Диагностика и технология ремонта накопителей на жестких магнитных дисках

Анализ принципа действия накопителей на жестких магнитных дисках персональных компьютеров. Перфокарта как носитель информации в виде карточки из бумаги, картона. Основные функции файловой системы. Способы восстановления информации с RAID-массивов.

Рубрика Программирование, компьютеры и кибернетика
Вид дипломная работа
Язык русский
Дата добавления 15.12.2012
Размер файла 354,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

накопитель жесткий магнитный диск

Тенденция развития современных технологий характеризуется постоянным повышением значения информации. В настоящее время массово используются устройства внешней памяти персональных компьютеров для хранения информации. Порой ценность информации хранимой на устройствах внешней памяти персональных компьютеров несоизмерима со стоимостью данного устройства. Сохранность информации, бесперебойное функционирование систем внешней памяти компьютера обуславливают актуальность обозначенной проблемы и определяют выбор темы дипломного проекта.

Цель дипломного проекта: раскрыть теоретические и практические основы диагностики и технологии ремонта и наладки средств вычислительной техники (СВТ) и накопителей на жестких магнитных дисках (НЖМД) персональных компьютеров.

Объект исследования дипломного проекта: накопитель на жестких магнитных дисках.

Предмет исследования дипломного проекта: диагностика и технология ремонта накопителей на жестких магнитных дисках

Задачи дипломного проекта:

1. Провести анализ используемых устройств накопителей на жестких магнитных дисках персональных компьютеров;

2. Рассмотреть устройство и принцип действия накопителей на жестких магнитных дисках персональных компьютеров;

3. Получить первоначальные теоретические и практические навыки диагностики и устранения неполадок накопителей на жестких магнитных дисках персональных компьютеров.

1. Назначение, характеристики и принцип работы накопителей на жестких магнитных дисках

1.1 Виды устройств внешней памяти

Первой внешней памятью стала перфокарта - носитель информации в виде карточки из бумаги, картона, реже из пластмассы, стандартных формы и размеров, на которую информация наносится пробивкой отверстий (перфораций). Перфорационные карты применяют главным образом для ввода и вывода данных в ЭВМ, а также в качестве основного носителя записи в перфорационных вычислительных комплектах. Существует большое число видов карт, различающихся формой, размерами, объёмом хранимой информации, формой и расположением отверстий. В СССР использовали перфорированные карты в основном с 80 колонками (в устаревших моделях вычислительных устройств встречались 45-колонные), изготовляемые из плотного картона толщиной 0,18 мм в виде прямоугольника со сторонами 187,4 и 82,5 мм. Для удобства подборки и укладки левый верхний угол карты срезан. Колонки размечают поперёк карты; вдоль карта разбивается на 12 строк (10 основных и 2 дополнительные). На одной перфорированной карте можно записать до 80 знаков (примерно 10-15 слов). Скорость обработки машинных перфокарт достигает 2000 карт в 1 мин. Воспроизведение (считывание) информации осуществляется с помощью электромеханических считывателей или фотоэлементами. За рубежом применяли также перфокарты с 90, 40 и 21 колонкой с 6, 12 и 10 строками соответственно. Разновидность перфокарт - карты с краевой перфорацией, применяемые в информационных системах, и карты для пишущих автоматов.

Самым распространенным устройством внешней памяти на современных компьютерах стали накопители на магнитных дисках (НМД), или дисководы. Устройство чтения/записи на магнитный диск называется накопителем на магнитном диске (НМД) или дисководом. Информацию сохраняют на накопителях двух видов, в зависимости от действий, которые человеку нужно выполнить с данными. Для переноса небольших объемов информации используют гибкие магнитные диски (дискеты), а для длительного хранения больших объемов информации используют накопители на жестких магнитных дисках (винчестеры).

Сравнительно новым видом внешних носителей являются оптические диски (другое их название - лазерные диски). На них используется не магнитный, а оптико-механический способ записи и чтения информации.

Сначала появились лазерные диски, на которых информация записывается только один раз. Стереть или перезаписать ее невозможно. Такие диски называются CD-ROM - Compact Disk-Read Only Memory, что в переводе значит «компактный диск - только для чтения». Позже были изобретены перезаписываемые лазерные диски - CD-RW. На них, как и на магнитных носителях, хранимую информацию можно стирать и записывать заново. Наибольшей информационной емкостью из сменных носителей обладают лазерные диски типа DVD-ROM. Объем информации, хранящейся на них, может достигать десятков гигабайт.

Флеш-карта представляют собой портативные устройства, предназначенные для хранения и быстрого переноса данных с одного ПК на другой посредством подключения к порту USB. «популярные» модели флеш-карта оснащены светодиодом-индикатором чтения/записи и блокировкой от записи. Также в комплекте могут быть: кабель-удлинитель USB, компакт-диск с драйверами. В последнее время флеш-карта стали очень популярны и практически повсеместно вытеснили 3,5-дискеты. Флеш-карта стремительно набирают объем (их информационная емкость уже достигла 64 гигабайт и, видимо, это не предел!) и дешевеют. При этом удобство их эксплуатации - вне конкуренции. Среди достоинств стоит упомянуть также компактность, простоту использования и возможность горячего подключения/отключения. В полной мере оценить удобство работы с флеш-картами можно только на ПК с операционной системой от Windows 2000 и выше, - в этом случае не потребуется устанавливать драйвер для работы с флеш-картой, т.к. ОС воспользуется своей библиотекой драйверов.

1.2 Накопители на жестких магнитных дисках (НЖМД)

Жесткий магнитный диск (винчестер, НЖМД - Hard Disk Drive) - постоянная память, предназначена для долговременного хранения всей имеющейся в компьютере информации. Операционная система, постоянно используемые программы загружаются с жесткого диска, на нем хранится большинство документов.

Накопитель на жестких магнитных дисках (НЖМД) является одним из ключевых компонентов современного ПК. От него напрямую зависит производительность и надежность системы. Технологии изготовления жестких дисков совершенствуются, размеры программ увеличиваются, данные на компьютере накапливаются.

1.3 Основные параметры НЖМД

1. Емкость - накопителя на жестких магнитных дисках имеет объем от 40 Гб до 1024 Гб.

