Анализ сетей массового обслуживания

Served Time Generator как генератор интервалов времени обслуживания, общая характеристика. Способы построения модели многоканальной сети массового обслуживания с отказами с использованием блоков библиотеки SimEvents, рассмотрение особенностей сетей.

Рубрика Программирование, компьютеры и кибернетика
Вид лабораторная работа
Язык русский
Дата добавления 20.05.2013
Размер файла 176,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Задание

1. Построить модель многоканальной СМО с отказами с использованием блоков библиотеки SimEvents

2. Согласно варианту задания произвести модельные эксперименты и определить статистические характеристики СМО в стационарном режиме

3. Результаты вычислений оформить в виде отчета с подробным описанием работы модели, используемых формул и с необходимым графическим материалом. В вычислительном центре работает N персональных компьютеров (ПК). Простейший поток задач, поступающих на ВЦ, имеет интенсивность л. Среднее время решения задачи равно t. Заявка получает отказ, если все ПК заняты. Найдите вероятностные характеристики системы обслуживания (ВЦ).

сеть массовый обслуживание

Таблица

№ варианта

N

л, /час

t, min

1

5

20

12

Дано:

Интенсивность потока заявок : Л = 20 м/час = 20/60 = 0.33 м/мин.

Время обслуживания : Tобсл = 12 мин.

Число серверов: n = 5.

Решение:

Схема

Описание блоков:

v Served Time Generator - генератор интервалов времени обслуживания, функция exprnd(u);

v Request Time Generator - генератор интервалов времени поступления заявок, функция exprnd(u);

v Time-Based Entity Generator - генератор заявок;

v Replicate - дублирует каждую заявку, направляя их в каждый выход. Значение параметра Replicate entity when = Any entity output port is not blocked;

v N-Server - собственно сервер или канал обслуживания, число каналов задано переменной NChannels - по заданию 5.

v Entity Sink - блок, аккумулирующий заявки, покидающие систему;

v NumberOfChannels - умножитель, имеющий параметр заданной переменной NChannels;

v Integrator - используется для подсчета суммы интервалов времени между поступлениями заявки, т.е. моделирует движение по реальной шкале времени.

Время моделирование установлено 1000, чтобы показать, что СМО переходит в стационарный режим, из графика видно, что это так-

Рис.

Где x - время моделирования а y - интенсивность потока обслуживания.

Всего сгенерировано 777 заявок, из них обслужено 628 заявок.

Вероятностные характеристики:

Интенсивность нагрузки: p = лямбда * Тобсл = 0.333* 12 = 3.96.

Обслужено всего 628 заявок : Pobs = 0.8082.

Доля заявок, получивших отказ: Ротказ = 1 - Pobs = 1 - 0.8082 = 0.1918.

Среднее число каналов, занятых обслуживанием: n1 = p* Pobs ;

n1 = 3.96* 0.8082 = 3.200472.

Среднее число простаивающих каналов: nпростоя = n - n1 = 5 - 3.2 = 1.8.

Коэффициент занятости каналов обслуживанием: K = n1/n = 3.19 / 5 = 0.6.

Следовательно, система на 60% занята обслуживанием.

Абсолютная пропускная способность: A = pobs * лямбда = 0.8082 * 0.33 = 0.269 заявок/мин

Среднее время простоя СМО: Tпр = pотказ * Тобсл = 0.1918 * 12 = 2.3016 мин.

Среднее число обслуживаемых заявок: Lобс = p * Pobs = 3.96 * 0.8082 = 3.200472 ед.

Это мы привели результаты нашего моделирования.

Для сравнения мы приведем теоретические результаты данной задачи:

Системы массового обслуживания.

Исчисляем показатели обслуживания многоканальной СМО:

Интенсивность потока обслуживания:

1. Интенсивность нагрузки.

с = л * tобс = 0.33 * 12 = 3.96

Интенсивность нагрузки с=3.96 показывает степень согласованности входного и выходного потоков заявок канала обслуживания и определяет устойчивость системы массового обслуживания.

3. Вероятность, что канал свободен (доля времени простоя каналов).

Следовательно, 2.41% в течение часа канал будет не занят, время простоя равно tпр = 1.4 мин.

Вероятность того, что обслуживанием:

занят 1 канал: p1 = с1/1! p0 = 3.961/1! * 0.0241 = 0.0954

заняты 2 канала: p2 = с2/2! p0 = 3.962/2! * 0.0241 = 0.19

заняты 3 канала: p3 = с3/3! p0 = 3.963/3! * 0.0241 = 0.25

заняты 4 канала: p4 = с4/4! p0 = 3.964/4! * 0.0241 = 0.25

заняты 5 канала: p5 = с5/5! p0 = 3.965/5! * 0.0241 = 0.2

4. Доля заявок, получивших отказ.

