Технические средства САПР и их развитие
Эволюция систем автоматизированного проектирования от простых средств двухмерного рисования и разработки чертежей до программных продуктов, включающих поддержку цикла разработки и производства изделия. Требования к пользовательскому интерфейсу САПР.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 19.12.2014 |
Размер файла | 274,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
Введение
1. Требования, предъявляемые к техническому обеспечению. Типы сетей
2. Состав технического обеспечения САПР. Высокопроизводительные технические средства САПР. Режимы работы технических средств САПР
3. Вычислительные сети САПР. Разработка технического обеспечения САПР
4. Периферийное оборудование САПР
5. Машинная графика САПР. Компьютерные сети
Заключение
Введение
Широкое внедрение систем автоматизированного проектирования (САПР) во все сферы промышленной разработки продукции является свершившимся фактом. За последние десятилетия системы автоматизированного проектирования прошли путь от простых систем двухмерного рисования и разработки чертежей до программных продуктов, включающих поддержку полного цикла разработки и производства изделия. Увеличение производительности труда разработчиков новых изделий, сокращение сроков проектирования, повышение качества разработки проектов - важнейшие проблемы, решение которых определяет уровень ускорения научно-технического прогресса общества. Развитие САПР опирается на прочную научно-техническую базу. Это - современные средства вычислительной техники, новые способы представления и обработки информации, создание новых численных методов решения инженерных задач и оптимизации. Системы автоматизированного проектирования дают возможность на основе новейших достижений фундаментальных наук отрабатывать и совершенствовать методологию проектирования, стимулировать развитие математической теории проектирования сложных систем и объектов. В настоящее время созданы и применяются в основном средства и методы, обеспечивающие автоматизацию рутинных процедур и операций, таких, как подготовка текстовой документации, преобразование технических чертежей, построение графических изображений и т.д. Но в целом возможности САПР определяются программным обеспечением, которое зачастую делят на уровни, в зависимости от сложности систем и их возможностей.
1) САПР нижнего уровня. Применяются при выпуске конструкторской документации, не связанной друг с другом. В том числе и САПР, обеспечивающие выпуск комплектов конструкторской документации (КД), а так же текстовые документы, сборочные, подсборочные, связанные друг с другом. Такие системы применяются в строительстве, архитектуре, геодезии машиностроении и др.
2) САПР среднего уровня. Поверхностное и твердотельное моделирование в трехмерном пространстве, выпуск документации на проектируемую модель. Применяется также в машиностроении, архитектуре, геодезии. САПР среднего уровня позволяет инженерам-конструкторам повысить производительность контроля, документирования и проектирование изделий.
3) САПР верхнего уровня. Дает возможность проводить комплексное решение задач моделирования объектов, выпуск конструкторской документации, расчетов, помогать решить специфические и прикладные задачи. Применяется в области архитектурного проектирования, строительстве, машиностроении.
1. Требования, предъявляемые к техническому обеспечению. Типы сетей
Требования к техническому обеспечению (ТО) САПР. ТО САПР представляет собой совокупность взаимосвязанных и взаимодействующих технических средств (hardware), предназначенных для выполнения автоматизированного проектирования. Техническое обеспечение делится на группы средств программной обработки данных, подготовки и ввода данных, средств отображения и документирования, архива проектных решений, средств передачи данных.
Средства программной обработки данных представлены процессорами и запоминающими устройствами, т.е. устройствами ЭВМ, в которых реализуются преобразования данных и программное управление вычислениями. Средства подготовки, ввода, отображения и документирования данных служат для общения человека с ЭВМ. Средства архива проектных решений представлены внешними запоминающими устройствами. Средства передачи данных используются для организации связей между территориально разнесенными ЭВМ и терминалами (оконечными пунктами).
Используемые в САПР технические средства должны обеспечивать:
1) Выполнение всех необходимых проектных процедур, для которых имеется соответствующее ПО;
2) Взаимодействие между проектировщиками и ЭВМ, поддержку интерактивного режима работы;
3) Взаимодействие между членами коллектива, работающими над общим проектом.
Первое из этих требований выполняется при наличии в САПР вычислительных машин и систем с достаточными производительностью и емкостью памяти.
Второе требование относится к пользовательскому интерфейсу и выполняется за счет включения в САПР удобных средств ввода - вывода данных и прежде всего устройств обмена графической информацией.
Третье требование обусловливает объединение аппаратных средств САПР в вычислительную сеть.
В результате общая структура ТО САПР представляет собой сеть узлов, связанных между собой средой передачи данных (рис.1.1). Узлами (станциями данных) являются рабочие места проектировщиков, часто называемые автоматизированными рабочими местами (АРМ) или рабочими станциями WS - Workstation (англ. рабочая станция), ими могут быть также большие ЭВМ (мейнфреймы), отдельные периферийные и измерительные устройства. Именно в АРМ должны быть средства для интерфейса проектировщика с ЭВМ. Что касается вычислительной мощности, то она может быть распределена между различными узлами вычислительной сети.
Рис.1.1. Структура технического обеспечения САПР
Среда передачи данных представлена каналами передачи данных, состоящими из линий связи и коммутационного оборудования.
В каждом узле можно выделить оконечное оборудование данных (ООД), выполняющее определенную работу по проектированию, и аппаратуру окончания канала данных (АКД), предназначенную для связи ООД со средой передачи данных (например, в качестве ООД можно рассматривать персональный компьютер, а в качестве АКД - вставляемую в компьютер сетевую плату).
Канал передачи данных - средство двустороннего обмена данными, включающее в себя АКД и линию связи. Линией связи называют часть физической среды, используемую для распространения сигналов в определенном направлении; примерами линий связи могут служить коаксиальный кабель, витая пара проводов, волоконно-оптическая линия связи (ВОЛС).
Типы сетей. Существуют два метода разделения линии передачи данных: временное мультиплексирование (иначе разделение по времени или TDM - Time Division Method), при котором каждому каналу выделяется некоторый квант времени, и частное разделение (FDM - Frequency Division Method), при котором каналу выделяется некоторая полоса частот.
