Типы и характеристики лазеров
Типы лазеров: усилители, генераторы. Характеристики приборов: энергия импульса, расходимость лазерного луча, диапазон длин волн. Типы газоразрядных лазеров. Поперечная и продольная накачка электронным пучком. Принцип работы лазера на свободных электронах.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | реферат |
Язык | русский |
Дата добавления | 11.12.2014 |
Размер файла | 108,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ФЕДЕРАЛЬНОЕ АГЕНСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ
ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
«МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ»
(МИИТ)
Институт транспортной техники и систем управления
Кафедра «Технология транспортного машиностроения и ремонта подвижного состава»
Реферат
по дисциплине: «Электрофизические и электрохимические методы обработки»
Тема: «Типы и характеристики лазеров»
Введение
Изобретение лазера стоит в одном ряду с наиболее выдающимися достижениями науки и техники XX века. Первый лазер появился в 1960 г., и сразу же началось бурное развитие лазерной техники. В короткое время были созданы разнообразные типы лазеров и лазерных устройств, предназначенных для решения конкретных научных и технических задач. Лазеры уже успели завоевать прочные позиции во многих отраслях народного хозяйства. Как заметил академик А.П. Александров, “всякий мальчишка теперь знает слово лазер”. И все же, что такое лазер, чем он интересен и полезен? Один из основоположников науки о лазерах - квантовой электроники - академик Н.Г. Басов отвечает на этот вопрос так: “Лазер - это устройство, в котором энергия, например тепловая, химическая, электрическая, преобразуется в энергию электромагнитного поля - лазерный луч. При таком преобразовании часть энергии неизбежно теряется, но важно то, что полученная в результате лазерная энергия обладает несравненно более высоким качеством. Качество лазерной энергии определяется ее высокой концентрацией и возможностью передачи на значительное расстояние. Лазерный луч можно сфокусировать в крохотное пятнышко диаметра порядка длины световой волны и получить плотность энергии, превышающую на сегодняшний день плотность энергии ядерного взрыва.
С помощью лазерного излучения уже удалось достичь самых высоких значений температуры, давления, напряженности магнитного поля. Наконец, лазерный луч является самым емким носителем информации и в этой роли - принципиально новым средством ее передачи и обработки”. Широкое применение лазеров в современной науке и технике объясняется специфическими свойствами лазерного излучения. Лазер - это генератор когерентного света. В отличии от других источников света (например, ламп накаливания или ламп дневного света) лазер дает оптическое излучение, характеризующееся высокой степенью упорядоченности светового поля или, как говорят, высокой степенью когерентности. Такое излучение отличается высокой монохроматичностью и направленностью. В наши дни лазеры успешно трудятся на современном производстве, справляясь с самыми разнообразными задачами. Лазерным лучом раскраивают ткани и режут стальные листы, сваривают кузова автомобилей и приваривают мельчайшие детали в радиоэлектронной аппаратуре, пробивают отверстия в хрупких и сверхтвердых материалах. Причем лазерная обработка материалов позволяет повысить эффективность и конкурентоспособность по сравнению с другими видами обработки. Непрерывно расширяется область применения лазеров в научных исследованиях - физических, химических, биологических.
Замечательные свойства лазеров - исключительно высокая когерентность и направленность излучения, возможность генерирования когерентных волн большой интенсивности в видимой, инфракрасной и ультрафиолетовой областях спектра, получение высоких плотностей энергии как в непрерывном, так и в импульсном режиме - уже на заре квантовой электроники указывало на возможность широкого их применения для практических целей. С начала своего возникновения лазерная техника развивается исключительно высокими темпами. Появляются новые типы лазеров и одновременно усовершенствуются старые: создаются лазерные установки с необходимым для различных конкретных целей комплексом характеристик, а также различного рода приборы управления лучом, все более и более совершенствуется измерительная техника. Это послужило причиной глубокого проникновения лазеров во многие отрасли народного хозяйства, и в частности в машино- и приборостроение.
