Использование оптоволоконного кабеля в современных компьютерных вычислительных сетях

Обзор классификации волоконно-оптических кабелей, электронных компонентов систем оптической связи. Характеристика принципа передачи света и срока службы источников света. Описания методов сращивания отдельных участков кабелей, длины оптической линии.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курсовая работа
Язык русский
Дата добавления 30.11.2011
Размер файла 212,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

“ХАРЬКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ”

Кафедра "Системы информации "

Курсовой проект

По дисциплине «Архитектура компьютерных сетей»

На тему: Использование оптоволоконного кабеля в современных компьютерных вычислительных сетях

Харьков 2010

Оглавление

Введение

1. Что из себя представляет оптическое волокно

2. Срок службы источников света

3. Какой источник света предпочтительнее

4. Классификация волоконно-оптических кабелей (ВОК)

5. Основные характеристики оптических кабелей

6. Помехи

  • 6.1 Длина оптической линии
    • 6.2 Сращивание отдельных участков кабелей
      • 6.3 Новейшие электронные компоненты систем оптической связи
      • Выводы
      • Список литературы
      • Введение
      • Человек издавна использовал свет в качестве источника сигналов, например маяки, костры и т.п. Еще в те далекие времена он фактически построил то, что сегодня мы называем оптической линией связи или оптической системой связи, включающей передатчик (источник), модулятор, оптическую кабельную линию и приемник (глаз). Определив в качестве модуляции преобразование механического сигнала в оптический, например открытие и закрытие источника света, мы можем наблюдать в приемнике обратный процесс - демодуляцию: преобразование оптического сигнала в сигнал другого рода для дальнейшей обработки в приемнике.
      • Такая обработка может представлять собой, например, превращение светового образа в глазу в последовательность электрических импульсов нервной системы человека. Головной мозг включается в процесс обработки как последнее звено цепи.
      • Другим, очень важным параметром, используемым при передаче сообщений, является скорость модуляции. Глаз в этом отношении имеет ограничения. Он хорошо приспособлен к восприятию и анализу сложных картин окружающего мира, но не может следить за простыми колебаниями яркости, когда они следуют быстрее 16 раз в секунду. В отличие от глаза, современные оптические системы используют в качестве световых приемников технические устройства - фотоэлементы или фотодиоды, позволяющие отслеживать значительные частоты колебаний.
      • 1. Что из себя представляет оптическое волокно
      • Оптическое волокно -- нить из оптически прозрачного материала (стекло, пластик), используемая для переноса света внутри себя посредством полного внутреннего отражения.
      • Волоконная оптика -- раздел прикладной науки и машиностроения, описывающий такие волокна. Кабели на базе оптических волокон используются в волоконно-оптической связи, позволяющей передавать информацию на большие расстояния с более высокой скоростью передачи данных, чем в электронных средствах связи. В ряде случаев они также используются при создании датчиков.
      • Принцип передачи света, используемый в волоконной оптике, был впервые продемонстрирован во времена королевы Виктории (1837--1901 гг.), но развитие современной волоконной технологии началось в 1950-х годах. Изобретение лазеров сделало возможным построение волоконно-оптических линий передачи, превосходящих по своим характеристикам традиционные проводные средства связи.
      • Стеклянные оптические волокна делаются из кварцевого стекла, но для дальнего инфракрасного диапазона могут использоваться другие материалы, такие как флуоро-цирконат, флуоро-алюминат и халькогенидные стекла. Как и другие стекла, эти имеют показатель преломления около 1,5.
      • В настоящее время развивается применение пластиковых оптических волокон (Plastic optical fibers).
