Построение графиков функций. Решение нелинейных уравнений и систем нелинейных уравнений

Методика и основные этапы построения ранжированных переменных, сферы и особенности их практического применения. Порядок построения графиков в декартовой системе. Приведение примеров решение нелинейных уравнений и их систем при помощи решающего блока.

Рубрика Программирование, компьютеры и кибернетика
Вид контрольная работа
Язык русский
Дата добавления 27.03.2011
Размер файла 364,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Введение

Тема контрольной работы «Построение графиков функций. Решение нелинейных уравнений и систем нелинейных уравнений» по дисциплине «Информатика».

Цель и задачи работы:

1. Научиться создавать и применять ранжированные переменные.

2. Научиться строить графики в декартовой системе.

3. Научиться решению нелинейных уравнений и систем нелинейных уравнений с помощью решающего блока.

4. Решение системы линейных уравнений матричным способом.

При решении многих технических задач математические модели решения представляют собой нелинейные уравнения, системы нелинейных уравнений, системы линейных уравнений.

Уравнения и системы уравнений, возникающие в практических задачах, обычно можно решить только численно. Методы численного решения реализованы и в программе MathCad.

Для выполнения практической части:

Загрузить программу MathCAD с помощью ярлыка.

Сохранить файл в собственной папке под именем ….

Задание 1

Создать ранжированные переменные и вывести таблицы их значений

1. Создать ранжированную переменную z, которая имеет:

начальное значение 1

конечное значение 1.5

шаг изменения переменной 0.1

и вывести таблицу значений переменной z

2. Создать ранжированную переменную y, которая имеет:

начальное значение 2

конечное значение 7

шаг изменения переменной 1

и вывести таблицу значений переменной y

3. Создать ранжированную переменную t, которая имеет:

начальное значение a

конечное значение b

шаг изменения переменной h

и вывести таблицу значений переменной t

Для создания ранжированных переменных используют Палитру

Последовательность действий:

1. (ввести начальное значение)

2. (запятая)

3. ввести следующее значение (1.1)

4. нажимают кнопку

5. 1.5 (ввести конечное значение

Если шаг изменения =1, то не выполняют пункты 2. и 3.

Для вывода таблицы значений, достаточно ввести имя переменной и знак .

Выполнение Задания 1

1.1

1.2

1.3

Задание ранжированной переменной в виде удобно тем, что изменяя значения a, h, b автоматически изменяется и таблица вывода ранжированной переменной

Задание 2

Построить график функции

f(x)=sin(x)+ex-2 на диапазоне [-5; 2]

Выполнение задания 2

Последовательность действий:

1. Создать ранжированную переменную x

2. Создать функцию пользователя

3. Для построения графика использовать Палитру Graph

и кнопку

4. Ввести в место ввода по оси X имя независимого аргумента - x

5. Ввести в место ввода по оси Y - f(x)

6. Отвести от графика указатель мыши и щелкнуть левой кнопкой мыши. График будет построен

Рис. 1.1

Для форматирования графика, дважды щелкнуть в области графика.

Появится диалоговое окно

В этом окне

1.на Вкладке Ось X-Y установитьпереключатель Пересечение

2.на Вкладке Трассировки можно установить цвет и толщину линии

Если щелкнуть по графику (появятся маркеры вокруг графика), то методом протягивания в нужном направлении можно изменить размеры графика.

Так выглядит график после форматирования

Рис. 1.2

Теоретическая часть

Блок уравнений и неравенств, требующих решения, записывается после ключевого слова Given (дано). При записи уравнений используется знак логического равенства =, кнопка находится в Палитре Boolean.

Заканчивается блок решения вызовом функции Find (найти). В качестве аргументов этой функции - искомая величина. Если их несколько (при решении систем уравнений, то искомые неизвестные должны быть перечислены через запятую).

Всякое уравнение с одним неизвестным может быть записано в виде, f(x)=0,

где f(x) - нелинейная функция. Решение таких уравнений заключается в нахождении корней, т.е. тех значений неизвестного x, которые обращают уравнение в тождество. Точное решение нелинейного уравнения далеко не всегда возможно. На практике часто нет необходимости в точном решении уравнения. Достаточно найти корни уравнения с заданной степенью точности.

Процесс нахождения приближенных корней уравнения состоит из двух этапов:

1 этап. Отделение корней, т.е. разбиения области определения функции f(x), на отрезки, в каждом из которых содержится только один корень уравнения.

2 этап. Уточнение приближенных корней уравнения, т.е. доведение их до заданной степени точности.