Надо особо отметить, что освоение лазерных методов или, иначе говоря, лазерных технологий значительно повышает эффективность современного производства. Лазерные технологии позволяют осуществлять наиболее полную автоматизацию производственных процессов.
Огромны и впечатляющи достижения лазерной техники сегодняшнего дня. Завтрашний день обещает еще более грандиозные свершения. С лазерами связаны многие надежды: от создания объемного кино до решения таких глобальных проблем, как установление сверхдальней наземной и подводной оптической связи, разгадку тайн фотосинтеза, осуществление управляемой термоядерной реакции, появление систем с большим объемом памяти и быстродействующими устройствами ввода - вывода информации.
1. Классификация лазеров
Принято различать два типа лазеров: усилители и генераторы. На выходе усилителя появляется лазерное излучение, когда на его вход (а сам он уже находится в возбужденном состоянии) поступает незначительный сигнал на частоте перехода. Именно этот сигнал стимулирует возбужденные частицы к отдаче энергии. Происходит лавинообразное усиление. Таким образом - на входе слабое излучение, на выходе - усиленное. С генератором дело обстоит иначе. На его вход излучение на частоте перехода уже не подают, а возбуждают и, более того, перевозбуждают активное вещество. Причем если активное вещество находится в перевозбужденном состоянии, то существенно растет вероятность самопроизвольного перехода одной или нескольких частиц с верхнего уровня на нижний. Это приводит к возникновению стимулированного излучения.
Второй подход к классификации лазеров связан с физическим состоянием активного вещества. С этой точки зрения лазеры бывают твердотельными (например, рубиновый, стеклянный или сапфировый), газовыми (например, гелий-неоновый, аргоновый и т.п.), жидкостными, если в качестве активного вещества используется полупроводниковый переход, то лазер называют полупроводниковым.
Третий подход к классификации связан со способом возбуждения активного вещества. Различают следующие лазеры: с возбуждением за счет оптического излучения, с возбуждением потоком электронов, с возбуждением солнечной энергией, с возбуждением за счет энергий взрывающихся проволочек, с возбуждением химической энергией, с возбуждением с помощью ядерного излучения. Различают также лазеры по характеру излучаемой энергии и ее спектральному составу. Если энергия излучается импульсно, то говорят об импульсных лазерах, если непрерывно, то лазер называют лазером с непрерывным излучением. Есть лазеры и со смешанным режимом работы, например полупроводниковые. Если излучение лазера сосредоточено в узком интервале длин волн, то лазер называют монохроматичным, если в широком интервале, то говорят о широкополосном лазере.
Еще один вид классификации основан на использовании понятия выходной мощности. Лазеры, у которых непрерывная (средняя) выходная мощность более 106 Вт, называют высокомощными. При выходной мощности в диапазоне 105…103 Вт имеем лазеры средней мощности. Если же выходная мощность менее 10-3 Вт, то говорят о маломощных лазерах.
В зависимости от конструкции открытого зеркального резонатора различают лазеры с постоянной добротностью и лазеры с модулированной добротностью - у такого лазера одно из зеркал может быть размещено, в частности, на оси электродвигателя, который вращает это зеркало. В данном случае добротность резонатора периодически меняется от нулевого до максимального значения. Такой лазер называют лазером с Q-модуляцией.
2. Характеристики лазеров
Одной из характеристик лазеров является длина волны излучаемой энергии. Диапазон волн лазерного излучения простирается от рентгеновского участка до дальнего инфракрасного, т.е. от 10-3 до 102 мкм. За областью 100 мкм лежит, образно говоря, “целина”. Но она простирается только до миллиметрового участка, который осваивается радистами. Этот неосвоенный участок непрерывно сужается, и есть надежда, что его освоение завершится в ближайшее время. Доля, приходящаяся на различные типы генераторов, неодинакова. Наиболее широкий диапазон у газовых квантовых генераторов.
