Разработка информационной системы на базе высокоскоростной сети для Центрального корпуса Тверского государственного университета

Разработка локальной вычислительной сети для Тверского государственного университета. Топологии и технологии для реализации компьютерных сетей. Составление конфигурации сетевого оборудования. Выбор сетевых устройств для компьютерной сети. Структура сети.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 23.06.2012
Размер файла 3,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования РФ

Тверской государственный технический университет

Кафедра "ЭВМ"

Курсовая работа по информатике.

"Разработка информационной системы на базе высокоскоростной сети для Центрального корпуса Тверского Государственного Университета".

Выполнил: студент ФИТ

гр. ИВТ - 1104

Морозов Алексей

Тверь

2012 г.

Введение

Сегодня можно с уверенностью сказать, что компьютерные сети стали неотъемлемой частью нашей жизни, а область их применения охватывает буквально все сферы человеческой деятельно­сти.

Компьютерная сеть -- группа компьютеров и/или других устройств, каким-либо способом соединенных для обмена информацией и совместного использования ресурсов.

Наличие в офисе, конторе, учреждении локальной сети создает для ее пользователей новые возможности интегрального характера, благодаря системам ПК и другому оборудованию сети. Организуется автоматизированный документооборот, (электронная почта), создаются различные массивы управленческой, коммерческой и другой информации общего назначения, и персонально используются вычислительные ресурсы всей сети, а не только отдельного компьютера. Появляются возможности использования различных средств или инструментов решения различных задач (инженерных, финансовых, издательских и т.д.). В данной курсовой работе поставлена задача разработать локальную вычислительную сеть (ЛВС) для Центрального корпуса Тверского Государственного Университета. Кроме того, необходимо выполнить следующее:

Выбрать технологии для реализации компьютерной сети, её топологию, а так же тип кабельной системы;

Составить конфигурацию сетевого оборудования;

Выбрать необходимое для нормальной работы сети программное обеспечение;

Рассчитать затраты на создание сети.

1. Теоретическая часть

1.1 Топологии компьютерных сетей

Под топологией компьютерной сети обычно понимается физическое расположение компьютеров сети один относительно одного и способ соединения их линиями связи. Важно отметить, что понятие топологии относится, в первую очередь, к локальным сетям, в которых структуру связей можно легко проследить. В глобальных сетях структура связей обычно спрятана от пользователей не слишком важная, потому что каждый сеанс связи может выполняться по своему собственному пути. Топология определяет требования к оборудованию, тип используемого кабеля, возможные и наиболее удобные методы управления обменом, надежность работы, возможности расширения сети.

1.1.1 Шина

Топология «шина» (или, как ее еще называют, «общая шина») самой своей структурой допускает идентичность сетевого оборудования компьютеров, а также равноправие всех абонентов. При таком соединении компьютеры могут передавать только по очереди, потому что линия связи единственная. В противном случае переданная информация будет искажаться в результате наложения (конфликту, коллизии). Таким образом, в шине реализуется режим полудуплексного (half duplex) обмена (в обоих направлениях, но по очереди, а не одновременно).

В топологии «шина» отсутствует центральный абонент, через которого передается вся информация, которая увеличивает ее надежность (ведь при отказе любого центра перестает функционировать вся управляемая этим центром система). Добавление новых абонентов в шину достаточно простое и обычно возможно даже во время работы сети. В большинстве случаев при использовании шины нужно минимальное количество соединительного кабеля по сравнению с другой топологией. Правда, нужно учесть, что к каждому компьютеру (кроме двух крайних) подходит два кабеля, что не всегда удобно.

Потому что разрешение возможных конфликтов в этом случае ложится на сетевое оборудование каждого отдельного абонента, аппаратура сетевого адаптера при топологии «шина» выходит сложнее, чем при другой топологии. Однако через широкое распространение сетей с топологией «шина» (Ethernet, Arcnet) стоимость сетевого оборудования выходит не слишком высокой.

Шине не страшные отказы отдельных компьютеров, потому что все другие компьютеры сети могут нормально продолжать обмен. Может показаться, что шине не страшный и обрыл кабелю, поскольку в этом случае мы одержимо две полностью работоспособных шины. Однако через особенности распространения электрических сигналов по длинным линиям связи необходимо предусматривать включение на концах шины специальных устройств - терминаторов, показанных в виде прямоугольников.

рис.1 Сетевая топология «шина»

Без включения терминаторов сигнал отражается от конца линии и искажается так, что связь по сети становится невозможной. Так что при разрыве или повреждении кабеля нарушается согласование линии связи, и прекращается обмен даже между теми компьютерами, которые остались соединенными между собой. Короткое замыкание в любой точке кабеля шины выводит из строя всю сеть. Любой отказ сетевого оборудования в шине очень трудно локализовать, потому что все адаптеры включены параллельно, и понять, который из них вышел из строя, не так-то просто.

При прохождении по линии связи сети с топологией «шина» информационные сигналы ослабляются и никак не возобновляются, что налагает твердые ограничения на суммарную длину линий связи, кроме того, каждый абонент может получать из сети сигналы разного уровня в зависимости от расстояния к передаточному абоненту. Это выдвигает дополнительные требования к приемным узлам сетевого оборудования. Для увеличения длины сети с топологией «шина» часто используют несколько сегментов (каждый из которых являет собой шину), соединенных между собой с помощью специальных обновителей сигналов - репитеров. Однако такое наращивание длины сети не может длиться бесконечно, потому что существуют еще и ограничения, связанные с конечной скоростью распространения сигналов по линиям связи.

1.1.2 Звезда

Топология «Звезда» - это топология с явно выделенным центром, к которому подключаются все другие абоненты. Весь обмен информацией идет исключительно через центральный компьютер, на который таким способом ложится очень большая нагрузка, потому ничем другим, кроме сети, оно заниматься не может. Понятно, что сетевое оборудование центрального абонента должно быть существенно больше сложным, чем оборудование периферийных абонентов. О равноправии абонентов в этом случае говорить не придется. Как правило, именно центральный компьютер является самим мощным, и именно на него возлагают все функции по управлению обменом. Никакие конфликты в сети с топологией «звезда» в принципе невозможные, потому что управление полностью централизовано, конфликтовать нет почему.