В САПР небольших проектных организаций, насчитывающих не более единиц-десятков компьютеров, которые размещены на малых расстояниях один от другого (например, в одной или нескольких соседних комнатах) объединяющая компьютеры сеть является локальной. Локальная вычислительная сеть (ЛВС или LAN - Local Area Network) имеет линию связи, к которой подключаются все узлы сети. При этом топология соединений узлов (рис. 1.2) может быть шинная (bus), кольцевая (ring), звездная (star).
Рис. 1.2. Варианты топологии локальной вычислительной сетей: а) шинная; б) кольцевая; в) звездная
Протяженность линии и число подключаемых узлов в ЛВС ограничены.
В более крупных по масштабам проектных организациях в сеть включены десятки-сотни и более компьютеров, относящихся к разным проектным и управленческим подразделениям и размещенных в помещениях одного или нескольких зданий. Такую сеть называют корпоративной. В ее структуре можно выделить ряд ЛВС, называемых подсетями, и средства связи ЛВС между собой. В эти средства входят коммутационные серверы (блоки взаимодействия подсетей). Если коммутационные серверы объединены отделенными от ЛВС подразделений каналами передачи данных, то они образуют новую подсеть, называемую опорной; (или транспортной), а вся сеть оказывается иерархической структуры.
Если здания проектной организации удалены друг от друга на значительные расстояния (вплоть до их расположения в разных городах), то корпоративная сеть по своим масштабам становится территориальной сетью (WAN - Wide Area Network). В территориальной сети различают магистральные каналы передачи данных (магистральную сеть), имеющие значительную протяженность, и каналы передачи данных, связывающие ЛВС (или совокупность ЛВС отдельного здания или кампуса) с магистральной сетью и называемые абонентской линией; или соединением "последней мили".
Обычно создание выделенной; магистральной сети, т.е. сети, обслуживающей единственную организацию, обходится для нее слишком дорого. Поэтому чаще прибегают к услугам провайдера, т.е. организации, предоставляющей телекоммуникационные услуги многим пользователям. В этом случае внутри корпоративной сети связь на значительных расстояниях осуществляется через магистральную сеть общего пользования. В качестве такой сети можно использовать, например, городскую или междугородную телефонную сеть или территориальные сети передачи данных. Наиболее распространенной формой доступа к этим сетям в настоящее время является обращение к глобальной вычислительной сети Internet.
Для многих корпоративных сетей возможность выхода в Internet является желательной не только для обеспечения взаимосвязи удаленных сотрудников собственной организации, но и для получения других информационных услуг. Развитие виртуальных предприятий, работающих на основе CALS-технологий, с необходимостью подразумевает информационные обмены через территориальные сети, как правило, через Internet.
Рис. 1.3.Структура технического обеспечения САПР
Структура ТО САПР для крупной организации представлена на рис. 1.3. Здесь показана типичная структура крупных корпоративных сетей САПР, называемая архитектурой клиент-сервер. В сетях клиент-сервер выделяется один или несколько узлов, называемых серверами, которые выполняют в сети управляющие или общие для многих пользователей проектные функции, а остальные узлы (рабочие места) являются терминальными, их называют клиентами, в них работают пользователи. В общем случае сервером называют совокупность программных средств, ориентированных на выполнение определенных функций, но если эти средства сосредоточены на конкретном узле вычислительной сети, то тогда понятие сервер относится именно к узлу сети.
Сети клиент-сервер различают по характеру распределения функций между серверами, другими словами, их классифицируют по типам серверов. Различают файл-серверы для хранения файлов, разделяемых многими пользователями, серверы баз данных, автоматизированной системы, серверы приложений; для решения конкретных прикладных задач, коммутационные серверы (называемые также блоками взаимодействия сетей или серверами доступа) для взаимосвязи сетей и подсетей, специализированные серверы для выполнения определенных телекоммуникационных услуг, например, серверы электронной почты.
В случае специализации серверов по определенным приложениям сеть называют сетью распределенных вычислений. Если сервер приложений обслуживает пользователей одной ЛВС, то естественно называют такой сервер локальным. Но поскольку в САПР имеются приложения и базы данных, разделяемые пользователями разных подразделений и, следовательно, клиентами разных ЛВС, то соответствующие серверы относят к группе корпоративных, подключаемых обычно к опорной сети (см. рис. 1.3.).
Наряду с архитектурой клиент-сервер применяют одноранговые сети, в которых любой узел в зависимости от решаемой задачи может выполнять как функции сервера, так и функции клиента. Организация взаимодействия в таких сетях при числе узлов более нескольких десятков становится чрезмерно сложной, поэтому одноранговые сети применяют только в небольших по масштабам САПР.
В соответствии со способами коммутации различают сети с коммутацией каналов и коммутацией пакетов. В первом случае при обмене данными между узлами A и B в сети создается физическое соединение между A и B, которое во время сеанса связи используется только этими абонентами. Примером сети с коммутацией каналов может служить телефонная сеть. Здесь передача информации происходит быстро, но каналы связи используются неэффективно, так как при обмене данными возможны длительные паузы и канал "простаивает". При коммутации пакетов физического соединения, которое в каждый момент сеанса связи соединяло бы абонентов A и B, не создается. Сообщения разделяются на порции, называемые пакетами, которые передаются в разветвленной сети от A к B или обратно через промежуточные узлы с возможной буферизацией (временным запоминанием) в них. Таким образом, любая линия может разделяться многими сообщениями, попеременно пропуская при этом пакеты разных сообщений с максимальным заполнением упомянутых пауз.
2. Состав технического обеспечения САПР. Высокопроизводительные технические средства САПР. Режимы работы технических средств САПР
Техническое обеспечение САПР представляет собой нижний уровень, с помощью которого реализуются операционно-программное и другие виды обеспечений САПР.