2. Скорость чтения данных. Средний сегодняшний показатель - около 8 Мбайт/с.

3. Среднее время доступа. Измеряется в миллисекундах и обозначает то время, которое необходимо диску для доступа к любому выбранному вами участку. Средний показатель - 9 мс.

4. Скорость вращения диска. Показатель, напрямую связанный со скоростью доступа и скоростью чтения данных. Скорость вращения жесткого диска в основном влияет на сокращение среднего времени доступа (поиска). Повышение общей производительности особенно заметно при выборке большого числа файлов.

Размер кэш-памяти - быстрой буферной памяти небольшого объема, в которую компьютер помещает наиболее часто используемые данные. У накопителя на жестких магнитных дисках есть своя кэш-память размером до 32 Мбайт.

1.4 Конструкция НЖМД

Жесткий магнитный диск (винчестер) состоит из гермоблока (рисунок 1) и платы контроллера (рисунок 2).

Рисунок 1 Гермоблок НЖМД

Рисунок 2 Плата контроллера

1.4.1 Гермоблок

В гермоблоке размещены все механические части, на плате вся управляющая электроника, за исключением предусилителя (предварительного усилителя), размещенного внутри гермоблока в непосредственной близости от считывающих головок.

В гермоблоке установлен шпиндель с одним или несколькими дисками.(рисунок) Диски изготовлены из алюминия (иногда - из керамики или стекла) и покрыты тонким слоем окиси хрома. В настоящее время объем информации, хранимой на одном диске, может достигать 1024 Гбайт. Сбоку шпинделя находится поворотный позиционер. С одной стороны, коромысла расположены обращенные к дискам легкие магнитные головки, а с другой - короткий хвостовик с обмоткой электромагнитного привода. При поворотах коромысла позиционера головки совершают движение по дуге между центром и периферией дисков. Под дисками расположен двигатель, который вращает их с большой скоростью. При вращении дисков создается сильный поток воздуха, который циркулирует по периметру гермоблока. Пыль губительна для поверхности дисков, поэтому блок герметизирован, воздух в нем постоянно очищается специальным фильтром (рисунок.3 ).

Рисунок.3 Фильтр

Для выравнивания давления воздуха внутри и снаружи в крышках гермоблоков делаются небольшие окна, заклеенные тонкой пленкой. В ряде моделей окно закрывается воздухопроницаемым фильтром. Обмотку позиционера окружает статор, представляющий собой постоянный магнит. При подаче в обмотку тока определенной величины и полярности коромысло начинает поворачиваться в соответствующую сторону с соответствующим ускорением. Динамически изменяя ток в обмотке, можно устанавливать позиционер в любое положение. При вращении дисков аэродинамическая сила поддерживает головки на небольшом расстоянии от поверхности дисков. Головки никогда не соприкасаются с той зоной поверхности диска, где записаны данные. На хвостовике позиционера обычно расположена так называемая магнитная защелка - маленький постоянный магнит, который при крайнем внутреннем положении головок притягивается к поверхности статора и фиксирует коромысло в этом положении. Это так называемое парковочное положение головок, которые при этом лежат на поверхности диска, соприкасаясь с нею. В посадочной зоне дисков информация не записывается, поэтому прямой контакт с нею не опасен. Практически все современные жесткие диски выпускаются по технологии, использующей магниторезистивный эффект. Благодаря этому в последний год емкость дисков растет быстрыми темпами за счет повышения плотности записи информации.

Принцип работы накопителя на жестких магнитных дисках напоминает принцип действия обычного магнитофона, с той лишь разницей, что вместо магнитной ленты используются поверхности дисков, а вместо звуковых сигналов он записывает и воспроизводит цифровые. Любой НЖМД состоит из двух основных частей: гермоблока и контроллера. Гермоблоком, служит корпусом для размещения всех механических частей НЖМД Контроллер представляет собой плату электроники накопителя на жестких магнитных дисках и размещается за пределами гермоблока, как правило, в ее нижней части. В некоторых накопителях на жестких магнитных дисках, например, в известной серии Seagate Barracuda, контроллер закрыт дополнительной металлической крышкой, защищающей электронику от повреждений, а заодно служащей радиатором для отвода тепла от микросхем. Основу всей конструкции составляет прочный герметичный корпус, предохраняющий точную внутреннюю механику от внешних воздействий. Внутри корпуса размещается собственно диск или набор из нескольких дисков, вращаемый электродвигателем; магнитные головки с механизмом их перемещения, а также предварительный усилитель сигнала. Корпус заполнен очищенным от пыли воздухом. Для выравнивания давления внутри и снаружи корпус снабжен фильтром или имеет отверстия, заклеенные пленкой, хотя иногда встречаются и полностью герметичные накопители на жестких магнитных дисках. При вращении дисков создается сильный поток воздуха, который циркулирует внутри корпуса и постоянно очищается еще одним, внутренним фильтром от пыли, сумевшей каким-то образом попасть внутрь. Современные накопители на жестких магнитных дисках устроены очень сложно. До 90% стоимости составляет прецизионная механика. Рассмотрим более подробно каждую ее часть. Магнитный диск представляет собой круглую пластину из алюминия, поверхность, которой обработана по высочайшему классу точности. В быту такой полировки не встретишь. Чтобы придать пластинам магнитные свойства, их поверхность покрывают сплавом на основе хрома или вакуумном напыляемым слоем кобальта. Такое покрытие имеет высокую твердость, что хорошо, ведь совсем недавно диски были покрыты слоем мягкого лака на основе окиси железа, и он, в отличие от современных покрытий, легко повреждался.

Для вращения дисков применяется специальный электродвигатель, чем-то похожий на двигатель флоппи-дисковода: неподвижный якорь с обмотками и вращающийся постоянный магнит. Основное отличие его состоит в более высокой точности изготовления и наличии специальных подшипников, которые могут быть как обычными шариковыми, так и более совершенными- жидкостными используется специальное масло, поглощающее ударные нагрузки, что увеличивает долговечность двигателя. Жидкостные подшипники имеют более низкий уровень шума и почти не выделяют тепло во время работы. Кроме того, некоторые современные накопители на жестких магнитных дисках имеют двигатель, целиком погруженный в герметичный сосуд с маслом, что способствует эффективному отводу тепла от обмоток.

