Методы одномерной оптимизации

Метод установления границ начального отрезка локализации минимума. Метод золотого сечения. Оценивание точки минимума внутри найденного отрезка локализации. Программная реализация метода Свенна на языке C++. Текст программы нахождения точки минимума.

Рубрика Программирование, компьютеры и кибернетика
Вид контрольная работа
Язык русский
Дата добавления 27.01.2011
Размер файла 47,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

11

Министерство образования РФ

Волгоградский государственный технический университет

Контрольная работа

Методы одномерной оптимизации

Выполнил:

Группа АУЗ-362

Проверил:

Яновский Т.А.

Волгоград 2011

Метод установления границ начального отрезка локализации минимума

Представляет собой процедуру эвристического типа, предваряющую использование метода одномерного поиска, которому требуется начальный отрезок локализации минимума.

Алгоритм Свенна.

Шаг 1. Выбрать произвольную начальную точку и - начальный положительный шаг.

Шаг 2. Вычислить

Шаг 3. Сравнить :

а) если то, согласно предположению об унимодальности функции, точка минимума должна лежать правее, чем точка . Положить , , k=2 и перейти на шаг 5.

б) если , то вычислить .

Шаг 4. Сравнить :

а) если , то точка минимума лежит между точками и , которые и образуют границы начального отрезка локализации минимума. Положить и завершить поиск.

б) если то, согласно предположению об унимодальности функции, точка минимума должна лежать левее, чем точка . Положить , k=2 и перейти на шаг 5.

Шаг 5. Вычислить .

Шаг 6. Сравнить :

а) если , то

при положить

при положить

и завершить поиск.

б) если , то

при положить

при положить

положить k=k+1 и перейти на шаг 5.

Метод золотого сечения

Необходимо задать начальный отрезок локализации минимума и число , характеризующее желаемую точность вычисления x*.

Шаг 1. Вычислить .

Шаг 2. Найти пробные точки и .

Шаг 3. Вычислить значения функции в пробных точках и .

Шаг 4. Сравнить и :

а) если , то положить .

б) если , положить .

Шаг 5. Вычислить . Если , то положить и закончить поиск, иначе перейти к шагу 3.

Замечание: Данный алгоритм является несколько более медленно сходящимся по сравнению с алгоритмом, точно соответствующим методу “золотого сечения”, из-за того, что на каждой итерации он требует двух вычислений функции f(x) вместо одного. Однако это делает его более точным, так как при оперировании только с одной новой точкой ошибки округления могут привести к потере интервала, содержащего минимум.

Задание.

1.Самостоятельно найти в литературе по “Методам оптимизации” определение унимодальной функции и разобраться с его смыслом. Это важно, так как вычислительный процесс в любом методе одномерной оптимизации опирается на предположение об унимодальности .

2. Программно реализовать на языке C++ метод Свенна

(Программа должна обеспечить вывод на экран

§ начальной точки и шага

на каждой итерации метода:

§ номера итерации,

§ генерируемой методом новой точки x и значения функции в ней;

а на последней итерации

§ отрезка [a, b] локализации минимума функции f(x) и его длины, а также числа итераций.

Метод оценивания точки минимума внутри найденного отрезка локализации минимума

(Программа должна обеспечить на каждой итерации метода вывод на экран:

§ номера итерации,

§ границ текущего отрезка [a, b],

§ внутренних точек и значений функции в них, а затем

§ финальной оценки x* точки минимума функции f(x)

§ соответствующего точке x* значения функции f(x*)).

3. С помощью программы решить следующие задачи одномерной оптимизации

§ f(x) = x2 - 12x. Начальные точки: 1, 3, 0, 10. ? = 1, 10

§ f(x) = 2x2+(16/x) Начальные точки: 1,6, 2, 1, 0.1, 10. ? = 1, 2

§ f(x) = (127/4)x2-(61/4)x+2. Начальные точки: 0, 1, 2, -10, 10. ?= 0,5, 1

4.Составить отчет, содержащий:

§ Титульный лист с указанием учебной дисциплины, номера и названия задания, ФИО выполнившего работу студента;

§ Полностью текст задания, приведенный несколькими строками выше;

§ Определение унимодальности;

§ Алгоритмы;

§ Текст программы на С++;

§ Подробное решение одной из предложенных задач - то, что выводит программа при ее решении на каждой итерации;

§ Сводную таблицу результатов решения задач, содержащую информацию о тестовой функции, начальных данных задачи и параметрах программы и результаты решения задачи(оценку точки минимума, значение функции в ней, число итераций).