Другой важной характеристикой лазеров является энергия импульса. Она измеряется в джоулях и наибольшей величины достигает у твердотельных генераторов - порядка 103 Дж. Третьей характеристикой является мощность. Газовые генераторы, которые излучают непрерывно, имеют мощность от 10-3 до 102 Вт. Милливаттную мощность имеют генераторы, использующие в качестве активной среды гелий-неоновую смесь. Мощность порядка 100 Вт имеют генераторы на CO2. С твердотельными генераторами разговор о мощности имеет особый смысл. К примеру, если взять излучаемую энергию в 1 Дж, сосредоточенную в интервале в одну секунду, то мощность составит 1 Вт. Но длительность излучения генератора на рубине составляет 10-4 с, следовательно, мощность составляет 10000 Вт, т.е. 10 кВт. Если же длительность импульса уменьшена с помощью оптического затвора до 10-6 с, мощность составляет 106 Вт, т.е. мегаватт. Это не предел! Можно увеличить энергию в импульсе до 103 Дж и сократить ее длительность до 10-9с и тогда мощность достигнет 1012 Вт. А это очень большая мощность. Известно, что когда на металл приходится интенсивность луча, достигающая 105 Вт/см2, то начинается плавление металла, при интенсивности 107 Вт/см2 - кипение металла, а при 109 Вт/см2 лазерное излучение начинает сильно ионизировать пары вещества, превращая их в плазму.
Еще одной важной характеристикой лазера является расходимость лазерного луча. Наиболее узкий луч имеют газовые лазеры. Он составляет величину в несколько угловых минут. Расходимость луча твердотельных лазеров около 1…3 угловых градусов. Полупроводниковые лазеры имеют лепестковый раскрыв излучения: в одной плоскости около одного градуса, в другой - около 10…15 угловых градусов.
Следующей важной характеристикой лазера является диапазон длин волн, в котором сосредоточено излучение, т.е. монохроматичность. У газовых лазеров монохроматичность очень высокая, она составляет 10-10, т.е. значительно выше, чем у газоразрядных ламп, которые раньше использовались как стандарты частоты. Твердотельные лазеры и особенно полупроводниковые имеют в своем излучении значительный диапазон частот, т. е. не отличаются высокой монохроматичностью.
Очень важной характеристикой лазеров является коэффициент полезного действия. У твердотельных он составляет от 1 до 3,5%, у газовых 1…15%, у полупроводниковых 40…60%. Вместе с тем принимаются всяческие меры для повышения кпд лазеров, ибо низкий кпд приводит к необходимости охлаждения лазеров до температуры 4…77 К, а это сразу усложняет конструкцию аппаратуры.
2.1 Твердотельные лазеры
Твердотельные лазеры делятся на импульсные и непрерывные. Среди импульсных лазеров более распространены устройства на рубине и неодимовом стекле. Длина волны неодимового лазера составляет l = 1,06 мкм. Эти устройства представляют собой относительно большие стержни, длина которых достигает 100 см, а диаметр - 4-5 см. Энергия импульса генерации такого стержня - 1000 дж за 10-3 сек.
Лазер на рубине также отличается большой мощностью импульса, при длительности 10-3 сек его энергия составляет сотни дж. Частота повторения импульсов может достигать нескольких кГц.
Самые известные лазеры непрерывного действия изготавливаются на флюорите кальция с примесью диспрозия и лазеры на иттриево-алюминиевом гранате, в котором присутствуют примеси атомов редкоземельных металлов. Длина волны этих лазеров находится в области от 1 до 3 мкм. Мощность импульса составляет примерно 1 вт либо его доли. Лазеры на иттриево-алюминиевом гранате способы обеспечить мощность импульса до нескольких десятков вт.
Как правило, в твердотельных лазерах используется многомодовый режим генерации. Одномодовая генерация может быть получена при введении в резонатор селектирующих элементов. Подобное решение было вызвано снижением генерируемой мощности излучения.
