Исторические методы шифрования информации

Способы кодирования переписки в Древнем мире. Методы шифрования информации в позднее Средневековье и эпоху Возрождения. Страны Европы, разрабатывающие свои методы криптографии во время мировых войн. Компьютерные ноу-хау, применяемые в современном мире.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 02.06.2014
Размер файла 29,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

ОМСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Реферат

по дисциплине

«История и методология науки и производства в области информатики и вычислительной техники»

на тему

«Исторические методы шифрования информации»

Выполнил:

студент гр. ИВМ-513

Гергерт Р.В.

Омск - 2014

Введение

Криптография - тайнопись, специальная система изменения обычного письма, используемая с целью сделать текст понятным лишь для ограниченного числа лиц, знающих эту систему.

Изначально криптография изучала методы шифрования информации -- обратимого преобразования открытого (исходного) текста на основе секретного алгоритма или ключа в шифрованный текст (шифротекст).

Криптография -- одна из старейших наук, её история насчитывает несколько тысяч лет.

Проблема защиты информации путем ее преобразования, исключающего ее прочтение посторонним лицом, волновала человеческий ум с давних времен. История криптографии - ровесница истории человеческого языка. Более того, первоначально письменность сама по себе была криптографической системой, так как в древних обществах ею овладели только избранные. Священные книги Древнего Египта, Древней Индии тому примеры.

В качестве основного критерия периодизации криптографии возможно использовать технологические характеристики используемых методов шифрования.

Первый период (приблизительно с 3-го тысячелетия до н. э.) характеризуется господством моноалфавитных шифров (основной принцип -- замена алфавита исходного текста другим алфавитом через замену букв другими буквами или символами). Второй период (хронологические рамки -- с IX века на Ближнем Востоке (Ал-Кинди) и с XV века в Европе (Леон Баттиста Альберти) -- до начала XX века) ознаменовался введением в обиход полиалфавитных шифров. Третий период (с начала и до середины XX века) характеризуется внедрением электромеханических устройств в работу шифровальщиков. При этом продолжалось использование полиалфавитных шифров.

Четвёртый период -- с середины до 70-х годов XX века -- период перехода к математической криптографии. В работе Шеннона появляются строгие математические определения количества информации, передачи данных, энтропии, функций шифрования. Обязательным этапом создания шифра считается изучение его уязвимости к различным известным атакам -- линейному и дифференциальному криптоанализу. Однако до 1975 года криптография оставалась «классической», или же, более корректно, криптографией с секретным ключом.

Современный период развития криптографии (с конца 1970-х годов по настоящее время) отличается зарождением и развитием нового направления -- криптография с открытым ключом. Её появление знаменуется не только новыми техническими возможностями, но и сравнительно широким распространением криптографии для использования частными лицами. Правовое регулирование использования криптографии частными лицами в разных странах сильно различается -- от разрешения до полного запрета.

Современная криптография образует отдельное научное направление на стыке математики и информатики -- работы в этой области публикуются в научных журналах, организуются регулярные конференции. Практическое применение криптографии стало неотъемлемой частью жизни современного общества -- её используют в таких отраслях как электронная коммерция, электронный документооборот (включая цифровые подписи), телекоммуникации и других.

1. Методы шифрования информации в Древнем мире

Большинство современных исследователей связывают появление криптографии с появлением письменности, указывая, что эти процессы произошли почти одновременно.

Методы секретной переписки были изобретены независимо в различных государствах древнего Востока, таких как Египет, Китай и Шумер, хотя сегодня очень трудно судить об уровне развития криптологии в этих обществах. Клинопись, рисуночное и иероглифическое письмо само по себе было крайне сложно и требовало длительного обучения, так что вопрос о шифровании сообщений часто попросту не поднимался, так как круг грамотных лиц был весьма ограничен.

Всю сложность данного вопроса иллюстрирует один пример: найдено множество глиняных табличек с клинописными знаками, записанными в несколько слоев (первоначальная запись замазывалась глиной и поверх нее наносилась новая).

Однако с развитием фонетического письма и значительным упрощением письменности, криптология получает значительный стимул к развитию. Развитию этой области знаний способствовали и развитие торговли, военного дела и дипломатической деятельности, которые создавали необходимый спрос на «продукцию» криптографов.

Наибольшее развитие в это время криптография получает в полисах Древней Греции, а позже в Риме. Основные криптографические системы, многие из которых используются вплоть до наших дней были разработаны в Древней Греции и получили широкое практическое применение в Риме. В Древней Греции использовались как шифры замены, так и шифры перестановки. Так наиболее распространенным и получившим широкую известность в античном мире шифром замены является т.н. шифр Цезаря, описанный Светонием. Для того чтобы зашифровать сообщение, каждую его букву заменяли на другую букву латинского алфавита, но со сдвигом влево или вправо. Цезарь в своих посланиях к сенату заменял все буквы на три отстоящие слева, Август применял тот же шифр, но со сдвигом в четыре знака.