Задание№1

Программно реализовать на языке C++ метод Свенна

(Программа должна обеспечить вывод на экран

§ начальной точки и шага на каждой итерации метода:

§ номера итерации,

§ генерируемой методом новой точки x и значения функции в ней; а на последней итерации отрезка [a, b] локализации минимума функции f(x) и его длины, а также числа итераций.

С помощью программы решить следующие задачи одномерной оптимизации

§ f(x) = x2 - 12x. Начальные точки: 1, 3, 0, 10. ? = 1, 10

§ f(x) = 2x2+(16/x) Начальные точки: 1,6, 2, 1, 0.1, 10. ? = 1, 2

§ f(x) = (127/4)x2-(61/4)x+2. Начальные точки: 0, 1, 2, -10, 10. ?= 0,5, 1

Текст программы на С++

#include <iostream.h>

#include <conio.h>

#include <math.h>

#include <iomanip.h>

using namespace std;

double f(double ) ;

int _tmain(int argc, _TCHAR* argv[])

{

double t,ll,e,l,xk,yk,a,b;

double x,delta,xp,x1,x2,k=0,y;

int p=0;

cout<<"enter x* ";

cin>>x ;

cout<<"enter t ";

cin>>t;

x1=x-t;

x2=x+t;

if ((f(x-t) >=f(x)) && (f(x+t) >=f(x)))

{

a=x-t;

b=x+t;

p=1;

};

if ((f(x-t) <=f(x)) && (f(x+t) <=f(x)))

{

p=1;

};

xp=x;

if ((f(x-t) >f(x)) && (f(x) >f(x+t)))

{

delta=t;

a=x ;

x=x+t;

}

if ((f(x-t) < f(x)) && (f(x) < f(x+t)))

{

delta=-t;

b=x ;

x=x-t;

}

while ((p!=1))

{

if ((f(x)< f(xp)) && (delta*t >0))

a=xp;

if ((f(x)< f(xp)) && (delta*t <0))

b=xp;

if ((f(x)> f(xp)) && (delta*t >0))

{

b=x;

p=1;

};

if ((f(x)> f(xp)) && (delta*t<0))

{

a=x;

p=1;

};

k++;

cout<< " Номер итерации "<<k<<endl;

cout<< " Ганицы отрезка a="<<a<<" b="<<b<<endl;

xp=x;

x=xp+pow(2.0,k-1)*delta;

}

cout << " a= "<<a<< " b= "<< b<<endl; cout<< " Количество итераций= " << k<< endl;

system("pause");

return 0;

}

double f(double x)

{

double y;

y=x*x-12*x;

return (y);

}

Решение задачи

Функция f(x) = x2-12x нач. точка x0= 1 шаг 1

Номер итерации 1

Начальная точка 1

X1 = a = 1

F(x) = -11

Номер итерации 2

Начальная точка 1

Шаг 1

X2 = a= 2

F(x) = -20

Номер итерации 3

Начальная точка 2

Шаг 2

X3 = a = 4

F(x) = -32

Номер итерации 4

Начальная точка 4

Шаг 4

X4 = b = 8

F(x) = -32

Отрезок [a;b] =[2;8] Число итераций = 4

Сводная таблица результатов №1

f(x) = x2-12x

Начальная

точка

Шаг

Отрезок

Число итераций

1

1

[2;8]

4

1

10

[-9;11]

3

3

1

[4;11]

4

3

10

[-7;13]

3

0

1

[2;16]

5

0

10

[0;30]

3

10

1

[2;8]

4

10

10

[0;20]

3

Сводная таблица результатов №2

f(x) = 2x2+(16/x)

Начальная

точка

Шаг

Отрезок

Число итераций

1.6

1

[0.6;2.6]