Сложность производства твердотельных лазеров заключается в необходимости выращивания больших монокристаллов или варки больших образцов прозрачного стекла. Преодолеть эти трудности позволило изготовление жидкостных лазеров, где активная среда представлена жидкостью, в которую введены редкоземельные элементы. Тем не менее жидкостные лазеры имеют ряд недостатков, ограничивающих область их использования.
2.2 Жидкостные лазеры
Жидкостными называются лазеры с жидкой активной средой. Основным преимуществом этого вида устройств является возможность циркуляции жидкости и, соответственно, ее охлаждение. В результате и в импульсном, и в непрерывном режиме можно получить больше энергии.
Первые жидкостные лазеры производились на основе редкоземельных хелатов. Недостатком этих лазеров является низкий уровень достижимой энергии и химическая неустойчивость хелатов. В результате эти лазеры не нашли применения. Советские ученые предложили использовать в лазерной среде неорганические активные жидкости. Лазеры на их основе отличаются высокими импульсными энергиями и обеспечивают показатели средней мощности. Жидкостные лазеры на такой активной среде способны генерировать излучение с узким спектром частот.
Еще один вид жидкостных лазеров - устройства, работающие на растворах органических красителей, отличающихся широкими спектральными линиями люминесценции. Такой лазер способен обеспечить непрерывную перестройку длин излучаемых волн света в широком диапазоне. При замене красителей обеспечивается перекрытие всего видимого спектра и части инфракрасного. Источником накачки в таких устройствах являются, как правило, твердотельные лазеры, но возможно использование газосветных ламп, обеспечивающих короткие вспышки белого света (менее 50 мксек).
2.3 Газовые лазеры
Существует много разновидностей. Одна из них - фотодиссоционный лазер. В нем применяется газ, молекулы которого под влиянием оптической накачки диссоциируют (распадаются) на две части, одна из которых оказывается в возбужденном состоянии и используется для лазерного излучения.
Большую группу газовых лазеров составляют газоразрядные лазеры, в которых активной средой является разреженный газ (давление 1-10 мм рт. ст.), а накачка осуществляется электрическим разрядом, который может быть тлеющим или дуговым и создается постоянным током или переменным током высокой частоты (10-50 МГц).
Существует несколько типов газоразрядных лазеров. В ионных лазерах излучение получается за счет переходов электронов между энергетическими уровнями ионов. Примером служит аргоновый лазер, в котором используется дуговой разряд постоянного тока.
Лазеры на атомных переходах генерируют за счет переходов электронов между энергетическими уровнями атомов. Эти лазеры дают излучение с длиной волны 0,4-100 мкм. Пример - гелий-неоновый лазер, работающий на смеси гелия и неона под давлением около 1 мм рт. ст. Для накачки служит тлеющий разряд, создаваемый постоянным напряжением примерно 1000 В.
К газоразрядным относятся также молекулярные лазеры, в которых излучение возникает от переходов электронов между энергетическими уровнями молекул. Эти лазеры имеют широкий диапазон частот, соответствующий длинам волн от 0,2 до 50 мкм.
Наиболее распространен из молекулярных лазер на диоксиде углерода (СО2-лазер). Он может давать мощность до 10 кВт и имеет довольно высокий КПД - около 40%. К основному углекислому газу обычно ещё добавляют примеси азота, гелия и других газов. Для накачки применяют тлеющий разряд постоянного тока или высокочастотный. Лазер на диоксиде углерода создает излучение с длиной волны около 10 мкм. Схематически он показан на рис. 1.
Рис. 1 - Принцип устройства СО2-лазера
Разновидность СО2-лазеров - газодинамические. В них инверсная населенность, необходимая для лазерного излучения, достигается за счет того, что газ, предварительно нагретый до 1500 К при давлении 20-30 атм, поступает в рабочую камеру, где он расширяется, а его температура и давление резко снижаются. Такие лазеры могут дать непрерывное излучение мощностью до 100 кВт.