Наибольших успехов в криптографии в античный период добилась Спарта, где активно использовались все известные виды шифров и были созданы первые дошедшие до нас шифровальные устройство. Первым таким прибором, реализующим шифр перестановки была т.н. «сциталла» (ококо VI-V вв. до н.э.). На цилиндр определенного диаметра по спирали наматывался ремень, на который наносили буквы вдоль оси цилиндра. В результате в развернутом виде все буквы смешивались, а если намотать ремень на цилиндр того же диаметра, то сообщение вновь становилось понятным.

В то же время стойкость данного шифра была невелика, а позже Архимед предложил устройство (т.н. антисциталла), с помощью которого расшифровка подобного сообщения без нужного цилиндра была весьма простой и быстрой. Ремень наматывали на коническое «копье» и сдвигали вверх и вниз до тех пор, пока не находили нужный диаметр и текст сообщения становился понятным.

Существовали и другие способы «механизации» криптографического дела, связанные прежде всего с именем древнегреческого полководца Энея Тактики. Он создал т.н. «диск Энея», получивший в Древней Греции широкое применение. В небольшом диске высверливались отверстия, соответствующие буквам алфавита, через которые продевалась нить, в соответствии с буквами шифруемого текста. Для расшифровки нить вытягивали, получая обратную последовательность букв. Этот крайне примитивный на первый взгляд способ шифрования, был весьма эффективен, так как противнику, перехватившему сообщение было неизвестно, какая буква соответствует каждому отверстию. Кроме того, если возникала опасность перехвата сообщения, нить можно было легко порвать, тем самым уничтожив его.

Существовала также и «линейка Энея», использовавшая тот же принцип, что и диск. Значительным вкладом Энея стал и изобретенный им т.н. «книжный шифр», активно использовавшийся вплоть до ХХ века. В своем трактате «Об обороне укрепленных мест», Эней предлагал прокалывать малозаметные дырки над буквами текста какой-либо книги. Сложив вместе отмеченные буквы адресат получал исходное сообщение. Римляне усовершенствовали диск Энея, создав первую многодисковую шифрующую систему. На общую ось одевали два диска с хаотичным расположением букв. Каждой букве первого диска соответствовала буква второго, что и составляло шифр.

Значительным шагом вперед, по сравнению с предыдущими системами шифрования представлял шифр, предложенный Полибием (ок. II в. до н.э.). Механизм его состоял в следующем: в квадрат определенных размеров (в соответствии с количеством букв алфавита - для латинского 5Х5, для русского 5Х6, при этом некоторые буквы редуцируются) вписываются буквы алфавита. Каждая клетка квадрата имеет двузначные координаты, на которые и заменяется при шифровании. Первоначально буквы записывались в естественном порядке, что значительно снижало стойкость шифра. Позднее буквы стали располагать хаотично, но это требовало наличие записанного ключа, что также было небезопасно. Выход был найден в применении т.н. ключевого слова. Берется какое-либо слово, из него убираются повторяющиеся буквы, а оставшиеся записываются в первые клетки квадрата. Пустые клетки заполняются буквами алфавита в естественном порядке. Полибианский квадрат стал одной из наиболее широко распространенных криптографических систем, когда-либо употреблявшихся. Этому способствовала его достаточно высокая стойкость (во всяком случае до автоматизации дешифрующих систем) - так квадрат 5Х5 для латинского алфавита содержит 15511210043331000000000000 (расчет весьма приблизителен) возможных положений, что практически исключает его дешифрование без знания ключа.

Интересно отметить, что полибианский квадрат дожил до наших дней и лег в основу т.н. «тюремного шифра», используемого заключенными при перестукивании. В нем буквы расположены в естественном порядке, а число ударов обозначает координату каждой буквы. Но так как используется естественное расположение букв, т.е секретного ключа нет, «тюремный шифр» является скорее способом кодировки сообщения, чем способом ее засекречивания.

Выводы к первой главе

Приведенные в данной главе криптографические методы шифрования информации активно применялись в Древней Греции и Риме и надолго определили характер криптографии. В условиях необходимости ручного расшифрования, полибианский квадрат был практически неуязвимым шифром, а сциталла и диск Энея, достаточно простые, тем не менее, позволяли оперативно шифровать и расшифровывать информацию, что делало их применимыми, скажем в полевых условиях для оперативной передачи приказов.

2. Методы шифрования информации в позднее Средневековье и эпоху Возрождения

В эпоху позднего средневековья, с началом возрождения античного наследия и просвещения, криптография в Европе обретает «второе рождение», прежде всего в среде интеллектуальной элиты того времени. Многие ученые средневекового периода стремились скрыть сделанные ими изобретения и открытия. Так современные исследователи установили, что состав черного пороха был открыт известным английским ученым середины XIII века - Роджером Бэконом (самое известное его изобретение - очки), почти за сто лет до «официальной» даты создания пороха Бертольдом Шварцем. В одном из его трудов присутствовало незашифрованное описание свойств этого вещества, но сам состав был зашифрован таким сложным шифром перестановки, что вскрыть его удалось лишь в наши дни с применением ЭВМ.