Если говорить о стойкости звезды к отказам компьютеров, то выход из строя периферийного компьютера никак не отражается на функционировании части сети, которая осталась, зато любой отказ центрального компьютера делает сеть полностью неработоспособной. Поэтому должны приниматься специальные мероприятия по повышению надежности центрального компьютера и его сетевой аппаратуры. Обрыл любого кабеля или короткое замыкание в нем при топологии «звезда» нарушает обмен только с одним компьютером, а все другие компьютеры могут нормально продолжать работу.

На склонение от шины, в звезде на каждой линии связи находятся только два абонента: центральный и один из периферийных. Чаще всего для их соединения используется две линии связи, каждая из которых передает информацию только в одном направлении. Таким образом, на каждой линии связи есть только один приемник и один передатчик. Все это существенно упрощает сетевое установление в сравнении с шиной и спасает от необходимости применение дополнительных внешних терминаторов. Проблема затухания сигналов в линии связи также решается в «звезде» проще, чем в «шине», ведь каждый приемник всегда получает сигнал одного уровня. Серьезный недостаток топологии «звезда» складывается в жестком ограничении количества абонентов. Обычно центральный абонент может обслуживать не больше 8-16 периферийных абонентов. Если в этих пределах подключения новых абонентов достаточно просто, то при их превышении оно просто невозможно. Правда, иногда в звезде предусматривается возможность наращивания, то есть подключение вместо одного из периферийных абонентов еще одного центрального абонента (в итоге выходит топология из нескольких соединенных между собой звезд).

рис.2 Сетевая топология «звезда»

Звезда, показанная на этом рисунке, зовется активной, или настоящей звезды. Существует также топология, которая называется пассивной звездой, что только внешне похожая на звезду. В это время она распространена намного больше, чем активная звезда. Достаточно сказать, что она используется в самой популярной на сегодняшний день сети Ethernet.

рис.3 Топология «пассивная звезда»

В центре сети с данной топологией содержится не компьютер, а концентратор, или хаб (hub), что выполняет ту же функцию, что и репитер. Он возобновляет сигналы, которые поступают, и пересылает их в другие линии связи. Хотя схема прокладки кабелей подобна настоящей или активной звезде, фактически мы имеем дело с шинной топологией, потому что информация от каждого компьютера одновременно передается ко всем другим компьютерам, а центрального абонента не существует. Естественно, пассивная звезда выходит дороже обычной шины, потому что в этом случае обязательно нужно еще и концентратор. Однако она предоставляет целый ряд дополнительных возможностей, связанных с преимуществами звезды. Именно поэтому в последнее время пассивная звезда все больше вытесняет настоящую звезду, которая считается малоперспективной топологией. Можно выделить также промежуточный тип топологии между активной и пассивной звездой. В этом случае концентратор не только ретранслирует сигналы, но и делает управление обменом, однако сам в обмене не принимает участие.

Большое преимущество звезды (как активной, так и пассивной) заключается в том, что все точки подключения собраны в одном месте. Это позволяет легко контролировать работу сети, локализовать неисправности сети путем простого отключения от центра тех или других абонентов (что невозможно, например, в случае шины), а также ограничивать доступ посторонних лиц к жизненно важному для сети точкам подключения. К каждому периферийному абоненту в случае звезды может подходить как один кабель (по которому идет передача в обоих направлениях), так и два кабеля (каждый из них передает в одном направлении), причем вторая ситуация встречается чаще. Общим недостатком для всей топологии типа «звезда» значительно больше, чем при другой топологии, затрата кабеля. Например, если компьютеры расположены в одну линию, то при выборе топологии «звезда» понадобится в несколько раз больше кабеля, чем при топологии «шина». Это может существенно повлиять на стоимость всей сети в целом.

1.1.3 Кольцо

Топология «Кольцо» - это топология, в которой каждый компьютер соединен линиями связи только с двумя другими: от одного он только получает информацию, а другому только передает. На каждой линии связи, как и в случае звезды, работает только один передатчик и один приемник. Это позволяет отказаться от применения внешних терминаторов. Важна особенность кольца заключается в том, что каждый компьютер ретранслирует (возобновляет) сигнал, то есть выступает в роли репитера, потому затухание сигнала во всем кольце не имеет никакого значения, важно только затухание между соседними компьютерами кольца. Четко выделенного центра в этом случае нет, все компьютеры могут быть одинаковыми. Однако достаточно часто в кильке выделяется специальный абонент, который управляет обменом или контролирует обмен. Понятно, что наличие такого управляющего абонента снижает надежность сети, потому что выход его из строя сразу же парализует весь обмен.

рис.4 Сетевая топология «кольцо»

Строго говоря, компьютеры в кильке не являются полностью равноправными (в отличие, например, от шинной топологии). Одни из них обязательно получают информацию от компьютера, который ведет передачу в этот момент, раньше, а другие - позже. Именно на этой особенности топологии и строятся методы управления обменом по сети, специально рассчитанные на «кольцо». В этих методах право на следующую передачу (или, как еще говорят, на захват сети) переходит последовательно к следующему по кругу компьютеру.

Подключение новых абонентов в «кольцо» обычно совсем безболезненно, хотя и требует обязательной остановки работы всей сети на время подключения. Как и в случае топологии «шина», максимальное количество абонентов в кильке может быть достаточно большая (до тысячи и больше). Кольцевая топология обычно является самой стойкой к перегрузкам, она обеспечивает уверенную работу с самими большими потоками переданной по сети информации, потому что в ней, как правило, нет конфликтов (в отличие от шины), а также отсутствует центральный абонент (в отличие от звезды).

Потому что сигнал в кильке проходит через все компьютеры сети, выход из строя хотя бы одного из них (или же его сетевого встановление) нарушает роботу всей сети в целом. Точно так же любой обрыв или короткое замыкание в каждом из кабелей кольца делает работу всей сети невозможной. Кольцо наиболее уязвимо к повреждениям кабеля, потому в этой топологии обычно предусматривают прокладку двух (или больше) параллельных линий связи, одна из которых находится в резерве. В то же время большое преимущество кольца заключается в том, что ретрансляция сигналов каждым абонентом позволяет существенно увеличить размеры всей сети в целом (временами до нескольких десятков километров). Кольцо относительно этого существенно превосходит любую другую топологию.

Недостатком кольца (в сравнении со звездой) можно считать то, что к каждому компьютеру сети необходимо подвести два кабеля.

Иногда топология «кольцо» выполняется на основе двух кольцевых линий связи, которые передают информацию в противоположных направлениях. Цель подобного решения - увеличение (в идеале вдвое) скорости передачи информации. К тому же при повреждении одного из кабелей сеть может работать с другим кабелем (правда, предельная скорость уменьшится).