К молекулярным относятся так называемые эксимерные лазеры, у которых рабочей средой является инертный газ (аргон, ксенон, криптон и др.), либо его соединение с хлором или фтором. В таких лазерах накачка осуществляется не электрическим разрядом, а потоком так называемых быстрых электронов (с энергией в сотни кэВ). Излучаемая волна получается наиболее короткой, например, у лазера на аргоне 0,126 мкм.
Большие мощности излучения можно получить, если повысить давление газа и применить накачку с помощью ионизирующего излучения в сочетании с внешним электрическим полем. Ионизирующим излучением служит поток быстрых электронов либо ультрафиолетовое излучение. Такие лазеры называются электроионизационными или лазерами на сжатом газе. Схематически лазеры такого типа показаны на рис. 2.
Рис. 2 - Электроионизационная накачка
Возбужденные молекулы газа за счет энергии химических реакций получаются в химических лазерах. Здесь используются смеси некоторых химически активных газов (фтор, хлор, водород, хлористый водород и др.). Химические реакции в таких лазерах должны протекать очень быстро. Для ускорения применяются специальные химические агенты, которые получаются при диссоциации молекул газа под действием оптического излучения, или электрического разряда, или электронного пучка. Примером химического лазера может служить лазер на смеси фтора, водорода и углекислого газа.
Особый тип лазера - плазменный лазер. В нем активной средой служит высокоионизированная плазма паров щелочноземельных металлов (магний, барий, стронций, кальций). Для ионизации применяют импульсы тока силой до 300 А при напряжении до 20 кВ. Длительность импульсов 0,1-1,0 мкс. Излучение такого лазера имеет длину волны 0,41-0,43 мкм, но может также быть в ультрафиолетовой области.
2.4 Полупроводниковые лазеры
Хотя полупроводниковые лазеры и являются твердотельными, их принято выделять в особую группу. В этих лазерах когерентное излучение получается вследствие перехода электронов с нижнего края зоны проводимости на верхний край валентной зоны. Существует два типа полупроводниковых лазеров. Первый имеет пластину беспримесного полупроводника, в котором накачка производится пучком быстрых электронов с энергией 50-100 кэВ. Возможна также оптическая накачка. В качестве полупроводников используются арсенид галлия GaAs, сульфид кадмия CdS или селенид кадмия CdSe. Накачка электронным пучком вызывает сильный нагрев полупроводника, отчего лазерное излучение ухудшается. Поэтому такие лазеры нуждаются в хорошем охлаждении. Например, лазер на арсениде галлия принято охлаждать до температуры 80 К.
Накачка электронным пучком может быть поперечной (рис. 3) или продольной (рис. 4). При поперечной накачке две противоположные грани полупроводникового кристалла отполированы и играют роль зеркал оптического резонатора. В случае продольной накачки применяются внешние зеркала. При продольной накачке значительно улучшается охлаждение полупроводника. Пример такого лазера - лазер на сульфиде кадмия, генерирующий излучение с длиной волны 0,49 мкм и имеющий КПД около 25%.
Рис. 3 - Поперечная накачка электронным пучком
Рис. 4 - Продольная накачка электронным пучком
Второй тип полупроводникового лазера - так называемый инжекционный лазер. В нем имеется p-n-переход (рис. 5), образованный двумя вырожденными примесными полупроводниками, у которых концентрация донорных и акцепторных примесей составляет 1018-1019см-3. Грани, перпендикулярные плоскости p-n-перехода, отполированы и служат в качестве зеркал оптического резонатора. На такой лазер подается прямое напряжение, под действием которого понижается потенциальный барьер в p-n-переходе и происходит инжекция электронов и дырок. В области перехода начинается интенсивная рекомбинация носителей заряда, при которой электроны переходят из зоны проводимости в валентную зону и возникает лазерное излучение. Для инжекционных лазеров применяют главным образом арсенид галлия. Излучение имеет длину волны 0,8-0,9 мкм, КПД довольно высок - 50-60%.