Однако проблема использования средневековыми учеными криптографии в своих произведениях, в особенности шифров перестановки, весьма неоднозначна.

И все же развитие криптологии в позднее Средневековье и раннее Новое время было напрямую связано с расцветом дипломатии. Так в 1401 году в герцогстве Мантуя был создан первый, дошедший до нас шифр многозначной замены, причем по несколько обозначений имели лишь гласные буквы, что может свидетельствовать о знакомстве составителя шифра с методами криптоанализа, основанными на частоте встречающихся в тексте гласных букв.

Неизвестно, была ли тесная связь между развитием европейской и восточной криптографии. Кроме того, если на востоке криптография была скорее частью лингвистики, то в Европе она была ближе к математике и естественным наукам, что также определило ее специфику.

Во многих европейских государствах, начиная с XVI века, появляется должность «секретаря по шифрам», единственным занятием которого, было создание шифров для «своих» дипломатических служб и расшифровка «чужих» сообщений. Уже в XV веке закладываются теоретические основы европейской криптологии.

Знаменитый итальянский архитектор Леон Батиста Альберти может быть назван «отцом» европейской криптологии. Именно он в своем труде «Трактат о шифрах» впервые предложил шифр многоалфавитной замены, который делал сообщение практически невскрываемым. Этот тип шифра часто называют таблицей Винджера - английского дипломата XVI века, активно применявшего его на практике.

Леон Альберти может считаться выдающимся криптографом и потому, что создал первый в европейской истории научный труд по криптологии - «Трактат о шифрах» 1466 года, в котором не только приводились примеры возможных вариантов шифрования, но и обосновывалась целесообразность применения криптографии на практике, как наиболее дешевого и надежного инструмента защиты информации.

Специальных учебных заведений, где обучали бы криптографической деятельности, в то время не существовало. Криптологов рекрутировали из наиболее образованных людей того времени, знающих математику и иностранные языки.

Вообще же криптографию в позднее Средневековье и раннее Новое время использовали не только государственные деятели, но и многие образованные люди. Так Леонардо да Винчи шифровал свои работы с помощью зеркала, записывая слова задом наперед. Он использовал и другие, значительно более сложные шифры, некоторые из которых до сих пор не раскрыты.

С развитием естественных наук к криптографической деятельности все чаще привлекаются талантливые и способные математики. Одним из первых таких криптографов был Франсуа Виет - основоположник практически всей современной алгебры и выдающийся ученый своего времени.

Пожалуй самым неудачливым из таких криптографов был Лейбниц - выдающийся немецкий ученый, математик, основатель Берлинской академии наук. Английский король Георг I хотел пригласить Лейбница, чтобы тот возглавил британскую криптографическую службу, но натолкнулся на резкое противодействие в лице Валлиса, опасавшегося конкуренции со стороны своего немецкого коллеги и пригрозившего перейти на сторону Испании, выдав ей все английские секреты, которых Валлис, по характеру своей деятельности знал немало. Активно выступал против подобного назначения и Ньютон - председатель Королевского научного общества, оспаривавший авторство Лейбница в дифференциальном исчислении. Не повезло Лейбницу и во второй раз, когда его пригласил в Россию Петр I, для не только для организации Российской академии наук, но и для создания российской криптографической службы по европейскому образцу, однако смерть Лейбница не позволила осуществиться планам Петра, вынужденного воспользоваться услугами менее именитых криптологов.

Выводы по второй главе

В целом, к концу XVII века криптография окончательно складывается как научная дисциплина. Появляются профессиональные криптоаналитики, соответствующие службы практически в каждой европейской стране, некое подобие системы обучения профессиональных криптографов, появилось значительное количество работ по криптографии и криптоанализу. Хотя в данный период господствовали номенклаторы, которые не являются шифрами в чистом виде, тем не менее появление многоалфавитной замены, использование решеток, биграмм и цифровых обозначений стало огромным шагом вперед по сравнению с древнейшим периодом и олицетворяло наступление новой эры в развитии криптологии, вплотную приблизившейся к своему современному виду.

кодирование шифрование криптография компьютерный

3. Методы шифрования информации в период с VIII века до середины XX века

XVIII век стал для криптологии периодом застоя, можно даже сказать ее упадка. Большой скачок, который эта наука сделала в предшествующий период, позволил в течение почти 150 лет не вводить никаких нововведений в способы шифрования и дешифровки сообщений. Разработанные ранее криптографические системы успешно применялись на практике, а трактаты XVI-XVII вв. служили учебными пособиями для криптоаналитиков. «Существовавшие шифры замены были довольно устойчивы, но и квалификация криптоаналитиков была высокой настолько, что большинство значимых сообщений расшифровывалось. Это время стало периодом расцвета номенклаторов. Этот тип криптографической системы, постепенно усложнявшийся на протяжении трех предшествующих веков, достиг в XVIII пика своего развития. Стандартным был размер номенклатора в 400-500 символов, но были и такие, которые достигали 5-6 тысяч, заменяя особыми символами практически все значимые понятия, имена, названия и целые предложения. В этот период номенклаторы стали походить больше не на шифр, а на форму иероглифического письма, и, несмотря на это, их все же взламывали».