1.1.4 Дерево

Кроме трех рассмотренной основной, базовой топологии нередко применяется также сетевая топология «дерево» (tree), которую можно рассматривать как комбинацию нескольких звезд. Как и в случае звезды, дерево может быть активным, или настоящим (рис. 5), и пассивным (рис. 6). При активном дереве в центрах объединения нескольких линий связи находятся центральные компьютеры, а при пассивном - концентраторы (хабы).

вычислительный компьютерный сеть программный

рис.5 Топология «активное дерево»

рис.6 Топология «пассивное дерево». К - концентраторы

Применяется достаточно часто и комбинированная топология, например звездно-шинная, звездно-кольцевая.

1.2 Среда передачи данных

Для построения компьютерных сетей применяются линии связи, использующие различную физическую среду. В качестве физической среды в коммуникациях используются: металлы (в основном медь), сверхпрозрачное стекло (кварц) или пластик и эфир. Физическая среда передачи данных может представлять собой кабель "витая пара", коаксиальные кабель, волоконно-оптический кабель и окружающее пространство.

Линии связи или линии передачи данных - это промежуточная аппаратура и физическая среда, по которой передаются информационные сигналы (данные).

В одной линии связи можно образовать несколько каналов связи (виртуальных или логических каналов), например путем частотного или временного разделения каналов. Канал связи - это средство односторонней передачи данных. Если линия связи монопольно используется каналом связи, то в этом случае линию связи называют каналом связи.

Канал передачи данных - это средства двухстороннего обмена данными, которые включают в себя линии связи и аппаратуру передачи (приема) данных. Каналы передачи данных связывают между собой источники информации и приемники информации.

В зависимости от физической среды передачи данных линии связи можно разделить на:

o проводные линии связи без изолирующих и экранирующих оплеток;

o кабельные, где для передачи сигналов используются такие линии связи как кабели "витая пара", коаксиальные кабели или оптоволоконные кабели;

o беспроводные (радиоканалы наземной и спутниковой связи), использующие для передачи сигналов электромагнитные волны, которые распространяются по эфиру.

1.2.1 Проводные линии связи

Проводные (воздушные) линии связи используются для передачи телефонных и телеграфных сигналом, а также для передачи компьютерных данных. Эти линии связи применяются в качестве магистральных линий связи.

По проводным линиям связи могут быть организованы аналоговые и цифровые каналы передачи данных. Скорость передачи по проводным линиям "простой старой телефонной линии" (POST - Primitive Old Telephone System) является очень низкой. Кроме того, к недостаткам этих линий относятся помехозащищенность и возможность простого несанкционированного подключения к сети.

1.2.2 Кабельные линии связи

Кабельные линии представляют собой достаточно сложную конструкцию. Кабель состоит из проводников, заключенных в несколько слоев изоляции: электрической, электромагнитной, механической, а также, возможно, климатической. Кроме того, кабель может быть оснащен разъемами, позволяющими быстро выполнять присоединение к нему различного оборудования. В компьютерных сетях применяются три основных типа кабеля: кабели на основе скрученных пар медных проводов, коаксиальные кабели с медной жилой, а также волоконно-оптические кабели.

Скрученная пара проводов называется витой парой (twisted pair). Витая пара существует в экранированном варианте (Shielded Twistedpair, STP), когда пара медных проводов обертывается в изоляционный экран, и неэкранированном (Unshielded TwistedPair, UTP), когда изоляционная обертка отсутствует. Скручивание проводов снижает влияние внешних помех на полезные сигналы, передаваемые по кабелю. Коаксиальный кабель (coaxial) имеет несимметричную конструкцию и состоит из внутренней медной жилы и оплетки, отделенной от жилы слоем изоляции. Существует несколько типов коаксиального кабеля, отличающихся характеристиками и областями применения -- для локальных сетей, для глобальных сетей, для кабельного телевидения и т. п. Волоконно-оптический кабель (opticalfiber) состоит из тонких (5-60 микрон) волокон, по которым распространяются световые сигналы. Это наиболее качественный тип кабеля -- он обеспечивает передачу данных с очень высокой скоростью (до 10 Гбит/с и выше) и к тому же лучше других типов передающей среды обеспечивает защиту данных от внешних помех.

1.2.3 Беспроводные линии связи

Радиоканалы наземной и спутниковой связи образуются с помощью передатчика и приемника радиоволн. Существует большое количество различных типов радиоканалов, отличающихся как используемым частотным диапазоном, так и дальностью канала. Диапазоны коротких, средних и длинных волн, называемые также диапазонами амплитудной модуляции (Amplitude Modulation, AM) по типу используемого в них метода модуляции сигнала, обеспечивают дальнюю связь, но при невысокой скорости передачи данных. Более скоростными являются каналы, работающие на диапазонах ультракоротких волн, для которых характерна частотная модуляция (Frequency Modulation, FM), а также диапазонах сверхвысоких частот (СВЧ или microwaves). В диапазоне СВЧ (свыше 4 ГГц) сигналы уже не отражаются ионосферой Земли и для устойчивой связи требуется наличие прямой видимости между передатчиком и приемником. Поэтому такие частоты используют либо спутниковые каналы, либо радиорелейные каналы, где это условие выполняется.

В компьютерных сетях сегодня применяются практически все описанные типы физических сред передачи данных, но наиболее перспективными являются волоконно-оптические. На них сегодня строятся как магистрали крупных территориальных сетей, так и высокоскоростные линии связи локальных сетей. Популярной средой является также витая пара, которая характеризуется отличным соотношением качества к стоимости, а также простотой монтажа. С помощью витой пары обычно подключают конечных абонентов сетей на расстояниях до 100 метров от концентратора. Спутниковые каналы и радиосвязь используются чаще всего в тех случаях, когда кабельные связи применить нельзя - например, при прохождении канала через малонаселенную местность или же для связи с мобильным пользователем сети, таким как шофер грузовика, врач, совершающий обход, и т. п.

1.3 Основные виды кабелей

Кабельные линии связи имеют довольно сложную структуру. Кабель состоит из проводников, заключенных в несколько слоев изоляции. В компьютерных сетях используются три типа кабелей.