Рис. 5 - Принцип устройства инжекционного лазера
усилитель генератор луч волна
Миниатюрные инжекционные лазеры с линейными размерами полупроводников около 1 мм дают мощность излучения в непрерывном режиме до 10 мВт, а в импульсном режиме могут иметь мощность до 100 Вт. Получение больших мощностей требует сильного охлаждения.
Следует отметить, что в устройстве лазеров имеется много различных особенностей. Оптический резонатор лишь в простейшем случае составлен из двух плоскопараллельных зеркал. Применяются и более сложные конструкции резонаторов, с другой формой зеркал.
В состав многих лазеров входят дополнительные устройства для управления излучением, расположенные либо внутри резонатора, либо вне его. С помощью этих устройств отклоняется и фокусируется лазерный луч, изменяются различные параметры излучения. Длина волны у разных лазеров может составлять 0,1-100 мкм. При импульсном излучении длительность импульсов бывает в пределах от 10-3 до 10-12 с. Импульсы могут быть одиночными или следовать с частотой повторения до нескольких гигагерц. Достижимая мощность составляет 109 Вт для наносекундных импульсов и 1012 Вт для сверхкоротких пикосекундных импульсов.
2.5 Лазеры на красителях
Лазеры, использующие в качестве лазерного материала органические красители, обычно в форме жидкого раствора. Они принесли революцию в лазерную спектроскопию и стали родоначальником нового типа лазеров c длительностью импульса менее пикосекунды (Лазеры сверхкоротких импульсов).
В качестве накачки сегодня обычно применяют другой лазер, например Nd: YAG с диодной накачкой, или Аргоновый лазер. Очень редко можно встретить лазер на красителях с накачкой лампой-вспышкой. Основная особенность лазеров на красителях - очень большая ширина контура усиления. Ниже приведена таблица параметров некоторых лазеров на красителях.
Существует две возможности использовать такую большую рабочую область лазера:
перестройка длины волны на которой происходит генерация -> лазерная спектроскопия,
генерация сразу в широком диапазоне -> генерация сверх коротких импульсов.
В соответствии с этими двумя возможностями различаются и конструкции лазеров. Если для перестройки длины волны используется обычная схема, только добавляются дополнительные блоки для термостабилизации и выделения излучения со строго определённой длиной волны (обычно призма, дифракционная решётка, или более сложные схемы), то для генерации сверх коротких импульсов требуется уже гораздо более сложная установка. Изменяется конструкция кюветы с активной средой. Из-за того, что длительность импульса лазера в конечном итоге составляет 100ч30·10?15 (свет в вакууме успевает пройти лишь 30ч10мкм за это время), инверсия населённости должна быть максимальна, этого можно добиться только очень быстрой прокачкой раствора красителя. Для того чтобы это осуществить применяют специальную конструкцию кюветы со свободной струёй красителя (краситель прокачивается из специального сопла со скоростью порядка 10м/с). Наиболее короткие импульсы получаются при использовании кольцевого резонатора.
2.6 Лазер на свободных электронах
Вид лазера, излучение в котором генерируется моноэнергетическим пучком электронов, распространяющимся в ондуляторе - периодической системе отклоняющих (электрических или магнитных) полей. Электроны, совершая периодические колебания, излучают фотоны, энергия которых зависит от энергии электронов и параметров ондулятора.
В отличие от газовых, жидкостных или твердотельных лазеров, где электроны возбуждаются в связанных атомных или молекулярных состояниях - у FEL источником излучения является пучок электронов в вакууме, проходящий сквозь ряд расположенных специальным образом магнитов - ондулятор (вигглер), заставляющий пучок двигаться по синусоидальной траектории, теряя энергию, которая преобразуется в поток фотонов. В результате вырабатывается мягкое рентгеновское излучение, применяемое, например, для исследования кристаллов и других наноструктур.