К началу XIX века ситуация не изменилась, несмотря на бурные события, происходившие в Европе. Она начинает меняться только в середине XIX века вместе с появлением новых средств связи и значительной активизации дипломатических связей в Европе после революций 1830-1840-х годов. На успешное развитие криптографии оказало большое влияние рост коммерции и активность средств массовой информации, тщательно хранящих свои секреты. При этом к новым шифрсистемам предъявлялись все более высокие требования по устойчивости и одновременно простоте и возможности массового использования.

Во второй половине XIX века применение криптографии становится по-настоящему массовым.

Примерно в это же время начинают появляться и первые шифрующие машины. В 1891 году Этьен Базери предложил довольно простую машину для шифрования сообщений, получившую название «цилиндр Базери» и широко применявшуюся в начале ХХ века как во французской армии, так и в коммерческих структурах. 20 колес, с нанесенным на них в случайной последовательности алфавитом, одевались в определенном ключом порядке на одну ось, поворачивались до тех пор, пока в одном ряду не набирали первые 20 букв сообщения, после чего шифровку считывали с другого ряда, также определяемого ключом, после чего операция повторялась. На этом, весьма простом принципе создавались большинство шифровальных машин вплоть до Второй мировой войны.

Создание сложных и эффективных шифровальных машин и использование ЭВМ в криптоаналитической работе обозначили наступление нового, современного этапа развития криптологии, теоретическое оформление которого дал Элвуд Шелдон, встроив криптографию в общую теорию информации.

Несмотря на появление ЭВМ и использования их в криптографии и криптоанализе, нельзя говорить о том, что ручной шифр стал в наши дни неэффективен.

Выводы к третьей главе

Для этого этапа развития криптографии характерно следующее:

- защите подвергались только текстовые сообщения, написанные на естественных языках;

- шифрование поначалу осуществлялось вручную, а позднее были изобретены простые механические приспособления, поэтому использовавшиеся тогда шифры были несложными;

- криптография и криптоанализ были скорее искусством, чем наукой, научный подход к построению шифров и их раскрытию отсутствовал;

- криптография использовалась в очень узких сферах - только для верхушек государства и военных целей;

- основная задача криптографии состояла в защите передаваемых сообщений от несанкционированного ознакомления с ними.

4. Методы шифрования информации в Первой мировой войне

До Первой мировой войны Россия, наряду с Францией, являлась лидером в области криптоанализа на государственном уровне. Англия, США, Германия и менее влиятельные государства -- вообще не имели государственной дешифровальной службы, а Австро-Венгрия читала, в основном, переписку соседних государств. При этом если во Франции и Австро-Венгрии дешифровальная служба была военной, то в России -- гражданской.

Во время Первой мировой войны криптография, и, в особенности, криптоанализ становится одним из инструментов ведения войны. Известны факты расшифровки русских сообщений австрийцами, русскими же был расшифрован немецкий шифр (благодаря найденной водолазами копии кодовой книги), после чего результаты были переданы союзникам. Для перехвата радиосообщений были построены специальные подслушивающие станции, в результате работы которых (вместе с умением дешифровать немецкий шифр, использовавшийся в том числе турками) русский флот был осведомлён о составе и действиях противника. В британском адмиралтействе было создано специальное подразделение для дешифровки сообщений («комната 40»), которое за время войны расшифровало около 15 тысяч сообщений. Этот результат сыграл важную роль в сражении при Доггер-банке и Ютландском сражении.

Возможно, наиболее известным результатом работы криптоаналитиков времени Первой мировой войны является расшифровка телеграммы Циммермана, подтолкнувшая США к вступлению в войну на стороне Антанты.

Россия

К числу успешных операций стоит отнести проведённое ещё в мирное время похищение кодовой книги посла США в Бухаресте. Из-за того что посол не доложил начальству о пропаже (а остроумно пользовался аналогичной кодовой книгой «соседа» -- посла США в Вене), российская сторона смогла читать переписку США со своими послами вплоть до Первой мировой. Однако после её начала поток сообщений резко снизился. Это было связано с прекращением радиообмена между Германией, Австро-Венгрией и внешним миром, а также со слабой технической оснащённостью российских служб.