1.3.1 Коаксиальный кабель

Коаксиальный кабель (coaxial cable) - это кабель с центральным медным проводом, который окружен слоем изолирующего материала для того, чтобы отделить центральный проводник от внешнего проводящего экрана (медной оплетки или слой алюминиевой фольги). Внешний проводящий экран кабеля покрывается изоляцией.

рис.7 Устройство коаксиального кабеля

Существует два типа коаксиального кабеля: тонкий коаксиальный кабель диаметром 5 мм и толстый коаксиальный кабель диаметром 10 мм. У толстого коаксиального кабеля затухание меньше, чем у тонкого. Стоимость коаксиального кабеля выше стоимости витой пары и выполнение монтажа сети сложнее, чем витой парой.

Коаксиальный кабель применяется, например, в локальных сетях с архитектурой Ethernet, построенных по топологии типа “общая шина”. Коаксиальный кабель более помехозащищенный, чем витая пара и снижает собственное излучение. Пропускная способность - 50-100 Мбит/с. Допустимая длина линии связи - несколько километров. Несанкционированное подключение к коаксиальному кабелю сложнее, чем к витой паре.

1.3.2 Витая пара

Витая пара (twisted pair) -- кабель связи, который представляет собой витую пару медных проводов (или несколько пар проводов), заключенных в экранированную оболочку. Пары проводов скручиваются между собой с целью уменьшения наводок. Витая пара является достаточно помехоустойчивой. Существует два типа этого кабеля: неэкранированная витая пара UTP и экранированная витая пара STP.

рис.8 Устройство кабеля типа "витая пара"

Характерным для этого кабеля является простота монтажа. Данный кабель является самым дешевым и распространенным видом связи, который нашел широкое применение в самых распространенных локальных сетях с архитектурой Ethernet, построенных по топологии типа “звезда”. Кабель подключается к сетевым устройствам при помощи соединителя RJ45.

Кабель используется для передачи данных на скорости 10 Мбит/с и 100 Мбит/с. Витая пара обычно используется для связи на расстояние не более нескольких сот метров. К недостаткам кабеля "витая пара" можно отнести возможность простого несанкционированного подключения к сети.

1.3.3 Оптоволоконный кабель

Оптоволоконный кабель (fiber optic) - это оптическое волокно на кремниевой или пластмассовой основе, заключенное в материал с низким коэффициентом преломления света, который закрыт внешней оболочкой.

рис.9 Устройство оптоволоконного кабеля

Оптическое волокно передает сигналы только в одном направлении, поэтому кабель состоит из двух волокон. На передающем конце оптоволоконного кабеля требуется преобразование электрического сигнала в световой, а на приемном конце обратное преобразование.

Основное преимущество этого типа кабеля - чрезвычайно высокий уровень помехозащищенности и отсутствие излучения. Несанкционированное подключение очень сложно. Скорость передачи данных 3Гбит/c. Основные недостатки оптоволоконного кабеля - это сложность его монтажа, небольшая механическая прочность и чувствительность к ионизирующим излучениям.

1.4 Технологии компьютерных сетей

Алгоритм доступа к разделяемой среде является одним из главных факторов, определяющих эффективность совместного использования среды конечными узлами локальной сети. Можно сказать, что алгоритм доступа формирует «облик» технологии, позволяет отличать данную технологию от других. В технологии Ethernet применяется очень простой алгоритм доступа, позволяющий узлу сети передавать данные в те моменты времени, когда он считает, что разделяемая среда свободна. Простота алгоритма доступа определила простоту и низкую стоимость оборудования Ethernet. Негативным атрибутом алгоритма доступа технологии Ethernet являются коллизии, то есть ситуации, когда кадры, передаваемые разными станциями, сталкиваются друг с другом в общей среде. Коллизии снижают эффективность разделяемой среды и придают работе сети непредсказуемый характер.

Первоначальный вариант технологии Ethernet был рассчитан на коаксиальный кабель, который использовался всеми узлами сети в качестве общей шины. Переход на кабельные системы на витой паре и концентраторах (хабах) существенно повысил эксплуатационные характеристики сетей Ethernet.

В технологиях Token Ring и FDDI поддерживались более сложные и эффективные алгоритмы доступа к среде, основанные на передаче друг другу токена -- специального кадра, разрешающего доступ. Однако чтобы выжить в конкурентной борьбе с Ethernet, этого преимущества оказалось недостаточно.

1.4.1 Ethernet

Ethernet -- это самый распространенный на сегодняшний день стандарт локальных сетей. Общее количество сетей, работающих по протоколу Ethernet в настоящее время, оценивается в несколько миллионов. Когда говорят Ethernet, то под этим обычно понимают любой из вариантов этой технологии.

В более узком смысле Ethernet -- это сетевой стандарт, основанный на экспериментальной сети Ethernet Network, которую фирма Xerox разработала и реализовала в 1975 году. Метод доступа был опробован еще раньше: во второй половине 60-х годов в радиосети Гавайского университета использовались различные варианты случайного доступа к общей радиосреде, получившие общее название Aloha. В 1980 году фирмы DEC, Intel и Xerox совместно разработали и опубликовали стандарт Ethernet версии II для сети, построенной на основе коаксиального кабеля. Эту последнюю версию фирменного стандарта Ethernet называют стандартом Ethernet DIX, или Ethernet П.

На основе стандарта Ethernet DIX был разработан стандарт IEEE 802.3, который во многом совпадает со своим предшественником, но некоторые различия все же имеются. В то время как в стандарте IEEE 802.3 функции протокола разделены на уровни MAC и LLC, в оригинальном стандарте Ethernet они объединены в единый канальный уровень. В Ethernet DIX определяется протокол тестирования конфигурации (Ethernet Configuration Test Protocol), который отсутствует в IEEE 802.3. Несколько отличается и формат кадра, хотя минимальные и максимальные размеры кадров в этих стандартах совпадают. Часто для того, чтобы отличить стандарт Ethernet, определенный IEEE, и фирменный стандарт Ethernet DIX, первый называют технологией 802.3, а за фирменным стандартом оставляют название Ethernet без дополнительных обозначений. В зависимости от типа физической среды стандарт IEEE 802.3 имеет различные модификации - 10Base-5, 10Base-2, StarLAN 10, 10Base-T, 10Base-FL, l0Base-FB.

o 10BASE5, IEEE 802.3 (называемый также «Толстый Ethernet») -- первоначальная разработка технологии со скоростью передачи данных 10 Мбит/с. Следуя раннему стандарту IEEE использует коаксиальный кабель с волновым сопротивлением 50 Ом (RG-8), с максимальной длиной сегмента 500 метров.