Магнитная головка также представляет собой сложную конструкцию, состоящую из десятков деталей. Эти детали настолько малы, что изготавливаются методом фотолитографии так же, как и современные микросхемы. Рабочая поверхность керамического корпуса головки отполирована с такой же высокой точностью, как и диск. Привод головок представляет собой плоскую катушку-соленоид из медной проволоки, помещенную между полюсами постоянного магнита и закрепленную на конце рычага, вращающегося на подшипнике. На другом его конце находится легкая стрелка с магнитными головками. Катушка способна перемещаться в магнитном поле под действием проходящего через нее тока, перемещая одновременно все головки в радиальном направлении. Чтобы катушка с головками не болталась из стороны в сторону в нерабочем состоянии, имеется магнитный фиксатор, удерживающий головки выключенного накопителя на жестких магнитных дисках на месте. В нерабочем состоянии накопителя головки находятся вблизи центра дисков, в «зоне парковки» и прижаты к сторонам пластин легкими пружинами. Но стоит дискам начать вращение - и поток воздуха приподнимает головки над поверхностью дисков, преодолевая усилие пружин.

Головки «всплывают» и с этого момента находятся над диском, совершенно не касаясь его. Толщина воздушной прослойки между диском и головкой у современных накопитель на жестких магнитных дисках - всего 0,1 мкм, что в 500 раз меньше толщины человеческого волоса. Так как механический контакт головки с диском отсутствует, износа дисков и головок не происходит. Как уже говорилось, внутри гермоблока также находится усилитель сигнала, помещенный поближе к головкам, чтобы уменьшить наводки от внешних помех. Он соединен с головками гибким ленточным кабелем. Таким же кабелем подводиться питание к подвижной катушке привода головок, а иногда и к двигателю. Через небольшой разъем все это хозяйство соединено с платой контроллера.

1.5 Структурная схема НЖМД

Структурная схема НЖМД представлена на листе 1 графической части дипломного проекта.

Контролер интерфейса является одним из сложнейших элементов накопителя. Он определяет скорость обмена данными между НЖМД и хостом (системной платой). Также его называют HDC-контроллером. К основным функциям HDC-контроллера можно отнести:

1. чтение сектора;

2. запись сектора;

3. поиск адресного маркера;

4. запись идентификатора;

5. форматирование сектора и дорожки;

6. обработка и обслуживание команд от хост-системы;

7. формирование сигналов интерфейса IDE;

8. обслуживание буферной памяти.

2) Сепаратор данных предназначен, в основном, для очистки цифрового сигнала от шумов при чтении, для выделения сигналов синхронизации чтения (RCLK) и записи (WCLK) и для формирования потока данных, предназначенных для записи, с учетом необходимых временных задержек.

3) Канал чтения/записи формирует сигналы управления магнитными головками, осуществляя при этом преобразование параллельного кода в последовательный при записи, и последовательного кода в параллельный при чтении. При чтении этим модулем также осуществляется проверка кода CRC (контрольно-циклический код) и при необходимости проводится исправление ошибок.

4) Управляющий микропроцессор обеспечивает выполнение микропрограммы накопителя, осуществляя считывание команд из ПЗУ. В соответствии с микропрограммой микропроцессор управляет всеми компонентами НЖМД.

5) VCM (звуковая катушка) обеспечивает перемещение и позиционирование блока магнитных головок.

6) Шпиндельный двигатель обеспечивает вращение магнитных дисков.

7) Драйвер двигателя и VCM формирует сигналы для управления двигателем, поддерживая его скорость постоянной. Кроме того, драйвером формируется ток в катушке VCM, что позволяет осуществлять ее перемещение на заданную величину

1.6 Организация хранения данных на жестких магнитных дисках

1.6.1 Логическая структура жесткого магнитного диска

Логическое форматирование жесткого диска выполняется пользователем, либо с помощью стандартных (служебных) утилит, поставляемых вместе с операционной системой, либо с помощью специальных сервисных программ от сторонних производителей. Логическое форматирование диска производится в два этапа:

1. разбиение диска на разделы;

2. создание логических дисков и их форматирование.

Раздел (Partition) - это часть физического диска, которая после форматирования может использоваться файловой системой как отдельное устройство.

Различают следующие типы разделов.

Основной раздел (Primary Partition), который иногда называют «первичным» разделом, - но часть физического диска, с которой можно работать как с отдельным физическим устройством. Важнейшей особенностью основного раздела является то, что только с раздела такого типа может производиться загрузка операционной системы. Каждый основной раздел имеет собственное имя - букву диска.

Дополнительный раздел (Extended Partition), который иногда не очень правильно называют «расширенным», - это специальный раздел, который создается (точнее, может быть создан) на жестком диске с целью преодоления ограничений на максимально допустимое число основных разделов. В отличие от основного раздела, дополнительный раздел не требуется форматировать и ему не назначается буква диска. Вместо этого на дополнительном разделе создается один или несколько логических дисков.

Логический диск - это часть дополнительного раздела, с которой можно работать как с отдельным устройством. Логический диск должен быть отформатирован и ему должна быть присвоена буква диска. Число создаваемых логических дисков не ограничено (ограничен лишь их суммарный объем: он не должен превышать размера дополнительного раздела, на котором создаются диски).

Возможна и такая конфигурация, при которой компоненты одной ОС (операционной системы) распределены по нескольким дискам. В связи с этим введем еще два понятия.

Системный раздел - это раздел, содержащий файлы операционной системы.

Загрузочный раздел - это раздел, содержащий файлы, необходимые для загрузки операционной системы.

В конфигурации компьютера может иметься несколько загрузочных разделов (например, один - для загрузки Windows 98, второй - для загрузки Windows XP, третий - для загрузки Linux).

Чтобы BIOS могла определить, с какого именно раздела должна выполняться загрузка при включении компьютера, используется признак активности раздела.