После начала боевых действий были созданы станции радиоперехвата, особенно на Балтике, а также организованы дешифровальные отделения при штабах армии и флота. Однако из-за нехватки квалифицированного персонала сообщения часто оставались необработанными. Помощь армии осуществляла и собственная дешифровальная служба Департамента полиции.Однако все эти действия были предприняты слишком поздно, чтобы оказать сколько-нибудь ощутимое влияние на ход боевых действий.

Англия

После успешной ликвидации германского подводного канала связи в Северном море и радиостанций в Африке, на Самоа и в Китае Германия была вынуждена использовать, кроме линий союзников, телеграф, почту и радиосвязь. Это создало хорошие условия для перехвата сообщений, в том числе для Англии, что впоследствии дало значительный вклад в победу над Тройственным союзом. Хотя Англия оказалась неготова к данной возможности, она сумела быстро воспользоваться ею. В 1914 году в адмиралтействе появляется «Комната 40», в создании которой участвовал и тогдашний глава адмиралтейства Уинстон Черчилль.

Благодаря помощи русских, захвативших кодовую книгу с затонувшего германского крейсера «Магдебург», а также собственным подобным операциям, англичане сумели разгадать принцип выбора шифров Германией. И хотя для надводного флота, из-за плохой организации связи между берегом и кораблями, это не дало большой пользы, чтение переписки дало значительный вклад в уничтожение германских подводных лодок.

Принесло пользу и использование явного обмана. С помощью ложного приказа, отправленного английским агентом немецким шифром, недалеко от Южной Америки была уничтожена целая эскадра. С помощью подложного английского кода, попавшего в руки Антанте в мае 1915 года, англичане на раз вводили Германию в заблуждение, заставив, например, в сентябре 1916 года оттянуть значительные силы для отражения мифической десантной атаки.

19 января 1917 года англичанам удалось частично расшифровать текст телеграммы, отправленной статс-секретарём иностранных дел Германии Артуром Циммерманом немецкому посланнику в Мексике Генриху фон Эккардту (англ. Heinrich von Eckardt). В прочитанной части содержалась информация о планах неограниченной войны на море. Однако только к середине февраля 1917 года телеграмма оказалась расшифрованной полностью. В телеграмме содержались планы по возвращении Мексике части территорий за счёт США. Информация была передана Уолтеру Пейджу (англ. Walter Hines Page), послу США в Англии. После проверки подлинности (в том числе -- после подтверждения самого Циммермана), телеграмма сыграла главную роль для оправдания в глазах общественности вступления США в Первую мировую войну против Четверного союза.

Франция

Наиболее драматическим моментом в криптографии Франции был июнь 1918 года, когда было жизненно необходимо узнать направление немецкого наступления на Париж. Жорж Панвэн (фр. Georges Jean Painvin) сумел за несколько напряжённых дней, потеряв 15 килограмм веса, вскрыть немецкий шифр ADFGVX. В результате Париж был спасён.

Германия

Kаждой немецкой дивизии был придан профессор математики, специалист по криптоанализу, немцы читали радиопередачи русских войск, что, в частности, обеспечило сокрушительную победу немцев над превосходящими силами русской армии в Битве при Танненберге. Впрочем, из-за недостатка криптографов, а также телефонных проводов, русские часто вели передачи по радио открытым текстом. Так или иначе, генерал Людендорф к 11 вечера имел в своём распоряжении все русские депеши за день.

Выводы по четвертой главе

Во время Первой мировой войны криптография, и, в особенности, криптоанализ становится одним из инструментов ведения войны.

5. Методы шифрования информации Второй мировой войны

Перед началом Второй мировой войны ведущие мировые державы имели электромеханические шифрующие устройства, результат работы которых считался невскрываемым. Эти устройства делились на два типа -- роторные машины и машины на цевочных дисках. К первому типу относят «Энигму», использовавшуюся сухопутными войсками Германии и её союзников, второго типа -- американская M-209.

В СССР производились оба типа машин.

Германия: «Энигма», «Fish»

История самой известной электрической роторной шифровальной машины -- «Энигма» -- начинается в 1917 году -- с патента, полученного голландцем Хьюго Кохом. В следующем году патент был перекуплен Артуром Шербиусом (англ.), начавшим коммерческую деятельность с продажи экземпляров машины как частным лицам, так и немецким армии и флоту.

Германские военные продолжают совершенствовать «Энигму». Без учёта настройки положения колец (нем. Ringstellung), количество различных ключей составляло 1016. В конце 1920-х -- начале 1930 годов, несмотря на переданные немецким аристократом Хансом Тило-Шмидтом данные по машине, имевшиеся экземпляры коммерческих вариантов, британская и французская разведка не стали браться за задачу криптоанализа. Вероятно, к тому времени они уже сочли, что шифр является невзламываемым. Однако группа из трёх польских математиков так не считала, и, вплоть до 1939 года, вела работы по «борьбе» с «Энигмой», и даже умела читать многие сообщения, зашифрованными «Энигмой» (в варианте до внесения изменений в протокол шифрования от декабря 1938 года). У одного из них, Мариана Реевского зародилась идея бороться с криптографической машиной с помощью другой машины. Идея озарила Реевского в кафе, и он дал машине имя «Бомба» по названию круглого пирожного. Среди результатов, переданных британским разведчикам перед захватом Польши Германией, были и «живые» экземпляры «Энигмы», и электромеханическая машина «Bomba», состоявшая из шести спаренных «Энигм» и помогавшая в расшифровке (прототип для более поздней «Bombe» Алана Тьюринга), а также уникальные методики криптоанализа.