      • Оптическое волокно имеет круглое сечение и состоит из двух частей -- сердцевины и оболочки. Для обеспечения полного внутреннего отражения абсолютный показатель преломления сердцевины несколько выше показателя преломления оболочки. Например, если показатель преломления оболочки равен 1,474, то показатель преломления сердцевины -- 1,479.
      • Луч света, направленный в сердцевину, будет распространяться по ней, испытывая многократные переотражения от границы раздела «сердцевина -- оболочка».
      • Все оптические волокна, используемые в телекоммуникациях, имеют диаметр 125±1 микрон. Диаметр сердцевины может отличаться в зависимости от типа волокна и национальных стандартов.
      • волоконный оптический кабель электронный
      • 2. Срок службы источников света
      • Одним из основных параметров оптических элементов передатчика является срок службы. Он ограничивается тем, что после определенного времени работы выходная световая мощность падает и в дальнейшем не выдерживается ее гарантированное для указанного времени значение даже за счет повышения тока в диоде.
      • Если оптический передатчик, например на узле связи, должен проработать без замены элементов 10 лет, то для него должен быть гарантирован срок службы около 100000 ч (считая продолжительность года равной приблизительно 10000 ч). Для светоизлучающих диодов на GaAs такой срок службы близок к действительному. Хотя для них редко называют гарантийные сроки службы, но обычны значения в несколько лет. К сожалению, для, лазерных диодов подобные сроки службы не достигнуты. Только в 1970г. в лаборатории появился первый работоспособный лазер, работающий в непрерывном режиме при комнатной температуре, и только в течение 70-х годов были разработаны различные структуры и геометрии, приемлемые для конструирования и изготовления лазеров непрерывного излучения, работающих при комнатной температуре.
      • Понятно, что достоверных данных о сроке службы можно ожидать только после длительных испытаний большого числа готовых элементов. Чтобы уже сегодня получить какие-то суждения, применяют меры к сокращению времени измерений. При этом лазерные диоды заставляют работать в жестких условиях (как правило, при очень высоких температурах, 50-70 градусов Цельсия). На основании этого судят об ожидаемом сроке службы в нормальных условиях. При этих предположениях в конце 70-х годов многими изготовителями предсказывались ожидаемые сроки службы для лазеров 100000 ч, а в отдельных случаях - свыше 1 млн. ч. И хотя эти цифры сегодня еще не проверены, все же существует гарантия наименьшего срока службы 10000 ч, и этим данным можно доверять.
      • Проблема срока службы лазеров сегодня еще не решена, но существуют оптимистические прогнозы.
      • Вероятно, через несколько лет можно будет отказаться от привычной в настоящее время оптической отрицательной обратной связи. Она применяется для того, чтобы скомпенсировать возникающее старение, влияние напряжения и температуры на отдаваемую лазером и светоизлучающим диодом световую мощность.
      • 3. Какой источник света предпочтительнее
      • В качестве источников света лазер и светоизлучающий диод стоят рядом. Ни для одного из них нельзя назвать решающего преимущества: какой из них лучше, в каждом отдельном случае зависит от области применения.
      • Существенным фактором, конечно, является цена. Для обоих типов источников с годами она будет, естественно падать, но все же светоизлучающий диод в этом отношении имеет преимущество: он дешевле лазера со сравнимыми параметрами при высококачественной работе, столь необходимой для техники связи. Поэтому для систем местной связи, которые требуют относительно малых скоростей передачи (до 2 Мбит/с и ниже), будут всегда применяться светоизлучающие диоды и в основном совместно со световодами с относительно большой апертурой (например, с кварцевыми волокнами в пластмассовой оболочке). Таким образом можно ввести в волокно существенно большую часть излучаемого света.
      • Типичные параметры полупроводниковых источников света.