Основные требования к техническим средствам САПР состоят в следующем:
· эффективность;
· универсальность;
· совместимость;
· компактность;
· надежность;
· доступность.
Технические средства (ТС) в САПР решают задачи:
· ввода исходных данных описания объекта проектирования;
· отображения введенной информации с целью ее контроля и редактирования;
· преобразования информации (изменения формы и структуры представления данных, перекодировки и др.);
· хранения информации;
· отображения итоговых и промежуточных результатов решения;
· обеспечения пользовательского интерфейса.
Для решения этих задач ТС должны содержать:
· процессоры,
· оперативную память,
· запоминающие устройства,
· устройства ввода-вывода информации,
· технические средства машинной графики,
· устройства оперативного общения человека с ЭВМ,
· устройства, обеспечивающие связь ЭВМ с удаленными терминалами и другими машинами.
При необходимости создания непосредственной связи САПР с производственным оборудованием в состав ТС должны быть включены устройства, преобразующие результаты проектирования в сигналы управления станками.
ТС САПР могут быть одно- и многоуровневыми.
ТС, в состав которых входит одна ЭВМ, оснащенная широким набором периферийного оборудования, носят название одноуровневых. Они широко применяются при проектировании изделий общепромышленного применения с установившейся конструкцией, имеющих узкоспециализированные математические модели и фиксированную последовательность этапов проектно-технологических работ. В состав многоуровневых ТС САПР входит два и более ЭВМ.
Развитие САПР предполагает расширение набора терминальных устройств, представление каждому проектировщику возможности взаимодействия с ЭВМ, обработку технической информации непосредственно на рабочих местах. С этой целью терминальные устройства снабжаются мини - и микроЭВМ, имеющими специальное математическое обеспечение интеллектуальные терминалы. Они соединяются с ЭВМ высокой производительностью с помощью специальных или обычных телефонных каналов.
Для использования информации отдельных ЭВМ распределенных на относительно большой территории особый эффект дает применение вычислительных сетей.
В САПР небольших проектных организаций, насчитывающих не более единиц-десятков компьютеров, которые размещены на малых расстояниях один от другого (например, в одной или нескольких соседних комнатах), объединяющая компьютеры сеть является локальной. Локальная вычислительная сеть (ЛВС), или LAN (LocalAreaNetwork), имеет линию связи, к которой подключаются все узлы сети. При этом топология соединений узлов может быть шинная, кольцевая, звездная. Протяженность линии и число подключаемых узлов в ЛВС ограничены.
В более крупных по масштабам проектных организациях в сеть включены десятки-сотни и более компьютеров, относящихся к разным проектным и управленческим подразделениям и размещенных в помещениях одного или нескольких зданий. Такую сеть называют корпоративной. Если здания проектной организации удалены друг от друга на значительные расстояния (вплоть до их расположения в разных городах), то корпоративная сеть по своим масштабам становится территориальной сетью (WAN - WideAreaNetwork). Наиболее распространенной формой доступа к этим сетям в настоящее время является обращение к глобальной вычислительной сети Internet.
Рабочие станции (PC) и персональные компьютеры (ПК) имеют традиционную архитектуру, ориентированную на последовательные вычисления, т.е. одним потоком команд они обрабатывают один поток данных. Такая организация вычислений была предложена фон-Нейманом и названа его именем. Усложнение решаемых задач и вычислительных алгоритмов САПР привело к внедрению в эту область более высокопроизводительных ЭВМ, организация вычислений в которых основана на множественности потоков команд, обрабатывающих множество потоков данных. Архитектура этих ЭВМ называется параллельной - "не фон-неймановской".
ЭВМ класса ОКОД - это традиционные "фон-неймановские" машины с одиночным потоком команд и одиночным потоком данных. К ним относятся PC и ПК. ОКМД ЭВМ - это параллельные компьютеры с одиночным потоком команд и множественными потоками данных. МКМД ЭВМ - это многопроцессорные ЭВМ с множественными потоками команд и множественными потоками данных.
Для организации вычислений в ЭВМ класса ОКМД применяется последовательно-групповой алгоритм. В этом случае группе выполняемых операторов соответствуют операции над векторными и матричными данными. ОКМД ЭВМ реализуются в виде векторных и матричных ЭВМ. Поскольку производительность таких машин велика, их называют супер-ЭВМ. автоматизированный проектирование чертеж интерфейс
Матричная супер-ЭВМ представляет собой матрицу одинаковых процессорных элементов с собственными локальными ОЗУ, причем каждый из процессоров матрицы выполняет в каждый момент времени одну и ту же команду над разными элементами векторных (матричных) данных. Недостаток матричных ЭВМ - ограниченное количество процессорных элементов в матрице ограничивает производительность ЭВМ: чем длиннее векторы обрабатываемых данных, тем ниже выигрыш в производительности такой матричной супер-ЭВМ перед обычной ОКОД ЭВМ, называемой скалярной машиной.
От этого недостатка свободны векторные супер-ЭВМ класса ОКМД. В отличие от матричной, векторная супер-ЭВМ имеет один процессор, но его аппаратура разбита на отдельные секции. При этом каждая секция обрабатывает элемент векторных данных за один и тот же такт времени своей логической подфункцией, на которые разбивается общая логическая функция, описывающая работу векторного процессора. Элементы векторов передаются от секции к секции с каждым новым тактом времени, формируя таким образом непрерывный конвейер обработки векторов. Секции конвейера называют его ступенями. Такие векторные конвейерные супер-ЭВМ оказываются тем более производительнее по сравнению со скалярными, чем длиннее обрабатываемые векторы. Существенный недостаток векторных супер-ЭВМ - резкое снижение производительности при нарушении непрерывного потока данных, поступающих на вход конвейера.