Активный раздел - основной раздел, с которого производится загрузка ОС при включении компьютера. Признак активности устанавливается для раздела при создании, он может быть впоследствии установлен для другого раздела.

На этапе разбиения диска на разделы в первый сектор диска (цилиндр 0, головка 0, сектор 1) записывается служебная информация, которая, собственно, и делает возможным дальнейшее применение диска «по назначению»:

1. в начало сектора помещается так называемая главная загрузочная запись- Master Boot Record (MBR). Она содержит программу начальной загрузки BIOS (ROM Bootstrap routine), которая считывает и загружает в оперативную память первый физический сектор активного раздела диска, называемый загрузочным сектором (Boot Sector);

2. после MBR, начиная с адреса 1ВЕ (в шестнадцатеричном коде), создается таблица разделов (Partition Table), состоящая из 4 строк по 16 байт каждая (вот с чем связано ограничение в 1 основных раздела). Каждая запись в таблице разделов содержит адрес начала и размер раздела на жестком диске, а также информацию о том, является ли раздел активным.

1.6.2 Физическая структура жесткого магнитного диска

Все дисковое пространство состоит из двух областей: область специальных секторов и область данных. Количество секторов диска, отводимых для специальных нужд, определяется форматом диска. Специальные сектора размещаются в фиксированном месте диска и имеют самые младшие логические номера.

В области специальных секторов размещаются:

1. запись начальной загрузки;

2. две копии FАТ;

3. корневой каталог.

Остальная часть диска доступна для размещения файлов и называется областью данных. Все каталоги, кроме корневого, хранятся как обычные файлы в кластерах области данных. На дискетах первый сектор (дорожка 0, сектор 1) содержит запись начальной загрузки (boot record). При физическом разрушении этого сектора дискета приходит в полную негодность. Запись начальной загрузки является небольшой программой, позволяющей компьютеру считывать с дискового накопителя остальные части МS-DOS. Эта программа проверяет, является ли диск системным. Двумя первыми файлами в корневом каталоге должны быть файлы IO.SYS и МS-DOS.SYS. Если диск системный, Boot record выполняет загрузку в оперативную память файла IO.SYS. Для фиксированных дисков возможно разбиение одного фиксированного диска на независимые логические части, называемые разделами .Один из разделов используется для загрузки МS-DOS (активный раздел). Информация о делении диска помещается в специальную таблицу - таблицу разделов. Она является частью основной записи начальной загрузки (Master Boot Record). Эта запись размещается в первом секторе нулевого цилиндра нулевой дорожки. Получив управление, записанная там программа по таблице разделов определяет, какой из них является активным, после чего читается первый сектор активного раздела. В каждом из разделов находится еще одна запись начальной загрузки и ее функции подобны функциям, выполняемым записью начальной загрузки, помещенной на дискете. FАТ играет совершенно исключительную роль в поддержании целостности данных. Из соображений безопасности на всех дисках хранятся по две копии FАТ. Они хранятся последовательно в секторах, начиная с сектора 2 дорожки 0 (сектор 1 занят записью начальной загрузки). Размер FАТ зависит от формата диска, Размер корневого каталога также определяется форматом диска: у дискеты 1.2 Мбайт он равен 14 секторам, у жесткого диска 20 Мбайт - он не фиксирован.

1.6.3 Низкоуровневая структура жестких дисков

Поверхность диска никогда не используется для записи произвольным образом. Данные всегда записываются в виде концентрических окружностей, называемых дорожками, состоящих из нескольких меньших отрезков - секторов. Каждой дорожке и каждому сектору на каждой из сторон диска присваивается свой порядковый номер. Расположенные одна над другой несколько дорожек с одинаковыми номерами, называются цилиндрами. Например, накопитель на жестких магнитных дисках Fujitsu MPG 3409 имеет 2 диска и все четыре стороны рабочие, следовательно, каждый его цилиндр состоит из четырех дорожек. Такое деление дискового пространства на участки называется форматом нижнего уровня и выполняется на заводе-изготовителе накопителя на жестких магнитных дисках. В процессе низкоуровневого форматирования дисков может выясниться, что на поверхности пластин имеется один или несколько маленьких участков, чтение или запись в которые сопровождается ошибками. Однако из-за этого диск не выбрасывают и не считают его испорченным, а всего лишь помечают эти секторы особым образом, и они в дальнейшем игнорируются. Накопитель на жестких магнитных дисках содержит некоторое количество запасных дорожек, которыми электроника накопителя «на лету» подменяет дефектные участки поверхности, делая их абсолютно прозрачными для операционной системы и таких программ, как, например, дисковые редакторы, ScanDisk и Norton Disk Doctor.

Но не вся область диска отведена для записи данных. Часть информационной поверхности используется накопителем для собственных нужд. Это область служебной, как ее еще иногда называют, инженерной информации. Она скрыта от пользователей и становится доступной при переводе накопителя на жестких магнитных дисках в специальный технологический режим, осуществляемый при помощи стендового оборудования и особых утилит.

Служебную информацию можно разделить на несколько типов:

1. скорость вращения дисков, поиска секторов и точной установки головок на дорожки.

2. информация, служащая для адресации секторов с данными пользователя и контроля целостности этих данных

3. рабочие программы (микрокод), предназначенные для управления работой всех систем накопителя;

4. паспорт накопителя на жестких магнитных дисках, в котором записана информация о количестве дисков, головок, название фирмы-производителя и модели накопителя, дата его изготовления, страна изготовитель, номер конвейера, номер рабочей смены и многое другое; здесь же хранится и уникальный серийный номер накопителя на жестких магнитных дисках;

5. таблица дефектных секторов, служащая для аппаратной подмены сбойных участков поверхности из резерва. Эта информация используется электроникой накопителя на жестких магнитных дисках в процессе работы и является важнейшей его частью, без которой физически полностью исправный накопитель был бы бесполезным.