      • Второй важный параметр светопередатчика: ширина полосы модуляции. Светоизлучающие диоды прежде всего "медлительнее" лазеров. В зависимости от конструкции, имеющиеся сегодня в распоряжении типы, как правило, могут быть модулированы частотами 30 - 50 Мгц. Если же необходимо передать быстрые двоичные сигналы со скоростью свыше 30 Мбит/с, то почти всегда применяется лазер ввиду его большой световой мощности. Для него граница модуляции лежит в пределах нескольких сотен мегагерц, а иногда выше 1 ГГц. Хотя светоизлучающий диод еще не достиг границ своих возможностей (в настоящее время уже имеются отдельные типы диодов, модулируемых со скоростью 150 Мбит/с; по прогнозам до 1 Гбит/с), все же лазер имеет преимущество в виде более высокой выходной мощности (см. табл.).
      • Наконец, необходимо принять во внимание, что ширина передаваемой полосы частот ограничивается не только быстродействием самого излучающего диода. Здесь важным фактором являются также дисперсионные свойства световода. Помимо этого необходимо обратить внимание еще на одно свойство излучающего диода: большая ширина спектра излучения светоизлучающего диода в сочетании со световодом может привести к ограничению ширины передаваемой полосы частот. Это свойство может играть существенную роль, когда речь идет о том, чтобы максимально использовать высокую пропускную способность световодов, а уширение импульса из-за дисперсии материала допускать в минимальных пределах.
      • В настоящее время появилось четвертое поколение оптических передатчиков, давшее начало когерентным системам связи - то есть системам, в которых информация передается модуляцией частоты или фазы излучения. Такие системы связи обеспечивают гораздо большую дальность распространения сигналов по оптическому волокну. Специалисты фирмы NTT построили безрегенераторную когерентную ВОЛС STM-16 на скорость передачи 2.48832 Гбит/с протяженностью в 300 км, а в лабораториях NTT в начале 1990 года ученые впервые создали систему связи с применением оптических усилителей на скорость 2.5 Гбит/с на расстояние 2223 км.
      • Появление оптических усилителей на основе световодов, легированных эрбием, способных усиливать проходящие по световоду сигналы на 30 dB, дало начало пятому поколению систем оптической связи. В настоящее время быстрыми темпами развиваются системы дальней оптической связи на расстояния в тысячи километров. Успешно эксплуатируются трансатлантические линии связи США-Европа ТАТ-8 и ТАТ-9, Тихоокеанская линия США-Гавайские острова-Япония ТРС-3. Ведутся работы по завершению строительства глобального оптического кольца связи Япония-Сингапур-Индия-Саудовская Аравия-Египет-Италия.
      • 4. Классификация волоконно-оптических кабелей (ВОК)
      • В настоящее время у разных производителей, поставщиков и инсталляторов ВОК существует некоторая путаница в классификации типов волоконно-оптических кабелей. Среди многообразия попыток классифицировать ВОК заслуживает внимания классификация, основанная на опыте работы и здравом смысле, не содержащая англоязычных терминов и экзотических кабелей для локальных сетей типа трансатлантических.
      • Сам принцип деления волоконно-оптических кабелей по способам прокладки и назначению в случае применения в локальных сетях представляется неудачным.
      • Вот пример такой распространенной (Выбор и поставку волоконно-оптических кабелей для конкретного применения, как правило, мы осуществляем в индивидуальном порядке при заказе на монтажные работы. и при этом неудачной) классификации волоконно-оптических кабелей:
      • · кабели внешней прокладки (outdoor cables);
      • · кабели внутренней прокладки (indoor cables);
      • · кабели для шнуров.
      • По назначению оптические кабели делятся на линейные и внутриобъектные. Линейные, в свою очередь, подразделяются на:
      • · распределительные (оптическая сеть доступа);
      • · соединительные (соединительные линии МТС);
      • · междугородные (магистральные и зоновые ВОЛС).
      • Внутриобъектовые кабели делятся на абонентские и станционные. По условиям использования оптические кабели подразделяются на подвесные, подземные и подводные.
      • Подвесные кабели делятся на:
      • самонесущие:
      • · волоконно-оптические кабели со встроенным несущим тросом;
      • · волоконно-оптические кабели, армированные кевларовыми нитями;
      • · волоконно-оптические кабели, встроенные в грозозащитный трос;