Поскольку алгоритм организации вычислений для ОКМД ЭВМ имеет специальный вид - последовательно-групповой. ЭВМ этого класса называют специализированными, так как они достигают своей пиковой производительности лишь на определенного класса задачах. В области САПР такие супер-ЭВМ успешно применяются для формирования реалистичных трехмерных графических изображений и решения ряда задач конструкторского проектирования сложных изделий, где требуется обработка векторов и матриц.
Супер-ЭВМ класса МКМД называют супер скалярными высокопараллельными многопроцессорными системами. Поскольку эти ЭВМ реализуют алгоритм вычислений со слабосвязанными множественными потоками команд и данных общего вида, они являются универсальными и обеспечивают выигрыш в производительности по сравнению со скалярными на большинстве задач, решаемых в области САПР. Супер-ЭВМ этого класса имеют множество процессоров, причем каждый из процессоров обрабатывает свои данные под управлением своего потока команд. Наиболее сложной проблемой для таких супер-ЭВМ является синхронизация обмена данными между задачами, запущенными на нескольких процессорах, и синхронизация ожидания одних запущенных задач (процессов) другими.
Аппаратная связь между процессорами МКМД ЭВМ осуществляется тремя способами:
· использование общей шины, соединяющей несколько процессоров;
· использование общего многопортового ОЗУ, доступного для всех МП;
· использование микросхем коммутации перекрестных связей, осуществляющих переключения информационных связей МП между собой по принципу "каждый с каждым".
При наличии общей шины, соединяющей несколько МП, возникают конфликты между МП за право монопольного обмена по шине, что снижает эффективность такой ЭВМ. Этот недостаток привел к тому, что в настоящее время такой вид связи между МП почти не применяется.
Использование общего многопортового ОЗУ предъявляет очень жесткие требования к устройству управления ОЗУ и к надежности самой памяти. Несмотря на этот недостаток, МКМД супер-ЭВМ с общей многопортовой памятью довольно широко используются вСАПР.
Наиболее перспективны многопроцессорные комплексы, в которых отдельные МП соединяются друг с другом с помощью коммутаторов перекрестных связей на основе быстро развивающихся КМОП-переключателей.
Параллельные супер-ЭВМ - это уникальные дорогие компьютеры, поэтому они являются ЭВМ коллективного пользования, работающими под управлением ОС с разделением времени. Они оснащены высокоскоростными адаптерами связи с региональными и глобальными вычислительными сетями и связаны с PC разработчиков РЭС с помощью САПР через сетевые каналы связи.
PC-сервер - это PC с расширенным (по объему или номенклатуре) набором периферийных устройств. В качестве одной из задач в ОС такой станции запускается процесс-сервер-программа, обслуживающая пользователей других PС через сеть, предоставляя им периферию данной PC либо сетевое соединение через региональную сеть с супер-ЭВМ. В соответствии с этим различают файл-серверы (PC с дополнительными ВЗУ), серверы сетевой связи (PC с расширенным набором сетевых адаптеров данной ЛВС с другими - ЭВМ-шлюз), вычислительные серверы (PC с повышенной производительностью) и т. д. Все эти PC, ПК и ЭВМ других классов объединяются (комплексируются) для эффективного использования области САПР вычислительными сетями.
Преимущества такого комплексирования заключаются в расширении функциональных возможностей САПР (каждый пользователь в том или ином подразделении имеет доступ к базам данных и программным средствам в других территориально удаленных подразделениях), в оптимизации распределения нагрузки между различными ЭВМ, в коллективном использовании дорогостоящей графической периферии, в повышении надежности функционирования технических средств САПР.
Состав технических средств базовых конфигураций САПР различных уровней в значительной степени определяется характером проектных задач. Существует взаимосвязь между классом решаемых задач и режимом использования ЭВМ. Рассмотрим задачи, решаемые в САПР, с целью выделения характеристик, определяющих выбор различных режимов работы ЭВМ.
По характеру вычислительного процесса решаемые задачи можно разделить на две основные группы: задачи, решаемые без участия пользователя, и задачи, в процессе решения которых необходимо участие пользователя.
По сложности вычисления задачи бывают:
первой группы: задачи, на решение которых требуется более нескольких минут; задачи, время счета которых измеряется секундами;
второй группы: время взаимодействия с пользователем соизмеримо с временем счета задачи; время решения велико по сравнению со временем диалога.
По объему информации задачи, решаемые в САПР, можно разделить на монопольно использующие основную память ЭВМ и частично использующие основную память ЭВМ.
Исходя из этой классификации решаемых задач САПР можно выделить следующие необходимые режимы работы техническихсредств:
· однопрограммный режим, при котором решаемой задаче доступны все ресурсы ЭВМ;
· мультипрограммный режим с фиксированным количеством задач; при таком режиме ОП ЭВМ делится на фиксированное число разделов, которые определены для выполнения одной задачи в каждом; некоторые внешние устройства (ВУ) могут быть назначены для использования несколькими задачами;
· мультипрограммный режим с переменным числом задач, все ресурсы ЭВМ общие.
Режим работы технических средств можно классифицировать по удалению проектировщика от основного компонента технических средств:
· местный режим, при котором пользователь работает непосредственно у ЭВМ;
· дистанционный режим, при котором часть периферийного оборудования связана с процессором канала связи.
Режим работы технических средств можно классифицировать по степени участия пользователя в процессе решения задач:
· пакетный режим, когда пользователь составляет задание на выполнение программы, которое в составе пакета заданий запускается для обработки на ЭВМ.
Обработка задач производится по очереди. После решения пользователю требуется проанализировать результаты обработки своего задания и подготовить новый вариант, что замедляет отладку и увеличивает время получения окончательных результатов;
· режим разделения времени, при котором каждой решаемой задаче поочередно выделяется определенный квант времени работы процессора. Пользователь во время сеанса работы за абонентским пунктом, используя средства системы разделения времени, может составить, протранслировать, отредактировать программу и приступить к ее выполнению, непосредственно контролируя происходящий процесс. Степень готовности программы зависит от подготовленности пользователя к работе с СРВ.