В состав контроллера входят следующие функциональные узлы: схема управления двигателем, схема управления позиционированием головок, канал чтения-записи, цифровой сигнальный процессор, микропроцессор управления, буфер памяти накопителя и интерфейсная логика. Микропроцессор управления представляет собой очень быструю специализированную микро-ЭВМ, имеющую свою оперативную память, постоянную энергонезависимую память и программное обеспечение, состоящее из нескольких модулей. Оно образует специализированную операционную систему. Некоторые из ее компонентов могут располагаться в микросхеме ПЗУ на плате электроники, а другие записаны непосредственно на дисках в служебной области. При включении питания первым включается микропроцессор управления и тестирует электронику накопителя на жестких магнитных дисках. Если все в порядке, подается команда на включение электродвигателя.

Это самый сложный момент в работе накопителя, так как при этом головки соприкасаются с диском в зоне парковки и изнашиваются. Кроме того, двигатель в момент разгона работает в форсированном режиме, что сопровождается большим потреблением тока и повышенной нагрузкой на электронику. После "всплытия" головок осуществляется процесс их распарковки: в обмотку соленоида подается импульс тока, перемещающий головки в информационную зону дисков. Начинается поиск сервометок, которые, в данном случае, используются для определения скорости вращения. Убедившись в том, что блины крутятся с нужной скоростью, микропроцессор перемещает головки в зону, где записана служебная информация, и считывает с диска в свою память микропрограмму, которая анализирует конфигурационные параметры и таблицу дефектных секторов. Затем выполняется еще несколько внутренних тестов, термокалибровка, чтение таблицы S.M.A.R.T.-параметров.

Тестирование правильности позиционирования головок путем чтения нескольких дорожек, расположенных в разных местах диска (при этом слышен характерный треск, а иногда писк, вызываемый работой катушки перемещения головок). В процессе работы накопителя на жестких магнитных дисках через обмотки двигателя и катушку позиционирования текут очень большие импульсные токи, поэтому процессор управляет ими не напрямую, а через микросхемы усилителей тока. В современных накопителях данные читаются и записываются на диск не в цифровой, а в аналоговой форме методом частотной модуляции, поэтому в канале чтения-записи применяется цифровой сигнальный процессор, включающий в себя АЦП и ЦАП, преобразующие прочитанные головками ультразвуковые сигналы в "цифру" и наоборот. Микропроцессор накопителя на жестких магнитных дисках функционирует все время, пока на него подано питание.

Под его контролем все системы накопителя работают дружно, образуя несколько замкнутых систем авторегулирования, поддерживающих постоянную скорость вращения дисков и обеспечивающих точное попадание головок на дорожки и доступ к любому сектору независимо от физического износа механики и внешних ударных или тепловых воздействий. Для питания накопителей настольных компьютеров обычно используется два напряжения: +5В (для схем усиления и обработки сигналов) и +12 В (для силовых цепей). Это позволяет уменьшить помехи от двигателей и упростить схему. Обычно требования к стабильности источника +5В гораздо выше, чем к +12В. Это справедливо и для многих других устройств. При внезапном выключении питания, электроника накопителя на жестких магнитных дисках продолжает некоторое время работать, получая энергию от двигателя, который, вращаясь по инерции, вырабатывает электрический ток, достаточный для успешной парковки головок. Некоторые накопители умеют сами скрывать вновь образующиеся дефекты поверхности. Например, очень популярная серия Quantum Fireball оборудована по этому поводу запасными секторами в каждой дорожке. В связи с тем, что длина внешних и внутренних дорожек на дисках отличается, то и секторов на них помещается разное количество.

Когда накопитель на жестких магнитных дисках работает, его микропроцессор производит пересчет физических параметров о числе головок, числе секторов в дорожке и количестве цилиндров в вид, воспринимаемый внешними устройствами. Этот параметр называется геометрией накопителя, а процесс пересчета - трансляцией, и служит для удобства работы внешних устройств. Именно эти "стандартные" параметры и указываются на корпусе накопителя на жестких магнитных дисках (например, 16 головок и 63 сектора в дорожке, хотя на самом деле головок может быть всего 2). Емкость накопителя на жестких магнитных дисках в байтах можно подсчитать, перемножив число головок, число секторов в дорожке, число цилиндров и размер сектора, который равен 512 байт. Например, 16*63*39714*512=20,4 Гб (конечно, имеются в виду "неправильные" гигабайты производителей - по миллиарду байт). После успешного завершения всех внутренних тестов микропроцессор производит разблокировку интерфейса, сообщая об этом материнской плате компьютера.

1.7 Файловые системы

Информация на дисках записывается в секторах фиксированной длины, и каждый сектор и расположение каждой физической записи (сектора) на диске однозначно определяется тремя числами: номерами поверхности диска, цилиндра и сектора на дорожке. И контроллер диска работает с диском именно в этих терминах. А пользователь желает использовать не сектора, цилиндры и поверхности, а файлы и каталоги. Поэтому операционная система или другая программа должена при операциях с файлами и каталогами на дисках перевести в понятные контроллеру действия: чтение и запись определенных секторов диска. А для этого необходимо установить правила, по которым выполняется этот перевод, то есть, прежде всего, определить, как должна храниться и организовываться информация на дисках.

Файловая система - это набор соглашений, определяющих организацию данных на носителях информации. Наличие этих соглашений позволяет операционной системе, другим программам и пользователям работать с файлами и каталогами

Файловая система определяет:

1. как хранятся файлы и каталоги на диске;

2. какие сведения хранятся о файлах и каталогах;

3. как можно узнать, какие участки диска свободны, а какие - нет;

4. формат каталогов и другой служебной информации на диске.

Для использования дисков, записанных с помощью некоторой файловой системы, операционная система или специальная программа должна поддерживать эту файловую систему.

Информация хранится в основном на дисках, а применяемые на них файловые системы определяют организацию данных именно на жестких магнитных дисках.

В операционных системах семейства MS Windows используются следующие файловые системы - FAT, FAT 32, NTFS.

1.7.1 Файловая система FAT

FAT является наиболее простой из поддерживаемых Windows NT файловых систем. Основой файловой системы FAT является таблица размещения файлов, которая помещена в самом начале тома. На случай повреждения на диске хранятся две копии этой таблицы. Кроме того, таблица размещения файлов и корневой каталог должны храниться в определенном месте на диске (для правильного определения места расположения файлов загрузки). Диск, отформатированный в файловой системе FAT, делится на кластеры, размер которых зависит от размера тома. Одновременно с созданием файла в каталоге создается запись и устанавливается номер первого кластера, содержащего данные. Такая запись в таблице размещения файлов сигнализирует о том, что это последний кластер файла, или указывает на следующий кластер.