      • · волоконно-оптические кабели, встроенные в фазный провод;
      • · волоконно-оптические кабели, которые наматываются на грозозащитный трос или фазный провод;
      • Подземные кабели подразделяются на:
      • · волоконно-оптические кабели для прокладки непосредственно в грунт и в кабельную канализацию;
      • · волоконно-оптические кабели, облегчённой конструкции для прокладки в защитных пластиковых трубках;
      • · волоконно-оптические кабели, для прокладки в туннелях, шахтах
      • Помогает ли такая классификация оптических кабелей в выборе кабеля для непосредственного применения? Практически нет.
      • Вот пример реальной кабельной трассы на промышленном предприятии, где нужна прокладка оптоволокна: из центра коммутации здания А по внешней стене, затем проброс по воздушной линии до здания Б, по крыше, спуск в телефонную канализацию, затем по подвалу к центру коммутации здания В.
      • Если придерживаться стандартной классификации, то необходимо только на одной, достаточно непротяженной (в нашем случае около 600 метров) кабельной трассе использовать 4-5 видов волоконно-оптического кабеля, соединяя их проходными муфтами. Дороговато будет, да и ненадежно (сколько лишних точек сращивания!). Можно ли в таком случае использовать один, максимум два типа оптического кабеля? Можно и нужно, если, например, не смотреть на кабель с кевларовыми нитями исключительно как на «подвесной». Если применить при этом негорючую оболочку, то такой кабель вполне сгодится и как «внутриобъектовый». Конечно, нужно учитывать еще несколько факторов. Например, если в подвале могут быть грызуны то, нужна броня из стальной ленты или проволок.
      • Взамен распространенной, но не эффективной классификации волоконно-оптических кабелей применительно к локально-вычислительным сетям некоторые авторы предлагают более удачную классифицируются по конструктивным особенностям и характеристикам по отношению к окружающей среде. Выбор кабеля производится индивидуально для каждой трассы, исходя из условий прокладки и эксплуатации ВОЛС.
      • Пример более удачной классификации волоконно-оптических кабелей следующий:
      • По типу оптических волокон
      • · с одномодовыми волокнами (SM)
      • · с многомодовыми волокнами (MM)
      • · комбинированный ( SM+MM)
      • Существует три основных типа одномодовых волокон:
      • Одномодовое ступенчатое волокно с несмещённой дисперсией (стандартное) (англ. SMF -- Step Index Single Mode Fiber), определяется рекомендацией ITU-T G.652 и применяется в большинстве оптических систем связи.
      • Одномодовое волокно со смещённой дисперсией (англ. DSF -- Dispersion Shifted Single Mode Fiber), определяется рекомендацией ITU-T G.653. В волокнах DSF с помощью примесей область нулевой дисперсии смещена в третье окно прозрачности, в котором наблюдается минимальное затухание.
      • Одномодовое волокно с ненулевой смещённой дисперсией (англ. NZDSF -- Non-Zero Dispersion Shifted Single Mode Fiber), определяется рекомендацией ITU-T G.655.
      • Многомодовые волокна отличаются от одномодовых диаметром сердцевины, который составляет 50 микрон в европейском стандарте и 62,5 микрон в североамериканском и японском стандартах. Из-за большого диаметра сердцевины по многомодовому волокну распространяется несколько мод излучения -- каждая под своим углом, из-за чего импульс света испытывает дисперсионные искажения и из прямоугольного превращается в колоколоподобный.
      • Многомодовые волокна подразделяются на ступенчатые и градиентные. В ступенчатых волокнах показатель преломления от оболочки к сердцевине изменяется скачкообразно. В градиентных волокнах это изменение происходит иначе -- показатель преломления сердцевины плавно возрастает от края к центру. Это приводит к явлению рефракции в сердцевине, благодаря чему снижается влияние дисперсии на искажение оптического импульса. Профиль показателя преломления градиентного волокна может быть параболическим, треугольным, ломаным и т. д.
      • Также ВОК различают:
      • По типу центрального силового элемента
      • · со стальным тросом
      • · с пластиковым тросом
      • · с центральной трубкой
      • По типу буфера в модулях