Меняя энергию электронного пучка, а также параметры ондулятора (силу магнитного поля и расстояние между магнитами), можно в широких пределах менять частоту лазерного излучения, вырабатываемого FEL, что является главным отличием FEL от лазеров других систем. Излучение, получаемое с помощью FEL, применяется для изучения нанометровых структур - есть опыт получения изображений частиц размером всего 100 нанометров (этот результат был достигнут с помощью рентгеновской микроскопии с разрешением около 5 нм). Проект первого лазера на свободных электронах был опубликован в 1971 году Джоном М. Дж. Мэйди в рамках своего PhD-проекта в Стэнфордском университете. В 1976 году Мэйди и его коллеги продемонстрировали первые опыты с FEL, используя электроны с энергией 24 МэВ и 5-метровый вигглер для усиления излучения.
Мощность лазера составляла 300 мВт, а эффективность всего 0,01 %, но была показана работоспособность такого класса устройств, что привело к огромному интересу и резкому увеличению количества разработок в области FEL.
Размещено на Allbest.ru
Подобные документы
Достоинства лазеров на свободных электронах. Механизм возникновения излучения. Временной период, действующий на электрон силы. Параметры лазера на свободных электронах. Частота изменения ускорения электрона. Рамановские лазеры на свободных электронах.
презентация [38,7 K], добавлен 19.02.2014Общая характеристика работы лазеров. Рассмотрение импульсного "режима свободной генерации", генерации "пичков". Подробное изучение методов получения коротких мощных импульсов излучения лазера с использованием режима модуляции добротности резонатора.
реферат [123,4 K], добавлен 21.08.2015Характеристика и функция лазерного резонатора, обеспечение обратной связи фотонов с лазерной средой. Лазерные моды – собственные частоты лазерного резонатора. Продольные и поперечные электромагнитные моды. Лазер на ионах аргона и криптона, его устройство.
реферат [1,5 M], добавлен 17.01.2009Обзор конструктивных особенностей и характеристик лазеров на основе наногетероструктур. Исследование метода определения средней мощности лазерного излучения, длины волны, измерения углов расходимости. Использование исследованных средств измерений.
дипломная работа [2,7 M], добавлен 26.10.2016Инжекционный механизм накачки. Величина смещающего напряжения. Основные характеристики полупроводниковых лазеров и их группы. Типичный спектр излучения полупроводникового лазера. Величины пороговых токов. Мощность излучения лазера в импульсном режиме.
презентация [103,2 K], добавлен 19.02.2014Основные характеристики и применение аргонового лазера. Вынужденное испускание фотонов возбужденными атомами. Процесс поглощения фотонов. Активная среда ионных лазеров. Уровни энергии для лазера на ионах аргона. Характерные значения выходной мощности.
реферат [1,6 M], добавлен 12.06.2011Разработка структурной схемы и 3D модель мехатронной системы ориентирования, проектирование ее электронной и механической частей. Методы измерения расстояния с использованием лазеров. Технические характеристики лазерного сканирующего дальномера.
дипломная работа [2,4 M], добавлен 18.09.2015Устройство и принцип работы лампы бегущей волны типа М. Путь построения теории лампы: продольная и переменная составляющие, решение характеристического уравнения. Амплитудно-частотная характеристика лампы. Устройство и принцип работы лампы обратной волны.
реферат [715,7 K], добавлен 20.08.2015Обзор применения импульсных дальномеров-высотомеров на основе полупроводниковых лазеров для контроля объектов подстилающей поверхности. Методы повышения точности временной фиксации принимаемого сигнала. Расчет безопасности лазерного высотомера ДЛ-5.
дипломная работа [1,2 M], добавлен 14.03.2016Понятие электронного усилителя, принцип работы. Типы электронных усилителей, их характеристики. Типы обратных связей в усилителях и результаты их воздействия на работу электронных схем. Анализ электронных усилителей на основе биполярных транзисторов.
курсовая работа [540,7 K], добавлен 03.07.2011