Обновление таблицы размещения файлов имеет большое значение и требует много времени. Если таблица размещения файлов не обновляется регулярно, это может привести к потере данных. Длительность операции объясняется необходимостью перемещения читающих головок к логической нулевой дорожке диска при каждом обновлении таблицы FAT. Каталог FAT не имеет определенной структуры, и файлы записываются в первом обнаруженном свободном месте на диске. Кроме того, файловая система FAT поддерживает только четыре файловых атрибута: «Системный», «Скрытый», «Только чтение» и «Архивный».

На компьютере под управлением Windows NT в любой из поддерживаемых файловых систем нельзя отменить удаление. Программа отмены удаления пытается напрямую обратиться к оборудованию, что невозможно при использовании Windows NT. Однако если файл находился в FAT-разделе, то, запустив компьютер в режиме MS-DOS, удаление файла можно отменить. Файловая система FAT лучше всего подходит для использования на дисках и разделах размером до 200 МБ, потому что она запускается с минимальными накладными расходами.

Как правило, не стоит использовать файловую систему FAT для дисков и разделов, чей размер больше 200 МБ. Это объясняется тем, что по мере увеличения размера тома производительность файловой системы FAT быстро падает. Для файлов, расположенных в разделах FAT, невозможно установить разрешения. Разделы FAT имеют ограничение по размеру: 4 ГБ под Windows NT и 2 ГБ под MS-DOS.

1.7.2 Файловая система FAT32

Для работы с большими дисками была разработана новая файловая система FAT32. Microsoft впервые представляет файловую систему FAT32 в операционной системе Windows 95 OSR2. В этой файловой системе разрядность указателя на кластер увеличивается до 32 бит, что значительно увеличивает количество поддерживаемых кластеров, и, следовательно, позволяет уменьшить их размер. Вы видите, что разрядность указателя составляет 32 бита и, даже используя кластер 512 байт, эта файловая система может поддерживать диски в 127,9 Гбайт. А при использовании кластера 32 Кбайт она может поддерживать диски до 2 Тбайт. На первый взгляд может показаться, что теперь можно использовать кластер размеров в один блок (512 байт), уменьшив тем самым потери в хвостах файлов почти до нуля, но использование таких малых кластеров все же не выгодно из соображений производительности. Вы помните, что информация о расположении файла по кластерам содержится в FAT таблице.

Чем меньше размер кластера, тем больше кластеров займет файл и тем больше записей появится в таблице и соответственно тем дольше будет происходить считывание информации о расположении файла при доступе к нему. Еще один важный момент. Во время работы файловые таблицы переносятся в оперативную память. И это логично. Ведь считать из оперативной памяти информацию о файле можно гораздо быстрее, чем с жесткого диска. При этом, чем меньше размер кластера, тем больше записей в файловой таблице и, соответственно, больше ее объем. А это, в свою очередь, влияет на требования к размеру оперативной памяти. Быстродействие системы FAT32 можно повысить, увеличив размер кластера. Увеличивая кластер в два раза, мы сокращаем область FAT тоже в два раза. В FAT32 это очень важная для быстродействия область занимает несколько Мбайт. Сокращение области FAT в несколько раз даст заметное увеличение быстродействия, так как объем системных данных файловой системы сильно сократится - уменьшится и время, затрачиваемое на чтение данных о расположении файлов. Обратная сторона - существенно возрастают потери дискового пространства. Получается замкнутый круг: чем больше размер кластера, тем выше быстродействие, но возрастают и потери дискового пространства; чем меньше размер кластера, тем более экономно расходуется дисковое пространство, но катастрофически падает быстродействие.

Поэтому минимальный кластер в FAT32 был выбран размером 4 Кбайт, как компромисс между эффективностью хранения данных и производительностью. Поскольку эта файловая система предназначалась для работы с большими дисками, давайте рассмотрим ее с этой стороны. Большие диски нужны для хранения больших объемов данных. С увеличением числа файлов будет расти и размер таблицы их размещения. Поскольку просмотр таблицы линейный, то в какой-то момент быстродействие дисковых операций значительно упадет. А это уже очень неприятный момент. В Windows XP/2000 максимальный размер раздела, который можно отформатировать с помощью FAT32, равен 32 Гбайт, не смотря на теоретический предел в 4 Тбайт.

Видимо, Microsoft нашла ту точку, дальше которой идти не имеет смысла. Несмотря на это, вы можете работать с разделами FAT32 более 32 Гбайт, если они были отформатированы с помощью другой ОС. Рассмотрим еще некоторые особенности FAT32. В FAT32 были расширены атрибуты файлов, позволяющие теперь хранить время и дату создания, модификации и последнего доступа к файлу или каталогу. Корневой каталог в FAT32 больше не располагается в определенном месте, вместо этого хранится указатель на начальный кластер корневого каталога. В результате снимается ранее существовавшее ограничение на число записей в корневом каталоге. Кроме того, для учета свободных кластеров, в зарезервированной области на разделе FAT32 имеется сектор, содержащий число свободных кластеров и номер самого последнего использованного кластера. Это позволяет системе при выделении следующего кластера не перечитывать заново всю таблицу размещения файла.

1.7.3 Файловая система NTFS

С точки зрения пользователя файловая система NTFS организует файлы по каталогам и сортирует их так же, как и HPFS. Однако в отличие от FAT и HPFS на диске нет специальных объектов и отсутствует зависимость от особенностей установленного оборудования (например, сектор размером 512 байт). Кроме того, на диске отсутствуют специальные хранилища данных (таблицы FAT и суперблоки HPFS).