o 10BASE2, IEEE 802.3a (называемый «Тонкий Ethernet») -- используется кабель RG-58, с максимальной длиной сегмента 185 метров, компьютеры присоединялись один к другому, для подключения кабеля к сетевой карте нужен T-коннектор, а на кабеле должен быть BNC-коннектор. Требуется наличие терминаторов на каждом конце. Многие годы этот стандарт был основным для технологии Ethernet.

o StarLAN 10 -- Первая разработка, использующая витую пару для передачи данных на скорости 10 Мбит/с. В дальнейшем эволюционировал в стандарт 10BASE-T. Несмотря на то, что теоретически возможно подключение к одному кабелю (сегменту) витой пары более чем двух устройств, работающих в симплексном режиме, такая схема никогда не применяется для Ethernet, в отличие от работы с коаксиальным кабелем. Поэтому все сети на витой паре используют топологию «звезда», в то время как сети на коаксиальном кабеле построены на топологии «шина». Терминаторы для работы по витой паре встроены в каждое устройство, и применять дополнительные внешние терминаторы в линии не нужно.

o 10BASE-T, IEEE 802.3i -- для передачи данных используется 4 провода кабеля витой пары (две скрученные пары) категории-3 или категории-5. Максимальная длина сегмента 100 метров.

o 10BASE-FL (Fiber Link) -- Улучшенная версия стандарта FOIRL. Улучшение коснулось увеличения длины сегмента до 2 км.

o 10BASE-FB (Fiber Backbone) -- Сейчас неиспользуемый стандарт, предназначался для объединения повторителей в магистраль.

Каждая из разновидностей Ethernet предусматривает те или иные ограничения на протяженность сегмента кабеля. Для создания более протяженной сети несколько кабелей могут соединяться с помощью повторителей. Повторитель представляет собой устройство физического уровня, которое принимает, усиливает и передает сигнал дальше. С точки зрения программного обеспечения последовательность кабельных сегментов, связанных повторителями, ничем не отличается от единого кабеля. Сеть может содержать несколько сегментов кабеля и несколько повторителей. Теоретическая производительность Ethernet составляет 10 Мбит/с. Однако нужно учитывать, что из-за коллизий технология Ethernet никогда не может достичь своей максимальной производительности.

Метод доступа Ethernet, разработанный фирмой Xerox в 1995 году, пользуется наибольшей популярностью. Он обеспечивает высокую скорость передачи данных и надежность. Для данного метода доступа используется топология “общая шина”. Поэтому сообщение, отправляемое одной рабочей станцией, принимается одновременно всеми остальными, подключенными к общей шине. Но сообщение, предназначенное только для одной станции (оно включает в себя адрес станции назначение и адрес станции отправителя). Та станция, которой предназначено сообщение, принимает его, остальные игнорируют.

Метод доступа Ethernet является методом множественного доступа с прослушиванием несущей и разрешением коллизий (конфликтов) (CSMA/CD - Carier Sense Multiple Access with Collision Detection). Перед началом передачи рабочая станции определяет, свободен канал или занят . Если канал свободен , станции начинает передачу.

Достоинства технологии Ethernet:

o Относительная дешевизна оборудования

o Распространённость

o Вариативность видов кабеля и схем прокладки кабельной системы

Недостатки технологии Ethernet:

o Снижение пропускной способности на сильно загруженной ЛВС. В ЛВС с методом доступа CSMA/CD производительность снижается с ростом загруженности сети.

o Трудности поиска неисправности.

1.4.2 Fast Ethernet

Технология Fast Ethernet является эволюционным развитием классической технологии Ethernet. 10-Мегабитный Ethernet устраивал большинство пользователей на протяжении около 15 лет. Однако в начале 90-х годов начала ощущаться его недостаточная пропускная способность. Если для компьютеров на процессорах Intel 80286 или 80386 с шинами ISA (8 Мбайт/с) или EISA (32 Мбайт/с) пропускная способность сегмента Ethernet составляла 1/8 или 1/32 канала "память - диск", то это хорошо согласовывалось с соотношением объемов локальных данных и внешних данных для компьютера. Теперь же у мощных клиентских станций с процессорами Pentium или Pentium PRO и шиной PCI (133 Мбайт/с) эта доля упала до 1/133, что явно недостаточно. Поэтому многие сегменты 10-Мегабитного Ethernet'а стали перегруженными, реакция серверов в них значительно упала, а частота возникновения коллизий существенно возросла, еще более снижая номинальную пропускную способность.

В 1992 году группа производителей сетевого оборудования, включая таких лидеров технологии Ethernet как SynOptics, 3Com и ряд других, образовали некоммерческое объединение Fast Ethernet Alliance для разработки стандарта на новую технологию, которая обобщила бы достижения отдельных компаний в области Ethernet-преемственного высокоскоростного стандарта. Новая технология получила название Fast Ethernet.

Одновременно были начаты работы в институте IEEE по стандартизации новой технологии - там была сформирована исследовательская группа для изучения технического потенциала высокоскоростных технологий. За период с конца 1992 года и по конец 1993 года группа IEEE изучила 100-Мегабитные решения, предложенные различными производителями. Наряду с предложениями Fast Ethernet Alliance группа рассмотрела также и другую высокоскоростную технологию, предложенную компаниями Hewlett-Packard и AT&T.

В центре дискуссий была проблема сохранения соревновательного метода доступа CSMA/CD. Предложение по Fast Ethernet'у сохраняло этот метод и тем самым обеспечивало преемственность и согласованность сетей 10Base-T и 100Base-T. Коалиция HP и AT&T, которая имела поддержку гораздо меньшего числа производителей в сетевой индустрии, чем Fast Ethernet Alliance, предложила совершенно новый метод доступа, называемый Demand Priority. Он существенно менял картину поведения узлов в сети, поэтому не смог вписаться в технологию Ethernet и стандарт 802.3, и для его стандартизации был организован новый комитет IEEE 802.12.

В мае 1995 года комитет IEEE принял спецификацию Fast Ethernet в качестве стандарта 802.3u, который не является самостоятельным стандартом, а представляет собой дополнение к существующему стандарту 802.3 в виде глав с 21 по 30. Отличия Fast Ethernet от Ethernet сосредоточены на физическом уровне.