3

1.6

2

[-0.4;3.6]

3

2

1

[1;3]

3

2

2

[0;2]

3

0.1

1

[-0.9;2.1]

3

0.1

2

[-1.9;4.1]

3

10

1

[-5;9]

4

10

2

[-4;8]

3

Сводная таблица результатов №3

f(x) = (127/4)x2-(61/4)x+2

Начальная

точка

Шаг

Отрезок

Число итераций

0

0.5

[-0.5;0.5]

2

0

1

[-1;1]

2

1

0.5

[-1;0.5]

3

1

1

[-1;1]

2

2

0.5

[-2;1]

4

2

1

[-2;1]

3

-10

0.5

[-6;6]

6

-10

1

[-6;6]

5

10

0.5

[-6;6]

6

10

1

[-6;6]

5

Задание 2

Найти точки минимума внутри найденного отрезка локализации минимума методом золотого сечения.

(Программа должна обеспечить на каждой итерации метода вывод на экран:

§ номера итерации,

§ границ текущего отрезка [a, b],

§ внутренних точек и значений функции в них,

а затем

§ финальной оценки x* точки минимума функции f(x)

§ соответствующего точке x* значения функции f(x*)).

Текст программы на С++

#include <iostream.h>

#include <iomanip.h>

#include <math.h>

#include <conio.h>

#include <stdlib.h>

double function (double); // вычисляет значение функции в данной точке

void main (void)

{

double a, b, E, F1, F2, LM, x = 0, fc, fd, fx, i = 0, c = 0, d = 0; // Определение переменных

clrscr();

cout << "Введите границы начального отрезка:" << endl << "a0 = ";

cin >> a;

cout << "b0 = ";

cin >> b;

cout << "Введите число Е:" << endl << "E = ";

cin >> E;

clrscr();

cout << "Границы начальнога отрезка:"<< endl <<"а[" << i << "] = " << a << endl;

cout << "b[" << i << "] = " << b << endl;

cout << "Число Е = " << E << endl;

F1 = (3 - sqrt(5))*0.5;

F2 = 1 - F1;

do

{

LM = b - a;

cout << endl << "Номер итерации " << i + 1 << endl;

cout << "Границы текущего отрезка:" << endl << "а[" << i << "] = " << a << endl;

cout << "b[" << i << "] = " << b << endl;

if (LM <= E)

{

x = (a + b)*0.5;

fx = function(x);

cout << "Точка минимума x = " << setprecision(10) << x << endl;

cout << "Значение функции F(x) в точке минимума = " << setprecision(10) << fx << endl;

cout << "Press any key";

getch();

exit(0);

}

else

{

c = a + F1 * LM;

d = a + F2 * LM;

fc = function(c);

fd = function(d);

cout << "Значение внутренней точки с[" << i << "] = " << setprecision(10) << c << endl;

cout << "Значение внутренней точки d[" << i << "] = " << setprecision(10) << d << endl;

cout << "Значение функции F(x) в точке с[" << i << "] = " << setprecision(10) << fc << endl;

cout << "Значение функции F(x) в точке d[" << i << "] = " << setprecision(10) << fd << endl;

}

if (fc == fd)

{

a = c;

b = d;

x = (a + b)*0.5;

fx = function(x);

cout << "Точка минимума x = " << setprecision(10) << x << endl;

cout << "Значение функции F(x) в точке минимума = " << setprecision(10) << fx << endl;

cout << "Press any key";

getch();

exit(0);

}

else

{

if (fc < fd)

{

a = a;

b = d;

i++;

}

else

{

a = c;

b = b;

i++;

}

}

}

while (1);

}

double function (double x)

{

double y;

y = x * x - 12 * x;

return (y);

}

Решение задачи

Функция f(x) = x2-12x

Границы начального отрезка:

а[0] = -9

b[0] = 11

Число Е = 0.1

Номер итерации 1

Границы текущего отрезка:

а[0] = -9

b[0] = 11

Значение внутренней точки с[0] = -1.36

Значение внутренней точки d[0] = 3.36

Значение функции F(x) в точке с[0] = 18.17

Значение функции F(x) в точке d[0] = -29.03

Номер итерации 2

Границы текущего отрезка:

а[1] = -1.36

b[1] = 11

Значение внутренней точки с[1] = 3.36

Значение внутренней точки d[1] = 6.27

Значение функции F(x) в точке с[1] = -29.03

Значение функции F(x) в точке d[1] = -35.92

Номер итерации 3

Границы текущего отрезка:

а[2] = 3.36

b[2] = 11

Значение внутренней точки с[2] = 6.27

Значение внутренней точки d[2] = 8.08

Значение функции F(x) в точке с[2] = -35.92

Значение функции F(x) в точке d[2] = -31.66

Номер итерации 4

Границы текущего отрезка:

а[3] = 3.36

b[3] = 8.08

Значение внутренней точки с[3] = 5.16

Значение внутренней точки d[3] = 6.27

Значение функции F(x) в точке с[3] = -35.3

Значение функции F(x) в точке d[3] = -35.92

Номер итерации 5

Границы текущего отрезка:

а[4] = 5.16

b[4] = 8.08

Значение внутренней точки с[4] = 6.27

Значение внутренней точки d[4] = 6.96

Значение функции F(x) в точке с[4] = -35.92

Значение функции F(x) в точке d[4] = -35.06

Номер итерации 6

Границы текущего отрезка:

а[5] = 5.16

b[5] = 6.96

Значение внутренней точки с[5] = 5.85

Значение внутренней точки d[5] = 6.27

Значение функции F(x) в точке с[5] = -35.97

Значение функции F(x) в точке d[5] = -35.92

Номер итерации 7

Границы текущего отрезка:

а[6] = 5.16

b[6] = 6.27

Значение внутренней точки с[6] = 5.58

Значение внутренней точки d[6] = 5.85

Значение функции F(x) в точке с[6] = -35.83

Значение функции F(x) в точке d[6] = -35.97

Номер итерации 8

Границы текущего отрезка:

а[7] = 5.58

b[7] = 6.27

Значение внутренней точки с[7] = 5.85

Значение внутренней точки d[7] = 6.01

Значение функции F(x) в точке с[7] = -35.97

Значение функции F(x) в точке d[7] = -35.99

Номер итерации 9

Границы текущего отрезка:

а[8] = 5.85

b[8] = 6.27

Значение внутренней точки с[8] = 6.01

Значение внутренней точки d[8] = 6.11

Значение функции F(x) в точке с[8] = -35.999

Значение функции F(x) в точке d[8] = -35.986

Номер итерации 10

Границы текущего отрезка:

а[9] = 5.85

b[9] = 6.11

Значение внутренней точки с[9] = 5.95

Значение внутренней точки d[9] = 6.01

Значение функции F(x) в точке с[9] = -35.997

Значение функции F(x) в точке d[9] = -35.999

Номер итерации 11

Границы текущего отрезка:

а[10] = 5.95

b[10] = 6.11

Значение внутренней точки с[10] = 6.01

Значение внутренней точки d[10] = 6.05

Значение функции F(x) в точке с[10] = -35.999

Значение функции F(x) в точке d[10] = -35.997

Номер итерации 12

Границы текущего отрезка:

а[11] = 5.95

b[11] = 6.05

Значение внутренней точки с[11] = 5.99

Значение внутренней точки d[11] = 6.01

Значение функции F(x) в точке с[11] = -35.999

Значение функции F(x) в точке d[11] = -35.999

Номер итерации 13

Границы текущего отрезка:

а[12] = 5.95

b[12] = 6.01

Точка минимума x = 5.981

Значение функции F(x) в точке минимума = -35.999999

f(x) = x2-12x

?

отрезки?

Точка минимума

Значение функции

Число итераций

0.1

[2;8]

6.003

-35.999999

10

[-9;11]

5.981

-35.999999

13

[4;11]

5.996

-35.999999

10

[-7;13]

6.018

-35.999966

13

[2;16]

6.006

-35.999957

12

[0;30]

6.002

-35.999997

13

[2;8]

6.003

-35.999999

10

[0;20]

6.005

-35.999965

13

f(x) = 2x2+(16/x)

?