Для обеспечения надежности файловой системы NTFS особое внимание было уделено трем основным вопросам: способности к восстановлению, устранению неустранимых ошибок одного сектора и экстренному исправлению Для обеспечения способности к восстановлению NTFS отслеживает все транзакции в отношении файловой системы. Выполнение команды CHKDSK в файловой системе FAT или HPFS служит для проверки последовательности указателей в пределах каталога, размещения и таблицы файлов. Файловая система NTFS хранит журнал операций с этими компонентами. Таким образом, для восстановления связности системы необходимо с помощью команды CHKDSK выполнить «откат» транзакций до последней точки фиксации. При использовании FAT или HPFS сбой сектора, в котором хранится один из специальных объектов файловой системы, приводит к возникновению неустранимой ошибки одного сектора.

В NTFS эта проблема решается двумя способами. Во-первых, специальные объекты не используются, а все имеющиеся на диске объекты отслеживаются и защищаются. Во-вторых, существует несколько копий (число зависит от размера тома) основной таблицы файлов Подобно версиям HPFS для OS/2, NTFS поддерживает экстренное исправление.

Основное предназначение конфигурации операционной системы Windows NT на любом уровне является обеспечение платформы, которую можно использовать в качестве модуля при построении других систем, и NTFS не является исключением. Эта файловая система представляет собой гибкую платформу с широкими функциональными возможностями, которую могут использовать другие файловые системы. Кроме того, в NTFS полностью реализована модель безопасности Windows NT и поддержка нескольких потоков данных. Файл данных перестал быть отдельным потоком данных. Кроме того, пользователи могут добавлять собственные атрибуты файлов.

Во-первых, в NTFS значительно - до 2^64 байт (16 экзабайт или 18 446 744 073 709 551 616 байт) - увеличен допустимый раздел файлов и томов. В NTFS для решения проблемы фиксированного размера сектора снова применена концепция кластеров, ранее использованная в файловой системе FAT. Это было сделано для улучшения аппаратной независимости операционной системы Windows NT при ее использовании с жесткими дисками, изготовленными по другой технологии. Таким образом, была принята точка зрения, что деление диска на секторы размером 512 не всегда является оптимальным. Размер кластера определяется кратным числом единичных блоков жесткого диска.

NTFS лучше всего подходит для использования с томами размером более 400 МБ. С увеличением размера тома производительность файловой системы NTFS не падает, как у FAT. Благодаря способности к восстановлению в NTFS отсутствует необходимость использования каких-либо программ восстановления диска.

Из-за дополнительного расхода дискового пространства файловую систему NTFS не рекомендуется использовать с томами размером менее 400 МБ. Такой расход объясняется необходимостью хранения системных файлов NTFS (в разделе размером 100 МБ для этого требуется около 4 МБ). В настоящее время NTFS не имеет встроенного шифрования файлов. Следовательно, можно загрузить MS-DOS (или другую операционную систему) и воспользоваться низкоуровневой программой редактирования диска для просмотра хранящихся в томе NTFS данных. С помощью файловой системы NTFS нельзя форматировать дискеты. Windows NT форматирует дискеты с помощью FAT, так как объем служебной информации, необходимой для функционирования NTFS, не помещается на дискете.

2. Диагностика работы накопителей на жестких магнитных дисках

2.1 Технологии обеспечения надежности хранения данных на жестких магнитных дисках

2.1.1 Архивация и восстановление данных

Защита данных по своей сути сводится к созданию идентичной копии, которую можно использовать для восстановления потерянных или испорченных файлов и дисковых разделов. При построении инфраструктур используют весь спектр доступных на рынке технологий копирования данных. Классификация технологий может быть произведена по различным критериям, основной из которых - это носитель данных.

2.1.2 Оборудование для резервного копирования данных

Можно выделить две основные группы носителей:

1. Жесткие диски (Hard Disk Drive - НЖМД). Применяются для хранения резервных копий данных, готовых для мгновенного восстановления.

2. Сменные носители (Removable Media) - для долгосрочного надежного хранения.

С точки зрения пути копирования можно выделить два основных метода:

1. Локальные снимки и клоны данных на одном сервере или системе хранения. Применяется для создания наборов данных, готовых для последующего быстрого отката системы на определенный момент времени в прошлом.

2. Удаленные реплики данных - на различных серверах или системах хранения

С точки зрения режима копирования можно выделить:

1. Синхронное копирование и зеркалирование. В таком режиме запись не считается выполненной до тех пор, пока не получено подтверждение от всех подключенных устройств хранения.

2. Асинхронное копирование. В таком режиме подтверждения об успешной записи от всех вторичных устройств не требуется.

Наличие корректной копии данных будет бесполезным, если не функционирует соответствующий ИТ-сервис. Поэтому помимо защиты данных важнейшей задачей является так же защита приложений. Существует обширный набор методов защиты приложений, которые специалисты используют при построении вычислительных комплексов.

Основными методами являются:

1. Автоматизация процесса развертывания системного и прикладного программного обеспечения.

2. Кластеризация сервисов.

3. Построение отказоустойчивых (fault-tolerant) решений.

В любой организации, как правило, имеются разные приложения, для которых характерны различные требования к надежности, поэтому эффективнее оказывается применение комбинации нескольких технологий защиты приложений. Решение по защите данных и приложений в большинстве случаев подразумевает построение программно-аппаратного комплекса.

Как правило, такой комплекс содержит:

1. системы хранения различных типов и инфраструктура доступа к ним:

2. дисковые SAN/NAS массивы;

3. ленточные приводы или библиотеки;

4. магнитооптические приводы и библиотеки.

5. программное обеспечение, реализующее процедуры и процессы:

6. автоматизации;

7. кластеризации;

8. управления хранением и защиты;

9. мониторинга и управления оборудованием.

2.1.3 Технология S.M.A.R.T.

С течением времени изнашиваются головки, подшипники, стареют фильтры, магнитная поверхность дисков и электронные компоненты. И хотя инженеры, разрабатывающие накопители делают все возможное для того, чтобы их изделие служило многие годы но может случиться, что НЖМД выдут из строя. Хорошо, если на диске были только программы и игрушки, которые можно легко восстановить с дистрибутивов. Но чаще всего бывает так, что поломка накопителя застает пользователя врасплох, после чего выясняется, что там было что-нибудь важное и уникальное. Именно так и было несколько лет назад, когда пользователь мог только догадываться о том, что ждет его НЖМД в недалеком будущем, ориентируясь на возраст накопителя, появление новых плохих секторов и собственную интуицию. Этот способ был весьма неточным, так как возраст накопителя лишь косвенно характеризует его износ, гораздо большее значение имеют такие факторы, как количество включений, высокая рабочая температура, механические удары и табачный дым в воздухе.