Более сложная структура физического уровня технологии Fast Ethernet вызвана тем, что в ней используется три варианта кабельных систем - оптоволокно, 2-х парная витая пара категории 5 и 4-х парная витая пара категории 3, причем по сравнению с вариантами физической реализации Ethernet (а их насчитывается шесть), здесь отличия каждого варианта от других глубже - меняется и количество проводников, и методы кодирования. А так как физические варианты Fast Ethernet создавались одновременно, а не эволюционно, как для сетей Ethernet, то имелась возможность детально определить те подуровни физического уровня, которые не изменяются от варианта к варианту, и остальные подуровни, специфические для каждого варианта.

1.4.3 Gigabit Ethernet

Достаточно быстро после появления на рынке продуктов Fast Ethernet сетевые интеграторы и администраторы при построении корпоративных сетей почувствовали определенные ограничения. Во многих случаях серверы, подключенные по 100-мегабитному каналу, перегружали магистрали сетей, также работающие на скорости 100 Мбит/с - магистрали FDDI и Fast Ethernet. Ощущалась потребность в следующем уровне иерархии скоростей.

В 1995 году более высокие скорости могли предоставить только коммутаторы ATM, которые из-за высокой стоимости, а также значительных отличий от классических технологий применялись в локальных сетях достаточно редко.

Поэтому логичным выглядел следующий шаг, сделанный IEEE. Летом 1996 года было объявлено о создании группы 802.32 для разработки протокола, в максимальной степени подобного Ethernet, но с битовой скоростью 1000 Мбит/с. Как и в случае Fast Ethernet, сообщение было воспринято сторонниками Ethernet с большим энтузиазмом.

Основной причиной энтузиазма была перспектива плавного перевода сетевых магистралей на Gigabit Ethernet, подобно тому, как были переведены на Fast Ethernet перегруженные сегменты Ethernet, расположенные на нижних уровнях иерархии сети. К тому же опыт передачи данных на гигабитных скоростях уже имелся. В территориальных сетях такую скорость обеспечивала технология SDH, а в локальных - технология Fibre Channel. Последняя используется в основном для подключения высокоскоростной периферии к крупным компьютерам и передает данные по волоконно-оптическому кабелю со скоростью, близкой к гигабитной. (Именно метод кодирования 8В/10В, применяемый в технологии Fiber Channel, был принят в качестве первого варианта физического уровня Gigabit Ethernet.)

Стандарт 802.3z был окончательно принят в 1998 году. Работы по реализации Gigabit Ethernet на витой паре категории 5 были переданы проблемной группе 802.3аЬ ввиду сложности обеспечения гигабитной скорости на этом типе кабеля, рассчитанного на поддержку скорости 100 Мбит/с . Проблемная группа 802.3аЬ успешно справилась со своей задачей, и версия Gigabit Ethernet для витой пары категории 5 была принята.

Основная идея разработчиков стандарта Gigabit Ethernet состояла в максимальном сохранении идей классической технологии Ethernet при достижении битовой скорости в 1000 Мбит/с .

Несмотря на то что в Gigabit Ethernet не стали встраиваться новые функции, поддержание даже достаточно простых функций классического стандарта Ethernet на скорости 1 Гбит/с потребовало решения нескольких сложных задач.

Обеспечение приемлемого диаметра сети для работы на разделяемой среде. В связи с ограничениями, накладываемыми методом CSMA/CD на длину кабеля, версия Gigabit Ethernet для разделяемой среды допускала бы длину сегмента всего в 25 м при сохранении размера кадров и всех параметров метола CSMA/CD неизменными. Так как существует большое количество применений, требующих диаметра сети хотя бы 200 м. необходимо было каким-то образом решить эту задачу «а счет минимальных изменений в технологии Fast Ethernet.

Достижение битовой скорости 1000 Мбит/с на оптическом кабеле. Технология Fibre Channel, физический уровень которой был взят за основу оптоволоконной версии Gigabit Ethernet, обеспечивает скорость передачи данных всего в HU0 Мбит/с. Использование в качестве кабеля витой пары. Такая задача на первый взгляд кажется неразрешимой -- ведь даже для 100-мегабитных протоколов требуются достаточно сложные методы кодирования, чтобы уложить спектр сигнала в полосу пропускания кабеля.

Для решения этих задач разработчикам технологии Gigabit Ethernet пришлось внести изменения не только в физический уровень, как это было в случае Fast Ethernet, но и в уровень MAC.

1.4.4 10 Gigabit Ethernet

Формально этот стандарт имеет обозначение IEEE 802.3ае и является поправкой к основному тексту стандарта 802.3. Формат кадра остался неизменным, при этом расширение кадра, введенное в стандарте Gigabit Ethernet, не используется, так как нет необходимости обеспечивать распознавание коллизий.

Стандарт 802.3ае описывает несколько новых спецификаций физического уровня, которые взаимодействуют с уровнем MAC с помощью нового варианта подуровня согласования. Этот подуровень обеспечивает для всех вариантов физического уровня 10G Ethernet единый интерфейс XGMII (extended Gigabit Medium Independent interface - расширенный интерфейс независимого доступа к гигабитной среде), который предусматривает параллельный обмен четырьмя байтами, образующими четыре потока данных.

1.4.5 Другие технологии

Token Ring -- Технология локальной вычислительной сети (LAN) кольца с «маркерным доступом» -- протокол локальной сети, который находится на канальном уровне (DLL) модели OSI. Он использует специальный трехбайтовый фрейм, названный маркером, который перемещается вокруг кольца. Владение маркером предоставляет право обладателю передавать информацию на носителе. Кадры кольцевой сети с маркерным доступом перемещаются в цикле.

Сети стандарта Token Ring, также как и сети Ethernet, используют разделяемую среду передачи данных, которая состоит из отрезков кабеля, соединяющих все станции сети в кольцо. Кольцо рассматривается как общий разделяемый ресурс, и для доступа к нему используется не случайный алгоритм, как в сетях Ethernet, а детерминированный, основанный на передаче станциями права на использование кольца в определенном порядке. Право на использование кольца передается с помощью кадра специального формата, называемого маркером или токеном.

Стандарт Token Ring был принят комитетом 802.5 в 1985 году. В это же время компания IBM приняла стандарт Token Ring в качестве своей основной сетевой технологии. В настоящее время именно компания IBM является основным законодателем моды технологии Token Ring, производя около 60% сетевых адаптеров этой технологии.