Значит, 20% из числа поступивших заявок не принимаются к обслуживанию.

5. Вероятность обслуживания поступающих заявок.

В системах с отказами события отказа и обслуживания составляют полную группу событий, поэтому:

pотк + Pobs = 1

Относительная пропускная способность: Q = Pobs.

Pobs = 1 - pотк = 1 - 0.2 = 0.8

Следовательно, 80% из числа поступивших заявок будут обслужены. Приемлемый уровень обслуживания должен быть выше 90%.

6. Среднее число каналов, занятых обслуживанием.

n1 = с * Pobs = 3.96 * 0.8 = 3.19 канала.

Среднее число простаивающих каналов.

nпростоя = n - n1 = 5 - 3.19 = 1.8 канала.

7. Коэффициент занятости каналов обслуживанием.

Следовательно, система на 60% занята обслуживанием.

8. Абсолютная пропускная способность.

A = Pobs * л = 0.8 * 0.33 = 0.27 заявок/мин.

9. Среднее время простоя СМО.

Тпр = pотк * tобс = 0.2 * 12 = 2.35 мин.

Среднее число обслуживаемых заявок.

Lобс = с * Q = 3.96 * 0.8 = 3.19 ед.

Число заявок, получивших отказ в течение часа: л * p1 = 0.066 заявок в мин.

Номинальная производительность СМО: 5 / 12 = 0.42 заявок в мин.

Фактическая производительность СМО: 0.27 / 0.42 = 63% от номинальной производительности.

Проведя статистические испытания и сравнивая их с практическими мы доказали что модель построена правильно, так как совпадают вычисления.

Размещено на Allbest.ru


Подобные документы

  • Построение модели одноканальной системы массового обслуживания с отказами с использованием блоков библиотеки SimEvents. Проведение экспериментов, определение статистических и вероятностных характеристик системы в стационарном режиме; листинг моделей.

    лабораторная работа [384,4 K], добавлен 20.05.2013

  • Общая характеристика системы массового обслуживания, исходные данные для ее создания. Особенности построения алгоритма имитационной модели задачи о поступлении заявок (клиентов) в канал (парикмахерскую). Описание функционирования математической модели.

    курсовая работа [154,1 K], добавлен 19.05.2011

  • Система массового обслуживания как одна из основных моделей, используемых инженерами-системотехниками, примеры: телефонные станции, ремонтные мастерские, билетные кассы. Характеристика и особенности многоканальной системы массового обслуживания.

    контрольная работа [404,2 K], добавлен 19.11.2012

  • Характеристика системы массового обслуживания, куда поступают заявки обслуживания. Особенности моделирования системы массового обслуживания. Имитация работы системы массового обслуживания с относительными приоритетами. Отчеты полного факторного плана.

    курсовая работа [1,1 M], добавлен 14.07.2012

  • Понятие, назначение и классы систем массового обслуживания. Создание имитационной модели вычислительного центра коллективного пользования в среде Matlab Simulink. Построение многоканальных СМО с отказами каналами; расчет показателей их эффективности.

    курсовая работа [864,6 K], добавлен 26.06.2014

  • Разработка событийной модели сети массового обслуживания дискретной системы, преобразование ее в программно-реализуемую форму. Детерминированный тест для проверки правильности модели. Выполнение пробных прогонов разработанной программной модели.

    контрольная работа [1,3 M], добавлен 17.03.2013

  • Построение имитационной модели системы массового обслуживания, список и содержание ее активностей. Блок-схема алгоритма моделирования и текст процедуры. Моделирование случайных независимых величин и процессов. Оптимизация системы массового обслуживания.

    курсовая работа [4,0 M], добавлен 28.05.2013

  • Проектирование системы массового обслуживания, состоящей из двух генераторов псевдослучайных величин и электронной вычислительной машины, обрабатывающей поступающие заявки. Разработка структурной схемы и алгоритмической модели проектируемой системы.

    курсовая работа [194,5 K], добавлен 30.10.2013

  • Характеристика функций имитационного моделирования. Знакомство с особенностями имитационного моделирования агрегированной системы массового обслуживания. Анализ программы GPSSWorld: рассмотрение возможностей, способы составления имитационной модели.

    курсовая работа [1,6 M], добавлен 27.05.2013

  • Определение назначения и описание функций имитационных моделей стохастических процессов систем массового обслуживания. Разработка модели описанной системы в виде Q-схемы и программы на языке GPSS и C#. Основные показатели работы имитационной модели.

    курсовая работа [487,4 K], добавлен 18.12.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.