Поэтому ведущими производителями жестких дисков была разработана технология, позволяющая объективно оценить состояние всех систем накопителя на жестких магнитных дисках и достаточно точно спрогнозировать время его выхода из строя. Эта технология получила название S.M.A.R.T. (Self Monitoring Analysis and Reporting Technology) и присутствует во всех современных НЖМД. Несмотря на кажущуюся сложность названия, принцип ее действия довольно прост.

Когда работает накопитель, его микропроцессор ведет подсчет циклов включения-выключения, количество отработанных часов, фиксируется время раскрутки двигателя до номинальной скорости, число ошибок чтения, число вновь появившихся сбойных секторов и многое другое. Кроме того, с помощью специальных датчиков определяется температура устройства, количество полученных ударов и т. д. Все данные автоматически, без участия пользователя, заносятся в специальную таблицу на диске и периодически обновляются. Еще они постоянно сравниваются с предельно допустимыми значениями, превышение (или наоборот) которых указывает на серьезные неполадки накопителя.

Эта таблица называется таблицей SMART-параметров и может быть просмотрена пользователем в любое время, для чего существует специальная утилита. Например, НЖМД Speed или SMARTUDM Эти программы бесплатны и имеют описание на русском языке. Запускать их следует из MS-DOS, воспользовавшись системной дискетой, загрузочным CD-ROM или нажав F5 при загрузке Windows 98. Следует обратить особое внимание на то, что некоторые значения приведены в шестнадцатеричной системе и, чтобы определить, например число включений, нужно перевести их в десятичную (это можно сделать калькулятором Windows). Существуют подобные программы и для Windows, например S.M.A.R.T. Vision, однако многие из них работают неправильно с некоторыми накопителями и внешними контроллерами, поэтому всерьез воспринимать их не стоит.

2.1.4 Технология Dual Wave

Технология разработана фирмой Maxtor и широко применяется в ее линейке жестких дисков. В контроллере диска впервые применено два процессора. Цифровой сигнальный процессор (DSP) управляет приводами, отвечает за операции чтения-записи и коррекции ошибок. RISC-процессор собственной разработки Maxtor оптимизирован для операций ввода-вывода и обработки команд интерфейса ATA. Оба процессора имеют свободный доступ к буферу данных и шине обмена данными между собой. Технология DualWave позволяет существенно повысить эффективность работы с файлами большого объема (видео, трехмерные игры, базы данных). Например, жесткий диск DiamondMax 6800 со скоростью вращения 5400 об./мин., оснащенный блоком DualWave, на многих тестах уверенно опережает обычные диски со скоростью вращения 7200 об./мин. К тому же диски Maxtor с контроллером DualWave оказались одними из самых бесшумных.

2.1.5 Технология Data Lifeguard


Подобные документы

  • Технические характеристики накопителей на жестких магнитных дисках и их устройство. Питание и охлаждение накопителей. Неисправности аппаратной и программной частей. Программы для проведения диагностики поверхности накопителя, его головок и электроники.

    курсовая работа [483,6 K], добавлен 19.05.2013

  • Конструкция, общее устройство и принцип действия накопителей на жестких магнитных дисках. Основные характеристики винчестеров: емкость, среднее время поиска, скорость передачи данных. Наиболее распространенные интерфейсы жестких дисков (SATA, SCSI, IDE).

    презентация [324,3 K], добавлен 20.12.2015

  • Сравнительный анализ и оценка характеристик накопителей на гибких и жестких магнитных дисках. Физическое устройство, организация записи информации. Физическая и логическая организация данных, адаптеры и интерфейсы. Перспективные технологии производства.

    дипломная работа [2,4 M], добавлен 16.04.2014

  • Запоминающие устройства на жестких магнитных дисках. Устройство жестких дисков. Интерфейсы жестких дисков. Интерфейс ATA, Serial ATA. Тестирование производительности накопителей на жестких магнитных дисках. Сравнительный анализ Serial ATA и IDE-дисков.

    презентация [1,2 M], добавлен 11.12.2013

  • Характеристика внешней памяти компьютера. Виды памяти компьютера и накопителей. Классификация запоминающих устройств. Обзор внешних магнитных носителей: накопители прямого доступа, на жестких магнитных дисках, на оптических дисках и карты памяти.

    курсовая работа [88,6 K], добавлен 27.02.2015

  • Современные достижения в разработке накопителей информации. Принципы работы запоминающих устройств ЭВМ и голографической памяти. Возможности персональных компьютеров и мультимедийных систем. Перспективы развития оптических накопителей и жестких дисков.

    презентация [4,0 M], добавлен 27.02.2012

  • Описание особенностей работы устройств для стирания записей с носителей на жестких магнитных дисках, а также с неоднородных полупроводниковых носителей. Изучение способов стирания информации с флеш–памяти. Выбор системы виброакустического зашумления.

    контрольная работа [2,9 M], добавлен 23.01.2015

  • Внутреннее устройство большинства дисковых накопителей. Форматирование жесткого магнитного диска (винчестера). Физическая архитектура и логическая структура дисковых накопителей. Функции файловой системы. Физические и логические параметры жестких дисков.

    реферат [825,7 K], добавлен 19.02.2011

  • Основные и специализированные виды компьютерной памяти. Классификация устройств долговременного хранения информации, их характеристика: накопители на жестких магнитных дисках; оптические диски, дисководы. Расчет налога на доходы физических лиц в MS Excel.

    курсовая работа [4,6 M], добавлен 27.04.2013

  • Магнитные накопители как важнейшая среда хранения информации в ЭВМ. Виды, конструкция и функционирование магнитных накопителей. Магнитные носители: гибкий магнитный диск, флэш-память, супердискета. Компакт-диски и универсальные цифровые диски, их форматы.

    реферат [40,8 K], добавлен 23.04.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.