От выбора правильного режима использования технических средств САПР зависит эффективность эксплуатации технических средств. Поэтому при создании конкретной САПР определенного уровня необходимо провести четкий анализ решаемых задач.
Пакетный режим обработки информации предпочтительнее для задач с большим временем счета и задач, не требующих вмешательства в процесс решения пользователя.
Режим разделения времени удобнее для задач, время счета у которых соизмеримо со временем отклика пользователя на запрос ЭВМ, а также когда необходимо вмешательство пользователя в процесс решения.
3. Вычислительные сети САПР. Разработка технического обеспечения САПР
Вычислительные сети САПР. Эволюция развития комплекса технических средств САПР характеризуется созданием территориально рассредоточенных многомашинных систем сбора, хранения и обработки информации, реализованных в виде вычислительных сетей. Последние, рассредоточенные на небольших территориях предприятий и объединяющие в единую информационную систему автоматизированные рабочие места пользователей, ЭВМ и микро-ЭВМ, графопостроители, терминальные станции и другую специализированную аппаратуру, называют локальными вычислительными сетями (ЛВС). Локальные ВС имеют открытую архитектуру, обеспечивающую возможность подключения к сети любых других ЛВС, в том числе и крупных сетей ЭВМ. Основное достоинство ЛВС - низкая стоимость системы передачи данных.
Локальные вычислительные сети САПР должны обеспечивать: использование режимов пакетной и диалоговой обработки, разделения времени, виртуальной памяти; экономичную обработку информации по принципу "наиболее важные процессы САПР выполняются техническими средствами с развитым программным обеспечением и высокой производительностью, наименее ответственные - на дешевых мини- и микро-ЭВМ"; высокую надежность и достоверность функционирования, высокую производительность; применение разнообразного проблемно-ориентированного ПО, централизованных и локальных БД с необходимым объемом памяти; работу с автоматизированными рабочими местами различного назначения и с другим специализированным оборудованием; централизованную и децентрализованную обработку информации.
Использование ЛВС позволяет создать САПР нового поколения, объединяющие контрольно-измерительные комплексы и места сбора информации с автоматизированными рабочими местами схемотехников, конструкторов, механиков и т. д.
Основное назначение ЛВС - распределение ресурсов ЭВМ (программ, совокупности периферийных устройств, терминалов, памяти) для эффективного решения задач автоматизированного проектирования. Локальные ВС должны иметь надежную, быструю и дешевую систему передачи данных (СПД), а стоимость передачи единицы информации должна быть значительно ниже стоимости обработки единицы информации. Для достижения этого ЛВС как система распределенных ресурсов должна выполняться на основе следующих принципов.
Принцип единых протоколов. Протоколы межмашинной связи в ЛВС предназначены для организации обмена информацией между компонентами сети. Протоколы сети определяют форму сообщения или пакета сообщений (длину, заголовок, знак окончания, дополнительную информацию для повышения достоверности передачи и др.). Все процедуры управления и соответствующие им протоколы едины для всей сети и не зависят ни от типа ЭВМ, подключенных к сети, ни от происходящих в них процессов.
Принцип единой передающей среды. При построении СПД для ЛВС используют активную или пассивную структуру передающей среды.
Активная структура выполняется на основе распределенных усилителей и преобразователей, обеспечивающих передачу информации в параллельном и последовательном кодах. Пассивная структура выполняется на основе пассивного носителя - коаксиального либо плоского кабеля. Она использует преобразователи-усилители одного типа. Это обеспечивает возможность работы либо в параллельном, либо в последовательном коде.
Структура передающей среды может быть реализована с применением либо моноканала, либо многопроводной связи. Более дешевой (для ЛВС - более предпочтительной) является структура с моноканалами, поскольку существенно снижаются издержки на эксплуатацию и прокладку соединений. Моноканалами являются физическая среда, аппаратные и, возможно, программные средства, предназначенные для параллельной передачи одновременно (с точностью до времени распространения сигнала) всем абонентским системам. Моноканал предназначен для коллективного использования большим числом абонентских систем, поэтому должен обладать высокой пропускной способностью передачи информации.
Физическая среда моноканала реализуется посредством волоконнооптических линий связи, коаксиальных или плоских кабелей, скрученных пар проводов и т. д.
Принцип единого метода управления. Протоколы ЛВС могут применять централизованные и децентрализованные формы управления одноузловой структурой моноканала. Принцип единого метода управления проявляется в выборе одной из этих форм, обеспечивающей достаточную надежность работы СПД и максимальную загрузку каналов связи. При этом для определения метода управления следует учитывать структуру соединений, их длину, число абонентов и сложность обработки информации с помощью ресурсов ЛВС.
Для централизованных форм управления характерны обилие служебной информации и приоритетность подключаемых к моноканалу станций. Защита от конфликтов в моноканале реализуется центральной управляющей машиной.
В децентрализованных формах управления, которые допускают одинаковый приоритет всех станций, подключаемых к моноканалу, применяют многоступенчатые тракты защиты от конфликтов. Они учитывают противоречивые требования надежности и максимальной загрузки моноканала.
При использовании в ЛВС нескольких методов управления средой передачи данных существенно увеличивается сложность схемных решений контроллеров, с помощью которых станции ЛВС подключаются к среде передачи данных.
Принцип информационной и программной совместимости предусматривает совместимость операционных систем, программ и систем управления базами данных (СУБД), рассредоточенных в рамках ЛВС.
Особенность этого принципа - возможность адаптации процессов к видам пересылаемой информации и применение единых систем кодирования и контроля информации.
Принцип гибкой модульной организации предусматривает проектирование СПД ЛВС на основе набора гибких конструктивно законченных модулей.
