Скоринговые системы в оценке кредитоспособности заемщика

Разработка системы оценки кредитоспособности заемщика с использованием персептрона. Сущность скоринговых систем, нейронных сетей. Скоринговые системы как средство минимизации кредитного риска. Этапы проектирования сети. Определение значимости параметров.

Рубрика Программирование, компьютеры и кибернетика
Вид презентация
Язык русский
Дата добавления 19.08.2013
Размер файла 882,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.


Подобные документы

  • Модели оценки кредитоспособности физических лиц в российских банках. Нейронные сети как метод решения задачи классификации. Описание возможностей программы STATISTICA 8 Neural Networks. Общая характеристика основных этапов нейросетевого моделирования.

    дипломная работа [1,4 M], добавлен 21.10.2013

  • Проектирование автоматизированной информационной системы по оценке кредитоспособности клиента Банка для принятия решения по выдаче кредита. Разработка интерфейса и алгоритма работы программы. Составление сметы затрат на создание программного изделия.

    дипломная работа [2,3 M], добавлен 26.07.2014

  • Разработка самообучающейся интеллектуальной информационной системы для анализа кредитоспособности заемщика и оценки кредитных рисков на основе подхода иммунокомпьютинга. Применение процедур кластеризации, классификации и формирования оценок рисков.

    курсовая работа [822,3 K], добавлен 09.06.2012

  • Разработка методики оценки кредитоспособности индивидуальных предпринимателей с использованием нейросетевых технологий. Оптимизация и упрощение нейронной сети. Экономическая эффективность инвестиций в разработанную интеллектуальную информационную систему.

    дипломная работа [2,6 M], добавлен 29.06.2012

  • Способы применения технологий нейронных сетей в системах обнаружения вторжений. Экспертные системы обнаружения сетевых атак. Искусственные сети, генетические алгоритмы. Преимущества и недостатки систем обнаружения вторжений на основе нейронных сетей.

    контрольная работа [135,5 K], добавлен 30.11.2015

  • Проектирование экспертной системы выбора нейронной сети. Сущность семантических сетей и фреймов. MatLab и системы Фаззи-регулирования. Реализация программы с использованием пакета fuzzy logic toolbox системы MatLab 7. Составление продукционных правил.

    курсовая работа [904,4 K], добавлен 17.03.2016

  • Общие сведения о принципах построения нейронных сетей. Искусственные нейронные системы. Математическая модель нейрона. Классификация нейронных сетей. Правила обучения Хэбба, Розенблатта и Видроу-Хоффа. Алгоритм обратного распространения ошибки.

    дипломная работа [814,6 K], добавлен 29.09.2014

  • Понятия интеллектуальной информационной системы. Нейронные сети и информационные программные средства для реализации их алгоритмов. Моделирование систем в среде MATLAB. Особенности выполнения демонстрационного примера "Обучение персептрона с Learnpn".

    курсовая работа [572,8 K], добавлен 20.02.2013

  • Искусственные нейронные сети как одна из широко известных и используемых моделей машинного обучения. Знакомство с особенностями разработки системы распознавания изображений на основе аппарата искусственных нейронных сетей. Анализ типов машинного обучения.

    дипломная работа [1,8 M], добавлен 08.02.2017

  • История развития, применение искусственных нейронных сетей. Распознавание образов в сети. Сжатие данных и ассоциативная память. Проектирование экспертной системы, позволяющей диагностировать заболевания органов пищеварения. Программная реализация системы.

    курсовая работа [744,0 K], добавлен 05.02.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.