Модели представления знаний. Экспертные системы
Преимущества и недостатки моделей представления знаний. Модель, основанная на правилах, фреймовая модель. Семантическая сеть. Структура экспертных систем и этапы их разработки. Механизмы логического вывода. Стратегия "вверх-снизу", "от цели к ситуации").
Рубрика | Программирование, компьютеры и кибернетика |
Вид | презентация |
Язык | русский |
Дата добавления | 29.10.2013 |
Размер файла | 195,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.
Подобные документы
Понятия, классификация и структура экспертных систем. Базы знаний и модели представления знаний. Механизмы логического вывода. Инструментальные средства проектирования и разработки экспертных систем. Предметная область ЭС "Выбор мобильного телефона".
курсовая работа [2,2 M], добавлен 05.11.2014Основные модели представления знаний. Системы поддержки принятия решений. Диаграмма UseCase. Разработка базы данных на основе трех моделей: продукционные правила, семантическая сеть, фреймовая модель. Программная реализация системы принятия решений.
курсовая работа [715,1 K], добавлен 14.05.2014Классы и группы моделей представления знаний. Состав продукционной системы. Классификация моделей представления знаний. Программные средства для реализации семантических сетей. Участок сети причинно-следственных связей. Достоинства продукционной модели.
презентация [380,4 K], добавлен 14.08.2013Анализ процессов диагностики повреждений трубопровода. Разработка модели продукционной базы знаний: обзор методов представления знаний, описание создания базы знаний и разработки механизма логического вывода. Экономическое обоснование концепции проекта.
дипломная работа [3,0 M], добавлен 16.04.2017Понятие и сущность экспертной системы, ее внутренняя структура и назначение, этапы и принципы разработки. Продукционная и фреймовая модель представления знаний, порядок построения семантической сети. Разработка алгоритма программы, создание интерфейса.
курсовая работа [1,2 M], добавлен 22.01.2015Представление знаний в когнитологии, информатике и искусственном интеллекте. Связи и структуры, язык и нотация. Формальные и неформальные модели представления знаний: в виде правил, с использованием фреймов, семантических сетей и нечетких высказываний.
контрольная работа [29,9 K], добавлен 18.05.2009Проблема представления знаний в компьютерных системах – одна из основных проблем в области искусственного интеллекта. Исследование различных моделей представления знаний. Определения их понятия. Разработка операции над знаниями в логической модели.
курсовая работа [51,9 K], добавлен 18.02.2011Сущность данных и информации. Особенности представления знаний внутри ИС. Изучение моделей представления знаний: продукционная, логическая, сетевая, формальные грамматики, фреймовые модели, комбинаторные, ленемы. Нейронные сети, генетические алгоритмы.
реферат [203,3 K], добавлен 19.06.2010Определение понятия знания, модели его представления – фреймовая, продукционная, семантическая. Разбор аналитической платформы Deductor. Описание демо-примера программы Deductor– прогнозирование с помощью линейной регрессии, использование визуализатора.
курсовая работа [1,1 M], добавлен 07.06.2011Понятие и содержание экспертных систем, принципы взаимосвязи элементов: интерфейса пользователя, собственно пользователя, эксперта, средств объяснения, рабочей памяти и машины логического вывода. Классификация, преимущества, недостатки экспертных систем.
реферат [33,9 K], добавлен 25.02.2013