Локальные вычислительные сети классифицируют:
· по топологическим признакам: иерархической, кольцевой и звездообразной конфигурации, конфигурации типа "общая шина";
· по методам управления ресурсами среды передачи данных: с детерминированным и случайным доступом к моноканалу;
· по программному обеспечению: с единой операционной поддержкой и едиными методами теледоступа, ориентированными на конкретную ЛВС и ЛВС с различными наборами тех и других компонентов операционной поддержки;
· по методу передачи данных: сети с коммутацией каналов, с коммутацией сообщений и коммутацией пакетов, причем в современных ЛВС характерно использование коммутации пакетов;
· по техническому обеспечению: гомогенные и гетерогенные ЛВС.
Первые предусматривают применение в станциях однотипного оборудования, например, только комплексов машинной графики. Вторые дают возможность подключения любых абонентских комплексов - от устройств выдачи конструкторской документации до высокопроизводительных вычислительных комплексов с развитой терминальной сетью.
Анализируя способы реализации технического обеспечения САПР на базе стандартных многоуровневых структур вычислительных центров коллективного пользования и на базе ЛВС, можно сделать следующие выводы. Сетевая архитектура по сравнению со стандартной многоуровневой имеет много преимуществ:
· возможность взаимодействия с одного и того же терминала с ресурсами всех рабочих и терминальных машин ЛВС;
· обеспечение высокой надежности обработки путем замены вышедшей из строя рабочей машины - резервной;
· повышение эффективности функционирования ЭВМ за счет их специализации на выполнение определенных функций хранения и управления данными, геометрического моделирования, подготовки управляющей информации для программного управляемого оборудования и т. д.
Разработка технического обеспечения САПР. Разработка САПР представляет собой комплекс взаимосвязанных работ по созданию математического, программного, технического, информационного и других видов обеспечения систем, ориентированных на автоматизированное проектирование определенного класса объектов (САПР машиностроения, самолетостроения, БИС, ЭВМ и др.).
В разработке и внедрении САПР принимают участие большие коллективы проектных и конструкторско-технологических организаций, усилия которых координируются группой системных исследователей.
Принципы организации и стадии разработки САПР регламентированы руководящими и методическими материалами, а также государственными стандартами.
Рассмотрим некоторые специфичные аспекты разработки технического обеспечения САПР (ТО САПР). К ТО САПР предъявляются требования возможности организации оперативного взаимодействия проектировщиков с ЭВМ, достаточной производительности вычислительных средств и необходимого объема оперативной памяти для решения задач автоматизированного проектирования за приемлемое время, возможности одновременной работы нескольких пользователей с ресурсами ТО, высокой надежности, приемлемой стоимости и т. п.
Удовлетворение перечисленных требований возможно только путем организации ТО САПР в виде специализированной иерархической вычислительной системы (ВС) или вычислительной сети с развитым периферийным оборудованием, ориентированным на ввод, обработку и выдачу текстовой и графической информации.
Задача разработки ТО САПР заключается в обосновании, расчете и выборе структуры многоуровневого комплекса технических средств (КТС) САПР, ориентированного на решение задач автоматизированного проектирования определенного класса объектов. Построение КТС может осуществляться путем комплексирования как стандартного оборудования (ЭВМ, каналы, дисплеи, устройства внешней памяти и т. д.), так и специально разработанного для КТС САПР (АРМ, графопостроители, кодировщики и т. д.).
Создание многоуровневых КТС предполагает наличие на высшем уровне одной или нескольких ЭВМ большой производительности (типа ЕС ЭВМ старших моделей). Эти ЭВМ предназначены для решения сложных задач проектирования, требующих больших затрат машинного времени и памяти. На низших уровнях иерархии могут находиться ЭВМ средней производительности, а также мини- и микро-ЭВМ, входящие в состав автоматизированных рабочих мест (АРМ) (терминальные ЭВМ). Эти ЭВМ предназначены для решения сравнительно несложных задач проектирования, для управления работой комплекта периферийного оборудования и для организации обмена информацией между различными уровнями КТС.
Для определения структуры КТС и параметров входящих в него компонентов могут служить ограничения: снизу - на число программ N, входящих в состав программного обеспечения САПР; сверху - на среднее время Т реакции КТС на поступившую задачу проектирования; снизу - на объем оперативной памяти для хранения программ проектирования; сверху - на время, необходимое процессору для решения усредненной задачи в однопрограммном режиме, а также по номенклатуре периферийного оборудования КТС САПР.
Комплексы технических средств САПР создаются на базе средств вычислительной техники общего назначения - Единой системы ЭВМ, мини- и микро-ЭВМ различных типов.
Единая система ЭВМ представляет собой совокупность технических средств и программного обеспечения, на основе которых можно создавать вычислительные системы различной конфигурации.
Концепции, заложенные в ЕС ЭВМ (программная совместимость, универсальность, модульный принцип построения технических средств и программного обеспечения), позволяют совершенствовать все компоненты системы. С помощью набора команд ЕС ЭВМ производят операции с фиксированной и плавающей запятыми, десятичные операции и операции с полями переменной длины.
Система программного обеспечения ЕС ЭВМ состоит из операционных систем, пакетов прикладных программ и программ технического обслуживания. Она в пакетном режиме выполняет размещение разногабаритных элементов, трассировку соединений и выпуск конструкторско-технологических документов. Подсистема позволяет проектировать печатные платы с переходными металлизированными отверстиями. Выходными документами подсистемы являются фотооригиналы, сборочный чертеж, таблицы цепей, перечень элементов, спецификация.
4. Периферийное оборудование САПР
Помимо PC, ПК и других ЭВМ для организации САПР требуется периферийное оборудование. Периферийное оборудование ЭВМ - это совокупность технических и программных средств, обеспечивающих взаимодействие ЭВМ с пользователем и внешней средой, а также хранение, подготовку и преобразование информации к виду, удобному для ввода/вывода.
Периферийное оборудование подразделяется на две группы: локальное, устанавливаемое рядом и подключаемое непосредственно к ЭВМ, и удаленное(терминальное). По выполняемым функциям и локальное, и терминальное оборудование включают в себя средства хранения, обработки и ввода/вывода информации. Средства взаимного общения с пользователем должны осуществлять представление и ввод информации в графической форме.