отрезки?

Точка минимума

Значение функции

Число итераций

0.01

[0.6;2.6]

1.5875

15.119055

13

[-0.4;3.6]

1.5820

15.119055

15

[1;3]

1.5861

15.119055

14

[0;2]

1.5874

15.119052

13

[-0.9;2.1]

1.5880

15.119050

13

[-1.9;4.1]

1.5864

15.119057

15

[-5;9]

1.5862

15.119061

17

[-4;8]

1.5866

15.119055

16

f(x) = (127/4)x2 - (61/4)x+2

?

Отрезки?

Точка минимума

Значение функции

Число итераций

0.001

[-0.5;0.5]

0.2418

0.18548

16

[-1;1]

0.2418

0.18548

17

[-1;0.5]

0.2420

0.18548

17

[-1;1]

0.2418

0.18548

17

[-2;1]

0.2420

0.18548

18

[-2;1]

0.2420

0.18548

18

[-6;6]

0.2418

0.18548

21

[-6;6]

0.2418

0.18548

21

[-6;6]

0.2418

0.18548

21

[-6;6]

0.2418

0.18548

21


Подобные документы

  • Создание программы в среде программирования MatLab для решения задачи одномерной оптимизации (нахождение минимума и максимума заданных функций) методом золотого сечения, построение блок-схемы алгоритма и графическое изображение исследованных функций.

    реферат [112,0 K], добавлен 14.06.2010

  • Необходимые условия экстремума. Разработка машинного алгоритма и программы многомерной оптимизации для градиентного метода с использованием метода равномерного поиска. Проверка необходимых и достаточных условий экстремума для найденной точки минимума.

    курсовая работа [249,8 K], добавлен 25.09.2013

  • Задачи оптимизации в математике и информатике. Классификация методов оптимизации. Методы с переменной метрикой. Значение функции на заданном интервале. Локальный минимум функции. Методы минимизации функции. Классификация методов многомерной оптимизации.

    курсовая работа [1,5 M], добавлен 19.06.2012

  • Программная реализация приложения для вычисления заданных функций. Процедура поиска минимума функции. Применение методов Хука-Дживса и градиентного спуска для решения задачи. Исследование функции в окрестности базисной точки, определение ее координат.

    контрольная работа [767,1 K], добавлен 02.02.2014

  • Определение минимума функции на заданном отрезке методами перебора, поразрядного поиска, дихотомии, золотого сечения и методом парабол. Нахождение и расчет нулей функции методом Ньютона. Построение графика данной функции, ее минимальное значение.

    реферат [55,6 K], добавлен 09.04.2013

  • Методы ветвей и границ первого и второго порядка. Оптимальный и пассивный поиск. Недостатки метода Ньютона. Метод золотого сечения. Примеры унимодальных функций. Динамическое и линейное программирование. Метод Жордана-Гаусса. Решение задачи коммивояжера.

    курсовая работа [1,1 M], добавлен 20.07.2012

  • Нахождение минимума целевой функции для системы ограничений, заданной многоугольником. Графическое решение задачи линейного программирования. Решение задачи линейного программирования с использованием таблицы и методом отыскания допустимого решения.

    курсовая работа [511,9 K], добавлен 20.07.2012

  • Постановка задачи и ее формализация. Поиск значений интерполяционного многочлена в точках x1 и x2. Поиск минимума функции F(x) на отрезке [a;b]. Проверка условий сходимости методов. Тестирование программных модулей. Детализированная схема алгоритма.

    курсовая работа [893,0 K], добавлен 04.02.2011

  • Постановка задачи. Математические и алгоритмические основы решения. Функциональные модели и блок-схемы решения. Программная реализация решения. Пример выполнения программы. Методы, использующие исключение отрезков. Учет информации о значениях функции.

    курсовая работа [527,0 K], добавлен 15.01.2010

  • Классификация задач нелинейного программирования. Сущность методов безусловной одномерной оптимизации. Построение алгоритма случайного поиска, правило исключения интервалов. Понятие золотого сечения и квадратичной аппроксимации, метод хорд и касательных.

    презентация [377,0 K], добавлен 30.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.