Дальнейшая работа по взлому была организована в Блетчли-парке, сегодня являющемся одним из предметов национальной гордости.

С современной точки зрения шифр «Энигмы» был не очень надёжным, но только сочетание этого фактора с наличием множества перехваченных сообщений, кодовых книг, донесений разведки, результатов усилий военных и даже террористических атак позволило «вскрыть» шифр.

Однако с 1940 года высшее германское командование начало использовать новый метод шифрования, названный британцами «Fish». Для шифрования использовалось новое устройство «Lorenz SZ 40», разработанное по заказу военных. Шифрование основывалось на принципе одноразового блокнота (шифр Вернама, одна из модификаций шифра Виженера, описанная в 1917 году) и при правильном использовании гарантировало абсолютную криптостойкость (что было доказано позже в работах Шеннона). Однако для работы шифра требовался «надёжный» генератор случайной последовательности, который бы синхронизировался на передающей и принимающей стороне. Если криптоаналитик сумеет предсказать следующее число, выдаваемое генератором, он сможет расшифровать текст.

К сожалению для Германии, генератор, используемый в машинах «Lorenz SZ 40» оказался «слабым». Однако его взлом всё равно нельзя было осуществить вручную -- криптоаналитикам из Блетчли-парка потребовалось создать устройство, которое бы перебирало все возможные варианты и избавляло бы криптоаналитиков от ручного перебора. Таким устройством стала одна из первых программируемых вычислительных машин «Colossus», созданная Максом Ньюменом (англ. Max Newman) и Томми Флауэрсом (англ. Tommy Flowers) при участии Алана Тьюринга в 1943 году (хотя некоторые источники указывают, что она была сделана для взлома «Энигмы»). Машина включала 1600 электронных ламп и позволила сократить время, требуемое на взлом сообщений, с шести недель до нескольких часов.

СССР

В армии и флоте СССР использовались шифры с кодами различной длины -- от двух символов (фронт) до пяти (стратегические сообщения). Коды менялись часто, хотя иногда и повторялись на другом участке фронта. По ленд-лизу СССР получил несколько M-209, которые использовались как основа для создания своих собственных шифровальных машин, хотя об их использовании неизвестно.

Также для связи высших органов управления страной (в том числе Ставки Верховного Главнокомандования) и фронтами использовалась ВЧ-связь. Она представляла собой технические средства для предотвращения прослушивания телефонных разговоров, которые модулировали высокочастотный сигнал звуковым сигналом от мембраны микрофона. Уже во время Второй мировой войны механизм заменили на более сложный, который разбивал сигнал на отрезки по 100--150 мс и три-четыре частотных полосы, после чего специальный шифратор их перемешивал. На приёмном конце аналогичное устройство производило обратные манипуляции для восстановления речевого сигнала. Криптографической защиты не было, поэтому используя спектрометр можно было выделить используемые частоты и границы временных отрезков, после чего медленно, по слогам, восстанавливать сигнал.

Во время советско-финской войны (1939--1940) Швеция успешно дешифровывала сообщения СССР и помогала Финляндии. Так, например, во время битвы при Суомуссалми успешный перехват сообщений о продвижении советской 44-й стрелковой дивизии помог Карлу Маннергейму вовремя выслать подкрепления, что стало залогом победы. Успешное дешифрование приказов о бомбовых ударах по Хельсинки позволяло часто включить систему оповещения о воздушном ударе ещё до того, как самолёты стартуют с территории Латвии и Эстонии.

30 декабря 1937 года был образовано 7-е отделение (в дальнейшем -- 11-й отдел) Управления разведки Наркомата ВМФ, задачей которого являлось руководство и организация дешифровальной работы. В годы войны на дешифровально-разведочной службе СССР состояло не более 150 человек, однако всё равно, по мнению Вадима Тимофеевича Кулинченко -- капитана 1 ранга в отставке, ветерана-подводника, ДРС показала «удивительную результативность и эффективность». В 1941--1943 годах ДРС Балтийского флота было взломано 256 германских и финляндских шифров, прочитано 87 362 сообщения. ДРС Северного флота (всего -- 15 человек) взломала 15 кодов (в 575 вариантах) и прочитала более 55 тыс. сообщений от самолётов и авиабаз противника, что, по оценке Кулинченко, «позволило полностью контролировать всю закрытую переписку ВВС Германии». ДРС СФ также раскрыто 39 шифров и кодов используемых аварийно-спасательной, маячной и радионавигационной службами и береговой обороны противника и прочитано около 3 тыс. сообщений. Важные результаты были получены и по другим направлениям. ДРС Черноморского флота имело информацию и о текущей боевой обстановке, и даже перехватывало некоторые стратегические сообщения.

