;

Button1: TButton;

StringGrid1: TStringGrid;

procedure Button1Click (Sender: TObject);

private

{Private declarations}

public

{Public declarations}

end;

var

Form1: TForm1;

i: integer;

j: integer;

k: integer;

a: integer;

b: integer;

y: integer;

c: integer;

d: integer;

e: integer;

f: integer;

g: integer;

x: integer;

m: integer;

t: integer;

l: integer;

q: integer;

u: integer;

z: integer;

p: integer;

kol: integer;

st: string;

str: string;

hr: string;

hr1: integer;

kod: string;

kod1: string;

kod_64_1: string;

kod_64_2: string;

full: string;

kluch: string;

plus: string;

plus1: string;

full1: string;

slovo: string;

decod: string;

step: int64;

blok: string;

stolbec: integer;

sdv: string;

plus2: string;

plus3: string;

h: integer;

k_slovo: string;

implementation

{$R *.dfm}

procedure TForm1. Button1Click (Sender: TObject);

begin

randomize;

st:='абвгдежзиклмнопрстуфхцчшщьыъэюя1234567890_., ';

ShowMessage ('Алфавит: ' + st);

 // Проверка длины фразы

if (length (Edit1. Text) > 100) or (length (Edit1. Text) < 1) then

begin

ShowMessage ('Превышает заданное значение');

exit;

end;

StringGrid1. ColCount:=16;

StringGrid1. RowCount:=8;

 // генерация матрицы

for b:= 0 to 7 do

for c:= 0 to 15 do

begin

repeat

f:=0;

hr:=DEC2BIN (random(16));

while length(hr) < 4 do hr:='0' + hr;

for g:=0 to c-1 do

if hr=StringGrid1. Cells [g, b] then f:=1;

until f=0;

StringGrid1. Cells [c, b]:=hr;

end;

 // 32 степень 2

step:=1;

for i:=1 to 32 do

step:=step*2;

k_slovo:='';

 // Кодирование

for i:= 1 to length (Edit1. Text) do

begin

full:='';

for j:= 1 to length(st) do

begin

if Edit1. Text[i] = st[j] then

begin

full:= full + DEC2BIN(j);

while length(full) < 8 do full:='0' + full;

kod:=kod + full;

end;

end;

end;

ShowMessage ('Слово в 2 виде'+kod);

a:= length(kod) div 64;

for i:= 1 to length (Edit2. Text) do

begin

full1:='';

for j:= 1 to length(st) do

begin

if Edit2. Text[i] = st[j] then

begin

full1:= full1 + DEC2BIN(j);

while length(full1) < 8 do full1:='0' + full1;

kod1:=kod1 + full1;

end;

end;

end;

ShowMessage ('Ключ в 2 виде'+kod1);

m:=1;

l:=1;

for i:=1 to a do

begin

kod_64_1:='';

kod_64_2:='';

kluch:='';

plus:='';

for j:=1 to 32 do

begin

kod_64_1:=kod_64_1 + kod [m+j-1];

kluch:=kluch + kod1 [l+j-1];

end;

for j:=33 to 64 do

kod_64_2:=kod_64_2 + kod [m+j-1];

ShowMessage ('N1-'+kod_64_1);

ShowMessage ('N2-'+kod_64_2);

plus:=DEC2BIN((BIN2DEC (kod_64_1) + BIN2DEC(kluch)) mod step);

while length(plus) < 32 do plus:='0' + plus;

ShowMessage ('32-х битный блок ключа'+kluch);

ShowMessage ('Результат 1-го шага-'+plus);

q:=1; plus1:='';

for y:=0 to 7 do

begin

blok:='';

for j:=1 to 4 do

blok:=blok+ plus [q+j-1];

stolbec:=BIN2DEC(blok);

plus1:=plus1 + StringGrid1. Cells [stolbec, y];

q:=q+4;

end;

ShowMessage ('Замена по таблице'+plus1);

for y:=1 to 11 do

begin

plus2:='';

sdv:=plus1 [1];

for j:=2 to 32 do

plus2:=plus2+plus1 [j];

plus2:=plus2+sdv;

plus1:=plus2;

end;