Практическая часть

Задание 1

Постановка задачи:

Найти корень уравнения x3-x2=2 с точностью Е=0,00001

Приведем заданное уравнение к виду f(x)=0

x3-x2-2 =0 f(x)= x3-x2-2

Выполнение задания 1

1 этап - отделение корней

Создать функция пользователя

Создать ранжированную переменную x

Построить график f(x)

Из графика видно, что приближенное значение x=1.5 (то значение x, при котором функция пересекает ось x)

2 этап - уточнение приближенного значения корня

Специальный вычислительный блок имеет следующую структуру

Задают начальное значение x (из графика - приближенное)

TOL - Системная переменная, которой присваивается значение требуемой точности 0.00001

Так как требуемая точность вычисления 0.00001, то дважды щелкнув по результату, необходимо отформатировать результат (задать нужное количество десятичных знаков).

Given

Given (дано) - ключевое слово, открывающее блок решения

x3-x2 -2 = 0

Так записывается уравнение. При записи уравнений в решающем блоке используют знак логического равенства =, которому соответствует кнопка Палитры

Вызвать функции Find, которая в качестве аргументов должна содержать искомую величины (если их несколько, то они перечисляются через запятую)

Ответ: x=1.69562

Проверка:

Найденное значение корня подставим в заданное уравнение.

Если x найден верно, то f(x)=0 (так как мы ищем приближенное значение, то в правой части может быть не нуль, а очень малое значение < Е (требуемой точности)

Уточнение корня в программе MathCad

Задание 2

Постановка задачи:

Решить систему уравнений с точностью Е=0.00001

Выполнение задания 2

3. Построить графики функций y1 (x) и y2 (x)

4. Находим из графика точку пересечения кривых

Проверка:

Литература

1. Симонович С. Информатика: базовый курс. - СПб.: Питер, 1999, 640 с.

2. Дьяконов В. MATHCAD 8/2000: специальный справочник - СПБ: Питер, 2001. - 592 с.

Размещено на Allbest.ru


Подобные документы

  • Особенности решения уравнений с одной переменной методом половинного деления. Оценка погрешности метода простой итерации. Суть решения уравнений в пакете Mathcad. Векторная запись нелинейных систем. Метод Ньютона решения систем нелинейных уравнений.

    курсовая работа [2,1 M], добавлен 12.12.2013

  • Использование ранжированных переменных в программном пакете Mathcad. Создание матриц без использования шаблонов матриц, описание операторов для работы с векторами и матрицами. Решение систем линейных и нелинейных уравнений с помощью функций Mathcad.

    контрольная работа [964,6 K], добавлен 06.03.2011

  • Сравнительный анализ итерационных методов решения нелинейных алгебраических и трансцендентных уравнений. Простейший алгоритм отделения корней нелинейных уравнений. Метод половинного деления. Геометрический смысл метода Ньютона. Метод простой итерации.

    реферат [95,0 K], добавлен 06.03.2011

  • Обзор существующих методов по решению нелинейных уравнений. Решение нелинейных уравнений комбинированным методом и методом хорд на конкретных примерах. Разработка программы для решения нелинейных уравнений, блок-схемы алгоритма и листинг программы.

    курсовая работа [435,8 K], добавлен 15.06.2013

  • Практические навыки моделирования структурных схем в среде SIMULINK пакета MATLAB. Построение графиков функций в декартовой системе координат. Решение систем линейных и нелинейных уравнений. Работа с блоками Sum, Algebraic Constraint, Gain, Product.

    лабораторная работа [159,2 K], добавлен 19.04.2009

  • Итерационные методы решения нелинейных уравнений, системы линейных алгебраических уравнений (СЛАУ). Решение нелинейных уравнений методом интерполирования. Программная реализация итерационных методов решения СЛАУ. Практическое применение метода Эйлера.

    курсовая работа [1,6 M], добавлен 20.01.2010

  • Численные методы решения нелинейных уравнений, систем линейных и нелинейных алгебраических уравнений, дифференциальных уравнений, определенных интегралов. Методы аппроксимации дискретных функций и методы решения задач линейного программирования.

    методичка [185,7 K], добавлен 18.12.2014

  • Изучение численных методов решения нелинейных уравнений. Построение годографа АФЧХ, графиков АЧХ и ФЧХ с указанием частот. Практическое изучение численных методов интегрирования дифференциальных уравнений высокого порядка, метод Рунге-Кутта 5-го порядка.

    курсовая работа [398,3 K], добавлен 16.06.2009

  • Решение нелинейных уравнений методом простых итераций и аналитическим, простым и модифицированным методом Ньютона. Программы на языке программирования Паскаль и С для вычислений по вариантам в порядке указанных методов. Изменение параметров задачи.

    лабораторная работа [191,0 K], добавлен 24.06.2008

  • Решение в среде Microsoft Excel с помощью программной модели "Поиск решения" транспортной задачи, системы нелинейных уравнений, задачи о назначениях. Составление уравнения регрессии по заданным значениям. Математические и алгоритмические модели.

    лабораторная работа [866,6 K], добавлен 23.07.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.