Успешные результаты по чтению зашифрованной японской дипломатической переписки позволили сделать вывод о том, что Япония не намерена начинать военные действия против СССР. Это дало возможность перебросить большое количество сил на германский фронт.

В передачах радиосвязи с советскими ядерными шпионами в США (см. создание советской атомной бомбы) Центр в Москве использовал теоретически неуязвимую криптографическую систему с одноразовым ключом. Тем не менее, в ходе реализации глубоко засекреченного проекта «Венона» контрразведке США удавалось расшифровать передачи, в некоторые периоды около половины из них. Это происходило оттого, что в военные годы из-за недостатка ресурсов некоторые ключи использовались повторно, особенно в 1943--1944 годах. Кроме того, ключи не были по-настоящему случайными, так производились машинистками вручную.

Выводы к пятой главе

Ключевой вехой в развитии криптографии во времена Второй мировой войны является фундаментальный труд Клода Шеннона «Теория связи в секретных системах» (англ. Communication Theory of Secrecy Systems) -- секретный доклад, представленный автором в 1943 году, и опубликованный им в «Bell System Technical Journal» в 1949 году. В этой работе, по мнению многих современных криптографов, был впервые показан подход к криптографии в целом как к математической науке. Были сформулированы её теоретические основы и введены понятия, с объяснения которых сегодня начинается изучение криптографии студентами.

6. Современные методы шифрования информации

С конца 1990 годов начинается процесс открытого формирования государственных стандартов на криптографические протоколы. Пожалуй, самым известным является начатый в 1997 году конкурс AES, в результате которого в 2000 году государственным стандартом США для криптографии с секретным ключом был принят шифр Rijndael, сейчас уже более известный как AES. Аналогичные инициативы носят названия NESSIE (англ. New European Schemes for Signatures, Integrity, and Encryptions) в Европе и CRYPTREC (англ. Cryptography Research and Evaluation Committees) в Японии.

В самих алгоритмах в качестве операций, призванных затруднить линейный и дифференциальный криптоанализ кроме случайных функций (например, S-блоков, используемых в шифрах DES и ГОСТ) стали использовать более сложные математические конструкции, такие как вычисления в поле Галуа в шифре AES. Принципы выбора алгоритмов (криптографических примитивов) постепенно усложняются. Предъявляются новые требования, часто не имеющего прямого отношения к математике, такие как устойчивость к атакам по сторонним каналам. Для решения задачи защиты информации предлагаются всё новые механизмы, в том числе организационные и законодательные.

Также развиваются принципиально новые направления. На стыке квантовой физики и математики развиваются квантовые вычисления и квантовая криптография. Хотя квантовые компьютеры лишь дело будущего, уже сейчас предложены алгоритмы для взлома существующих «надёжных» систем (например, алгоритм Шора). С другой стороны, используя квантовые эффекты, возможно построить и принципиально новые способы надёжной передачи информации. Активные исследования в этой области идут с конца 1980-х годов.

В современном мире криптография находит множество различных применений. Кроме очевидных -- собственно, для передачи информации, она используется в сотовой связи, платном цифровом телевидении при подключении к Wi-Fi и на транспорте для защиты билетов от подделок, и в банковских операциях, и даже для защиты электронной почты от спама.

Выводы по шестой главе

Сегодня во всем мире существенно изменился интерес к криптографии и прикладным решениям на ее основе. Резко расширилась сфера применения криптографических методов для защиты интеллектуальной собственности. Растет спрос на продукты для защиты информации, особенно в Internet-приложениях. Расширяются исследования по криптографии в частных компаниях, ранее не связанных напрямую с информационной безопасностью.