Сети Token Ring работают с двумя битовыми скоростями - 4 Мб/с и 16 Мб/с. Первая скорость определена в стандарте 802.5, а вторая является новым стандартом де-факто, появившимся в результате развития технологии Token Ring. Смешение станций, работающих на различных скоростях, в одном кольце не допускается.

Спецификация FDDI (Fiber Distributed Data Interface, оптоволоконный интерфейс распределения данных) разработана и стандартизирована институтом ANSI (в 1986-1988 г. - группа X3T9.5, после 1995 года - группа X3T12).

FDDI технология - это исторически первая технология локальных сетей, которая использует в качестве среда передачи оптоволоконный кабель. Начальные версии FDDI обеспечивают скорость передачи 100 Мбит/с по двойному оптоволоконному кольцу длиной до 100 км. В нормальном режиме данные передаются только по одному кольцу из пары - первичному (primary). Вторичное (secondary) кольцо используется в случае отказа части первичного кольца. По первичному и вторичному кольцам данные передаются в противоположных направлениях, что позволяет соблюсти порядок узлов сети при подключении вторичного кольца к первичному. В случае нескольких отказов, сеть FDDI распадается на несколько отдельные (но функционирующих) сетей.

1.5 Сетевое оборудование

1.5.1 Повторители

Рис. 10 повторитель Netgear

При прохождении электрических сигналов по кабелю происходит их ослабление и искажение. Этот эффект называется затуханием (attenuation). По мере увеличения длины кабеля эффект затухания усугубляется. По достижении некоторой длины кабеля эффект затухания делает сигнал окончательно неузнаваемым, что приводит к ошибкам передачи данных по сети. Специальное устройство, повторитель (repeater), позволяет увеличить путь прохождения сигнала посредством его усиления и передачи на следующий сегмент кабельной линии. Повторитель принимает слабый сигнал с одного кабеля, регенерирует его и передает на следующий кабель. В качестве повторителей часто используются активные концентраторы, однако повторители как самостоятельные устройства могут понадобиться для обслуживания очень длинных кабелей.

Важно понимать, что повторители являются всего лишь усилителями (или регенераторами сигнала) и не производят трансляцию или фильтрацию сетевых сигналов. Для нормальной работы повторителя необходимо, чтобы оба соединенных посредством него кабеля использовали одинаковые кадры (frames), логические протоколы и методы доступа. Наиболее распространенными методами доступа к среде передачи являются: CSMA/CD (Carrier Sense Multiple Access with Collision Detection -- множественный доступ с контролем несущей и обнаружением коллизий) и эстафетная передача маркера (token passing). Повторитель не может соединить сегмент кабеля, использующий метод CSMA/CD, с сегментом, использующим метод эстафетной передачи маркера. Таким образом, повторитель не дает возможности установить соединение между сетью типа Ethernet и сетью типа Token Ring (локальной сетью на основе маркерного кольца) -- для подобного рода трансляции используют более сложные устройства. Однако повторители могут перемещать пакеты из одной физической среды в другую. Например, повторитель может принять Ethernet-кадр, поступивший с тонкого коаксиального кабеля, и передать его на оптоволоконный кабель (при том условии, что этот повторитель имеет соответствующие физические разъемы).

Следует понимать, что поскольку повторители только лишь передают данные от одного кабеля к другому, ошибочные данные (например, деформированные пакеты) тоже будут переданы. Они не будут отфильтрованы, соответственно порождая излишний сетевой трафик. Как правило, следует избегать использования повторителей при большом сетевом трафике или в случаях, когда необходима фильтрация данных.

1.5.2 Концентраторы

Рис. 11 концентратор D-Link

Концентратор (Hub) - многопортовый повторитель сети с автосегментацией. Все порты концентратора равноправны. Получив сигнал от одной из подключенных к нему станций, концентратор транслирует его на все свои активные порты. При этом, если на каком-либо из портов обнаружена неисправность, то этот порт автоматически отключается (сегментируется), а после ее устранения снова делается активным. Обработка коллизий и текущий контроль за состоянием каналов связи обычно осуществляется самим концентратором. Концентраторы можно использовать как автономные устройства или соединять друг с другом, увеличивая тем самым размер сети и создавая более сложные топологии. Кроме того, возможно их соединение магистральным кабелем в шинную топологию. Автосегментация необходима для повышения надежности сети. Ведь Hub, заставляющий на практике применять звездообразную кабельную топологию, находится в рамках стандарта IEEE 802.3 и тем самым обязан обеспечивать соединение типа Моноканал.

Назначение концентраторов - объединение отдельных рабочих мест в рабочую группу в составе локальной сети. Для рабочей группы характерны следующие признаки: определенная территориальная сосредоточенность; коллектив пользователей рабочей группы решает сходные задачи, использует однотипное программное обеспечение и общие информационные базы; в пределах рабочей группы существуют общие требования по обеспечению безопасности и надежности, происходит одинаковое воздействие внешних источников возмущений (климатических, электромагнитных и т.п.); совместно используются высокопроизводительные периферийные устройства; обычно содержат свои локальные сервера, нередко территориально расположенные на территории рабочей группы.

OSI. Концентраторы работают на физическом уровне (Уровень 1 базовой эталонной модели OSI). Поэтому они не чувствительны к протоколам верхних уровней. Результатом этого является возможность совместного использования различных операционных систем (Novell NetWare, SCO UNIX, EtherTalk, LAN Manager и пр., совместимые с сетями Ethernet или IEEE 802.3). Есть, правда, определенное "давление" на хозяина сети при использовании программ управления сетью: управляющие программы, как правило, используют для связи с SNMP оборудованием протокол IP. Поэтому в части управления сетью приходится использовать только этот протоколы и соответственно операционные оболочки на станциях управления сетью. Но это не очень серьезное давление, ибо протокол IP является, наверное, самым популярным.