В настоящее время существуют различные методы ввода и регистрации графической информации: высвечивание точек и линий на экране монитора, нанесение точек, вычерчивание линий и символов изображения на бумаге (в том числе специальной), изменение цвета бумаги путем химической (термической) реакции, электризация поверхности фотополупроводника, проецирование изображения с помощью луча лазера и другие.
Каждый метод и устройства, реализующие его, имеют свои достоинства и недостатки. Основными критериями для их сравнения являются:
· качество изображения;
· скорость формирования изображения;
· стоимость оборудования и его эксплуатации;
· особенности программного обеспечения.
По программному обслуживанию периферийные устройства САПР делятся на два класса: растровые и координатные (векторные).
В растровых устройствах выводится мозаичный рисунок из отдельных точек - пикселей, или ПЭЛов (от англ. pictureelement), по типу телевизионной развертки. При этом осуществляется последовательный перебор элементов мозаики и выделение пикселей, составляющих изображение. Время вывода изображения постоянно, не зависит от сложности рисунка и определяется только числом элементов мозаики (пикселей) и скоростью их перебора.
При векторном способе осуществляется последовательное вычерчивание линий, составляющих изображение. Время ввода/вывода изображения пропорционально суммарной длине линий (в том числе с учетом "невидимых" линий). Для сложных изображений время вывода может быть достаточно велико. В современных САПР широкое применение находят оба типа устройств.
Все периферийные устройства делятся на три основные группы:
· средства ввода/вывода с машинных носителей;
· средства ввода/вывода с документов;
· средства непосредственного взаимодействия с ЭВМ.
Первая группа средств включает в себя накопители на магнитных дисках или накопители на магнитных лентах (стримеры).
Средства ввода/вывода с документов имеют свою специфику для ввода/вывода текста и графической информации. К ним относятся различные печатающие устройства (принтеры), графопостроители, планшеты, сканеры.
Средства непосредственного взаимодействия с ЭВМ включают в себя устройства отображения алфавитно-цифровой и графической информации (дисплеи, проекционные системы), акустические устройства ввода/вывода информации, устройства связи с реальными объектами (датчики, исполнительные устройства), а также средства ручного ввода информации: алфавитно-цифровую клавиатуру, различные планшеты и манипуляторы (электронная "мышь", управляющие ручки - джойстики, управляющий шар - трекбол).
Наиболее распространенным электронным средством отображения информации является дисплей. Большинство современных дисплеев PC и ПК строится на основе платы графического адаптера (графического процессора) и монитора.
Требования к качеству графического изображения в задачах САПР весьма велики, поэтому обычные графические адаптеры ПК стандарта VGA (640x480 точек разрешения, 256 цветов и ниже) не подходят для визуализации изображений.
Существует несколько видов изображений в пакетах САПР:
· высококачественные черно-белые двухмерные изображения (чертежи, эскизы);
· цветные или полутоновые двумерные изображения (топология БИС, печатных плат);
· каркасные трехмерные проекции конструкторских чертежей, эскизов и т. д. с удалением и без удаления невидимых линий;
· проекции трехмерных изображений с закрашиванием поверхностей;
· проекции реалистичных трехмерных изображений с учетом отражательных характеристик поверхностей объектов и формированием светотеней.
Наиболее простые черно-белые изображения и каркасные трехмерные изображения могут строиться векторными методами. Остальные виды изображений требуют растровой цветной (полутоновой) графики с высоким разрешением и богатой цветовой палитрой.
Для изображений среднего качества могут быть использованы графические адаптеры мощных ПК типа SVGA с разрешением не менее 1024x768 точек, 256 цветов и адаптеры наиболее недорогих PC, например семейства SUN с разрешением 1152x900, 256 цветов.
Для визуализации реалистичных трехмерных изображений, конструкций сложных объектов и многослойных топологий БИС требуются более высокие быстродействие и разрешение графических адаптеров. Такие графические адаптеры называют графическими процессорами, a PC с графическим процессором и цветным монитором повышенного разрешения и размера по диагонали (19 дюймов и выше) - графической рабочей станцией. Так, в графической PC фирмы IBM PS-730 используется платаграфического процессора, обеспечивающая разрешение 1280x1024 точки с более чем 4 млрд. оттенков цветов. Быстродействие такой графической станции при визуализации изображений - 990 тыс. трехмерных графических преобразований в секунду, что эквивалентно воспроизведению 120 тыс. трехмерных треугольников с закрашиванием в секунду.
В связи с высокими требованиями к качеству изображений в области САПР доминируют цветные и полутоновые мониторы на электроннолучевых трубках с повышенными разрешением, строчной и кадровой развертками. Ведутся интенсивные разработки высококачественных мониторов на жидких кристаллах. Следует отметить быстрое развитие лазерных проекционных систем визуализации изображений на больших плоских экранах с повышенным разрешением до 1024x1024 точек. В этом случае развертка луча лазера производится зеркальными механическими отклоняющими системами либо электронными системами на базе акустооптических дефлекторов.
Устройства графического вывода (печатающие устройства - принтеры, графопостроители) занимают ведущее место среди номенклатуры периферийных устройств на рынке технических средств САПР (более 2/3 от всей оконечной аппаратуры). Сложилось разделение устройств вывода на печатающие устройства и графопостроители, однако границы их использования для вывода текста и графики в последнее время все более размываются.
Печатающие устройства по порядку вывода делятся на:
· посимвольные, в которых вывод алфавитно-цифровой информации осуществляется последовательно символ за символом за один цикл печати;
· построчные, которые формируют и выводят за один цикл печати всю строку;
· постраничные, которые формируют и выводят целиком страницу за один цикл печати.