Заключение

Появление в середине двадцатого столетия первых электронно-вычислительных машин кардинально изменило ситуацию в области шифрования (криптографии). С проникновением компьютеров в различные сферы жизни возникла принципиально новая отрасль - информационная индустрия. Проблема обеспечения необходимого уровня защиты информации оказалась (и это предметно подтверждено как теоретическими исследованиями, так и опытом практического решения) весьма сложной, требующей для своего решения не просто осуществления некоторой совокупности научных, научно-технических и организационных мероприятий и применения специфических средств и методов, а создания целостной системы организационных мероприятий и применения специфических средств и методов по защите информации. Объем циркулирующей в обществе информации стабильно возрастает. Популярность всемирной сети Интренет в последние годы способствует удваиванию информации каждый год. Фактически, на пороге нового тысячелетия человечество создало информационную цивилизацию, в которой от успешной работы средств обработки информации зависит благополучие и даже выживание человечества в его нынешнем качестве. Произошедшие за этот период изменения можно охарактеризовать следующим образом: объемы обрабатываемой информации возросли за полвека на несколько порядков; доступ к определенным данным позволяет контролировать значительные материальные и финансовые ценности; информация приобрела стоимость, которую даже можно подсчитать; характер обрабатываемых данных стал чрезвычайно многообразным и более не сводится к исключительно текстовым данным; информация полностью "обезличилась", т.е. особенности ее материального представления потеряли свое значение - сравните письмо прошлого века и современное послание по электронной почте; характер информационных взаимодействий чрезвычайно усложнился, и наряду с классической задачей защиты передаваемых текстовых сообщений от несанкционированного прочтения и искажения возникли новые задачи сферы защиты информации, ранее стоявшие и решавшиеся в рамках используемых "бумажных" технологий - например, подпись под электронным документом и вручение электронного документа "под расписку"; субъектами информационных процессов теперь являются не только люди, но и созданные ими автоматические системы, действующие по заложенной в них программе; вычислительные "способности" современных компьютеров подняли на совершенно новый уровень как возможности по реализации шифров, ранее немыслимых из-за своей высокой сложности, так и возможности аналитиков по их взлому.

Библиографический список

1. А.П. Алферов, А.Ю. Зубов, А.С. Кузьмин, А.В. Черемушкин Основы Криптографии. -- М.: Гелиос, 2005., с.5 - 53.

2. Баричев С.Г., Гончаров В.В., Серов Р.Е. Основы современной криптографии. -- М.: Горячая линия -- Телеком, 2002., с. 4 - 8.

3. Жельников В. Криптография от папируса до компьютера. - М.: ABF, 1996. - 756 с.

4. Ковалевский В., Криптографические методы. - СПб.: Компьютер Пресс, 1993. - 302 с.

5. Криптографические методы и средства защиты информации [Электронный ресурс].

Размещено на Allbest.ru


Подобные документы

  • Краткая история развития криптографических методов защиты информации. Сущность шифрования и криптографии с симметричными ключами. Описание аналитических и аддитивных методов шифрования. Методы криптографии с открытыми ключами и цифровые сертификаты.

    курсовая работа [1,2 M], добавлен 28.12.2014

  • Криптография и шифрование. Симметричные и асимметричные криптосистемы. Основные современные методы шифрования. Алгоритмы шифрования: замены (подстановки), перестановки, гаммирования. Комбинированные методы шифрования. Программные шифраторы.

    реферат [57,7 K], добавлен 24.05.2005

  • Основные способы криптографии, история ее развития. Принцип шифрования заменой символов, полиалфавитной подстановкой и методом перестановки. Симметричный алгоритм шифрования (DES). Открытое распределение ключей. Шифры Ривеста-Шамира-Алдемана и Эль Гамаля.

    реферат [39,3 K], добавлен 22.11.2013

  • Современные физические и законодательные методы защиты информации. Внедрение системы безопасности. Управление доступом. Основные направления использования криптографических методов. Использование шифрования, кодирования и иного преобразования информации.

    реферат [17,4 K], добавлен 16.05.2015

  • История развития криптографии, ее основные понятия. Простейший прием дешифровки сообщения. Основные методы и способы шифрования, современный криптографический анализ. Перспективы развития криптографии. Создание легкого для запоминания и надежного пароля.

    курсовая работа [3,9 M], добавлен 18.12.2011

  • Особенности шифрования данных, предназначение шифрования. Понятие криптографии как науки, основные задачи. Анализ метода гаммирования, подстановки и метода перестановки. Симметрические методы шифрования с закрытым ключом: достоинства и недостатки.

    курсовая работа [564,3 K], добавлен 09.05.2012

  • Основные методы криптографической защиты информации. Система шифрования Цезаря числовым ключом. Алгоритмы двойных перестановок и магические квадраты. Схема шифрования Эль Гамаля. Метод одиночной перестановки по ключу. Криптосистема шифрования данных RSA.

    лабораторная работа [24,3 K], добавлен 20.02.2014

  • Криптографические методы обеспечения конфиденциальности, невозможности прочтения информации посторонним. Современные методы шифрования информации как обратимого преобразования открытого текста в шифрованный на основе секретного алгоритма или ключа.

    презентация [514,3 K], добавлен 06.02.2016

  • Симметричные и асиметричные методы шифрования. Шифрование с помощью датчика псевдослучайных чисел. Алгоритм шифрования DES. Российский стандарт цифровой подписи. Описание шифрования исходного сообщения асимметричным методом с открытым ключом RSA.

    курсовая работа [101,1 K], добавлен 09.03.2009

  • Криптографическая защита как элемент систем обеспечения безопасности информации. Исторические шифры и их взлом. Особенности современной криптологии и криптографии. Основные методы современного криптоанализа, их сущность, особенности и характеристика.

    курсовая работа [57,1 K], добавлен 14.06.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.