ShowMessage ('сдвиг на 11 бит влево-'+plus1);

plus3:='';

for y:=1 to 32 do

begin

if (plus1 [y]='1') and (kod_64_2 [y]='1') then h:=0;

if (plus1 [y]='1') and (kod_64_2 [y]='0') then h:=1;

if (plus1 [y]='0') and (kod_64_2 [y]='1') then h:=1;

if (plus1 [y]='0') and (kod_64_2 [y]='0') then h:=0;

plus3:= plus3+ IntToStr(h);

end;

ShowMessage ('Побитное сложение N2 и S-'+plus3);

kod_64_2:=kod_64_1;

kod_64_1:= plus3;

k_slovo:=k_slovo+ kod_64_1+ kod_64_2;

ShowMessage ('Шифр - '+k_slovo);

m:=m+64;

l:=l+32;

end;

end;

end.

Пример выполнения

Литература

1) Методы и средства защиты информации. Бородин В.Б.: ЭКОМ, 1999.


Подобные документы

  • Принцип работы и программная реализация однозвучного, одноалфавитного и полиграммного шифра. Шифрование по методу подстановки, замены и кодового слова. Безопасность шифровки простой замены. Частотные характеристики текстовых сообщений и дешифрация.

    контрольная работа [1,1 M], добавлен 02.02.2012

  • Функциональное и эксплуатационное назначение данного изделия. Требования к составу и параметрам технических средств. Описание алгоритма ГОСТ 28147-89 в режиме гаммирования. Технико-экономические показатели разработки. Интерфейс программного продукта.

    курсовая работа [1,7 M], добавлен 27.02.2015

  • Основные требования к разрабатываемым программам и исходным текстовым файлам. Характеристика шифров замены. Укрупненные структурные схемы и коды программ шифрования и дешифрования, скриншоты их выполнения. Пример зашифрованного текста и его дешифрования.

    курсовая работа [556,8 K], добавлен 14.01.2013

  • Схема работы и требования к программам шифрования и дешифрования. Алгоритмы и тексты программы шифрования и программы дешифрования, выполненные на языке программирования C/C++. Содержание файла с исходным текстом, с шифротекстом, с дешифрованным текстом.

    курсовая работа [24,7 K], добавлен 20.10.2014

  • Операторы генетического алгоритма. Пример простейшей программы. Процесс генерации и накопления информации о выживании и продолжении рода в ряде поколений популяции. Программа, реализующая простой генетический алгоритм для нахождения минимума функции.

    курсовая работа [39,3 K], добавлен 29.10.2012

  • Разработка программы замены столбца с минимальным элементом на последний столбец, написанной на языке С++. Результаты откладки и тестирования программы. Алгоритм, входные и выходные параметры и логика работы программы, ее функциональное назначение.

    курсовая работа [155,2 K], добавлен 25.03.2012

  • Методика реализации решения нелинейного уравнения в виде процедуры-подпрограммы следующими методами: хорд, касательных (Ньютона), простой итерации, половинного деления. Основные методы уточнения корней уравнения. Программное решение задачи, алгоритм.

    курсовая работа [4,0 M], добавлен 27.03.2011

  • Пример создания базы данных "Диспетчерская служба такси". Моделирование элементов системы. Концептуальные требования, нормализация таблицы. Создание структурной схемы базы данных, таблиц в режиме конструктора. Простой, перекрестный, повторяющийся запрос.

    курсовая работа [2,9 M], добавлен 21.04.2015

  • Изучение численных методов решения нелинейных уравнений, используемых в прикладных задачах. Нахождение корня уравнения методом простой итерации и методом касательных (на примере уравнения). Отделение корней графически. Программная реализация, алгоритм.

    курсовая работа [1,7 M], добавлен 15.06.2013

  • Поиск взаимно простых чисел. Алгоритм Евклида для целых чисел. Описание выбранного языка программирования. Алгоритм решения задачи. Обзор средств программирования. Текст и описание программы. Руководство оператора, программа и методика испытаний.

    курсовая работа [843,5 K], добавлен 15.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.