Все концентраторы обладают следующими характерными эксплуатационными признаками:

o оснащены светодиодными индикаторами, указывающими состояние, наличие коллизий активность канала передачи, наличие неисправности и наличие питания, что обеспечивает быстрый контроль состояния всего концентратора и диагностику неисправностей;

o при включении электропитания выполняют процедуру самотестирования, а в процессе работы - функцию самодиагностики;

o имеют стандартный размер по ширине;

o обеспечивают автосегментацию портов для изоляции неисправных портов и улучшения сохранности сети;

o обнаруживают ошибку полярности при использовании кабеля на витой паре и автоматически переключают полярность для устранения ошибки монтажа;

o поддерживают конфигурации с применением нескольких концентраторов, соединенных друг с другом либо посредством специальных кабелей и stack-портов, либо тонкой коаксиальной магистрали, включенной между портами BNC, либо посредством оптоволоконного или толстого коаксиального кабеля подключенного через соответствующие трансиверы к порту AUI, либо посредством UTP кабелей, подключенных между портами концентраторов;

o поддерживают речевую связь и передачу данных через один и тот же кабельный жгут;

o прозрачны для программных средств сетевой операционной системы;

o могут быть смонтированы и введены в действие в течении нескольких минут.

1.5.3 Сетевые мосты

Рис. 12 сетевой мост Universal Devices

Network bridge (Сетевой мост) - это сетевое устройство, предназначенное для объединения сегментов сети передачи данных в единую сеть. Он работает на канальном (втором) уровне модели OSI (модели взаимодействия открытых систем). В отличие от концентратора, который работает на физическом уровне, сетевой мост не просто транслирует полученные с одного порта устройства на другие, а анализирует заголовок и отправляет на какой-либо один порт, либо не передает ни куда. Однако в отличие от маршрутизатора Network bridge не имеет таблицы маршрутизации и является само настраиваемым устройством и работает по заранее заложенным в нем принципам. Network bridge используется в нескольких сетевых технологиях, однако наибольшее распространение нашел в Ethernet.

Функции сетевого моста очень схожи с функциями другого сетевого устройства - switch (сетевой коммутатор). Фактически они выполняют одну и ту же задачу - объединение разрозненных сегментов и устройств сети в единую структуру. Главное отличие заключается в принципе работы, т.е. в том, как устройство узнает MAC-адреса устройств. После включения в сеть Network bridge анализирует поле "адрес источника» поступающих пакетов. Эту информацию он заносит в специальную таблицу. Отправляет он пакеты в соответствии с полем "адрес получателя» после анализа той же таблицы. Если там нет соответствия порта и MAC-адреса, то он направляет этот пакет во все исходящие порты. Если поле "адрес получателя» содержит MAC-адрес устройства, которое принадлежит той же сети, откуда поступил пакет, то он блокируется. Таким образом, мост блокирует пакеты, предназначенные для одного сегмента сети.

Благодаря тому, что сетевой мост фильтрует пакеты в соответствии с адресом получателя, в сети Ethernet тем самым предотвращается распространение коллизий, т.е. отдельные сети, подключаемые к портам образуют изолированные сегменты. Это позволяет увеличить скорость передачи данных и емкость в каждой отдельной сети.

Не смотря на преимущества использования мостов, они также обладают и некоторыми недостатками. В частности для анализа MAC-адресов требуется некоторое время, что требует буферизацию пакета и его задержку. Для уменьшения времени анализа требуются высокопроизводительные процессоры, а число портов не превышает 48. Кроме того, Network bridge не могут быть объединены в матрицы, как это можно было сделать с концентраторами, без увеличения задержки. Решение производительности сетевых мостов стало возможным с появлением в конце 80-х г.г. сетевых коммутаторов. Они не анализируют весь пакет целиком, а только его заголовок. Это значительно уменьшает время обработки пакетов и может вестись в поточном режиме. В настоящее время Network bridge практически не используются из-за их низкой производительности.


Подобные документы

  • Принцип деятельности ООО "МАГМА Компьютер". Особенности предметной области. Цели создания компьютерной сети. Разработка конфигурации сети. Выбор сетевых компонентов. Перечень функций пользователей сети. Планирование информационной безопасности сети.

    курсовая работа [2,3 M], добавлен 17.09.2010

  • Разработка информационной системы на базе высокоскоростной сети для ООО "СВД". Анализ организационной структуры разрабатываемой сети; определение топологии; выбор сетевого программного обеспечения, подбор технического оборудования и расчет его стоимости.

    курсовая работа [3,6 M], добавлен 10.01.2013

  • Назначение и классификация компьютерных сетей. Обобщенная структура компьютерной сети и характеристика процесса передачи данных. Управление взаимодействием устройств в сети. Типовые топологии и методы доступа локальных сетей. Работа в локальной сети.

    реферат [1,8 M], добавлен 03.02.2009

  • Выбор протокола и технологии построения локальной вычислительной сети из расчёта пропускной способности - 100 Мбит/с. Выбор сетевого оборудования. Составление план сети в масштабе. Конфигурация серверов и рабочих станций. Расчёт стоимости владения сети.

    курсовая работа [908,5 K], добавлен 28.01.2011

  • Постановка задачи построения информационной модели в Bpwin. Выбор топологии локальной вычислительной сети. Составление технического задания. Общая схема коммуникаций. Выбор активного оборудования структурированной кабельной системы. Моделирование сети.

    дипломная работа [877,0 K], добавлен 21.06.2013

  • Оптимизация и дальнейшее развитие локальной сети Костанайского социально-технического университета им. академика З. Алдамжар. Перестройка существующей структуры локальной сети в соответствии с результатами анализа. Антивирусная защита компьютерной сети.

    дипломная работа [2,0 M], добавлен 02.07.2015

  • Способы связи разрозненных компьютеров в сеть. Основные принципы организации локальной вычислительной сети (ЛВС). Разработка и проектирование локальной вычислительной сети на предприятии. Описание выбранной топологии, технологии, стандарта и оборудования.

    дипломная работа [2,3 M], добавлен 19.06.2013

  • Организационная структура предприятия "ЛЕПСЕ", состав сетевых приложений. Выбор конфигурации сети Fast Ethernet, применение сетевой топологии "звезда". Структура кабельной системы сети организации. Проверка работоспособности проектируемой сети.

    контрольная работа [64,3 K], добавлен 10.05.2011

  • Анализ зоны проектирования, информационных потоков, топологии сети и сетевой технологии. Выбор сетевого оборудования и типа сервера. Перечень используемого оборудования. Моделирование проекта локальной сети с помощью программной оболочки NetCracker.

    курсовая работа [861,6 K], добавлен 27.02.2013

  • Выбор локальной вычислительной сети среди одноранговых и сетей на основе сервера. Понятие топологии сети и базовые топологии (звезда, общая шина, кольцо). Сетевые архитектуры и протоколы, защита информации, антивирусные системы, сетевое оборудование.

    курсовая работа [3,4 M], добавлен 15.07.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.