По физическому принципу различают печатающие устройства ударного и безударного действия. В первом случае изображение получают в результате удара по носителю записи специальным органом - молоточком, стержнем или иглой. В устройствах безударного действия изображение выводится в результате физико-химического, электрического и другого воздействия на оконечный носитель записи (бумагу) или некоторый промежуточный носитель (специальную пленку, различные барабаны, пластины).
Наиболее популярны среди принтеров ударного действия матричные печатающие устройства, в которых изображения (знаки) формируются специальной головкой, содержащей стержни - иглы, возбуждаемые электромагнитным или пьезоэлектрическим приводом. В простых моделях головок - 9-12 игл, в более сложных - 18-24. Сложные модели обеспечивают достаточно высокое качество печати, но низкое быстродействие. К недостатку печатающих устройств ударного действия относится также наличие большого количества механических элементов, работающих при высоких динамических нагрузках, и связанные с этим ограниченный ресурс, повышенный уровень шума и ненадежность.
Печатающие устройства безударного действия относятся к матричным устройствам. Изображение формируется из отдельных точек с четкостью от 3 до 32 точек на 1 мм. В большинстве из них применяется одинаковый принцип: формирование скрытого электрического или магнитного изображения на промежуточном носителе, далее происходит его визуализация и перенос на бумагу. Среди безударных печатающих устройств наиболее популярны термопечати, струйные устройства и лазерные печати.
Термопечатающие устройства используют термопечатные головки (терморезисторы) и копировальные пленки (5-10 мкм) с легкоплавким красящим слоем. Локальный нагрев пленки у красителя приводит к переносу отпечатка на бумагу. В таких устройствах достигаются высокая четкость (6-12 точек на 1 мм), высокая контрастность, легко реализуется многоцветность изображения.
Струйные печатающие устройства относятся к посимвольным матричным устройствам. Существует два типа таких печатей: с непрерывной капельной струей и импульсные (ждущие). В первых заряженные капельки красителя летят мимо отклоняющей системы и формируют символы (графику) на бумаге. Скорость такой печати - до 300 см 2/мин при разрешении 20 точек на 1 мм. В ждущих принтерах капли вылетают лишь тогда, когда необходимо сформировать символ. В них используются многосопловые (до 9-12 сопл и более) струйные головки, обеспечивающие плотность записи 4-12 точек на 1 мм. Возбуждение капсул-инъекторов осуществляется пьезоэлементом или нагревом микрорезистора.
Наибольшую популярность в настоящее время имеет лазерная печать, обеспечивающая очень высокую скорость печати (до 10 страниц в минуту) при высокой четкости - до 32-40 точек на 1 мм. В таких устройствах изображение регистрируется электрографическим способом. Лазер создает скрытое изображение на барабане, а его визуализация осуществляется специальным порошком - тонером с тепловым закреплением на бумаге. При этом луч лазера по одной координате разворачивается механически с помощью зеркальной многогранной призмы, а по другой координате - электронным способом с помощью акустооптического дефлектора. Управляет работой лазерной печати мощная микро-ЭВМ, формируя страницы вывода, получаемые от PC или ПК. К недостаткам лазерной печати следует отнести ее относительно высокую стоимость и сложность формирования цветных изображений. Лазерные принтеры обычно используются коллективно несколькими пользователями через ЛВС.
Подобные документы
Структура и классификация систем автоматизированного проектирования. Виды обеспечения САПР. Описание систем тяжелого, среднего и легкого классов. Состав и функциональное назначение программного обеспечения, основные принципы его проектирования в САПР.
курсовая работа [37,7 K], добавлен 18.07.2012Понятие и функции систем автоматизированного проектирования (САПР), принципы их создания и классификация. Проектирующие и обслуживающие подсистемы САПР. Требования к компонентам программного обеспечения. Этапы автоматизации процессов на предприятии.
реферат [19,8 K], добавлен 09.09.2015Технологии автоматизированного проектирования, автоматизированного производства, автоматизированной разработки и конструирования. Концептуальный проект предполагаемого продукта в форме эскиза или топологического чертежа как результат подпроцесса синтеза.
реферат [387,2 K], добавлен 01.08.2009Требования, предъявляемые к техническому обеспечению систем автоматизированного проектирования. Вычислительные сети; эталонная модель взаимосвязи открытых систем. Сетевое оборудование рабочих мест в САПР. Методы доступа в локальных вычислительных сетях.
презентация [1,1 M], добавлен 26.12.2013САПР как организационно-техническая система, реализующая информационную технологию выполнения функций проектирования. Цель создания и назначение САПР, классификации программных приложений и средств автоматизации по отраслевому и целевому назначению.
презентация [124,1 K], добавлен 16.11.2014Применение средств САПР для создания связи баз данных с чертежом. Создание связи между таблицами базы данных. Разработка команды САПР AutoСAD для гидромотора. Ввод промежуточных параметров. Определение полярных координат точек, секция отрисовки.
курсовая работа [1,8 M], добавлен 28.01.2016Определение и характеристика цели автоматизации проектирования. Ознакомление с достоинствами процесса внутреннего шлифования. Исследование и анализ сущности САПР – системы, объединяющей технические средства, математическое и программное обеспечение.
курсовая работа [949,8 K], добавлен 02.06.2017Принципы разработки в системе программного обеспечения САПР. Выбор среды для формирования моделей и функций. Процесс создания моделей деталей. Разработка API-приложения для среды разработки. Тестирование разработанного функционала портала-хранилища.
курсовая работа [704,0 K], добавлен 18.01.2017Требования к пользовательскому интерфейсу программного продукта. Выбор инструментальных средств разработки программы. Описание функциональной схемы, модульной структуры, структурной схемы. Технология разработки справочной системы программного продукта.
дипломная работа [2,7 M], добавлен 12.05.2016Предпосылки внедрения систем автоматизированного проектирования. Условная классификация САПР. Анализ программ, которые позволяют решать инженерные задачи. Система управления жизненным циклом продукта - Product Lifecycle Management, ее преимущества.
контрольная работа [1,3 M], добавлен 26.09.2010