      • · с плотным буфером
      • · со свободным буфером
      • По типу силового элемента в оболочке
      • · небронированный
      • · с кевларовыми нитями
      • · бронированный стальной лентой
      • · бронированный проволокой
      • По наличию встроенного троса
      • · со встроенным несущим тросом
      • · без встроенного несущего троса
      • По величине допустимого растягивающего усилия
      • · 2,7 кН
      • · 4,0 кН
      • · 6,0 кН
      • · 8,0 кН
      • · 9,0 кН
      • · 12,0 кН
      • · 15,0 кН
      • · 20,0 кН
      • По диапазону температуры эксплуатации, град.
      • · от -12 до +75
      • · от -20 до +60
      • · от -40 до +60
      • · от -60 до +60
      • · от -60 до +70
      • По огнестойкости оболочки
      • · с горючей оболочкой
      • · с негорючей оболочкой
      • Примечание. Значения температуры эксплуатации и величины растягивающего усилия у разных производителей могут немного различаться.
      • Если учесть все указанные типы кабелей, а также число оптических волокон в кабеле, которое обычно при применении в локальных сетях составляет от 4 до 24, легко подсчитать, что число вариантов спецификаций волоконно-оптического кабеля превышает 100000.
      • 5. Основные характеристики оптических кабелей
      • Основные характеристики типовых кабелей обычно сходны у различных компаний.
      • Волоконно-оптические кабели в броне из круглых стальных оцинкованных проволок и защитном шланге из полиэтилена - для прокладки через водные преграды, непосредственно в грунте, в кабельной канализации и других линейных сооружениях.
      • Волоконно-оптические кабели с оптическими волокнами в центральной трубке, в броне из круглых стальных оцинкованных проволок и защитном шланге из полиэтилена - для прокладки через водные преграды, непосредственно в грунте, в кабельной канализации и других линейных сооружениях.
      • Волоконно-оптические кабели в стальной ленточной гофрированной броне, защитном шланге из полиэтилена - для прокладки в кабельной канализации, трубах, блоках, коллекторах, тоннелях, на мостах и эстакадах, в станционных шахтах. Небронированные волоконно-оптические кабели в полиэтиленовой оболочке для прокладки в пластмассовых трубах и внутри зданий. Волоконно-оптические кабели полностью диэлектрические подвесные самонесущие для подвески на опорах воздушных линий связи и контактной сети электрифицированных железных дорог и городского транспорта Волоконно-оптические кабели подвесные с выносным силовым элементом для подвески на столбах освещения
      • Рис.1.- Кабель для прокладки в грунт Рис.2.-Кабель для прокладки в кабельную канализацию
      • Рис.3.- Кабель для прокладки в пластмассовый Рис.4.-Самонесущий кабель трубопровод
      • Рис.5.- Кабель для прокладки в грунт
      • На рис. 1 кабели с броней из стальной оцинкованной проволоки являются самыми защищенными от внешних воздействий и могут прокладываться без дополнительной защиты как в грунт, так и на дно рек.
      • Более легкие и гибкие, чем кабели для прокладки в грунт, городские кабели защищены от грызунов стальной ламинированной лентой и могут прокладываться без дополнительной защиты в кабельную канализацию (рис.2).
      • Самый легкий и гибкий оптический кабель для внешней прокладки. Идеален для прокладки в пластмассовых трубопроводах (рис.3).
      • На рис. 4 Кабели с силовыми элементами из специальных высокопрочных нитей могут подвешиваться за внешнюю оболочку.
      • Рис.5 - легкие кабели с вынесенным силовым элементом для воздушной подвески.
      • По типу оптических волокон кабели подразделяются на одномодовые и многомодовые.
      • Число оптических волокон в кабелях обычно составляет от 4 до 216.
      • Срок службы волоконно-оптических кабелей: как правило, не менее 25 лет.
      • По требованию заказчика кабели могут изготавливаться в защитной оболочке из материала, не распространяющего горения.
      • В производстве волоконно-оптического кабеля на российских заводах-изготовителях используется оптическое волокно ведущих зарубежных фирм.
      • У каждого завода-производителя свой тип обозначения и маркировки волоконно-оптических кабелей, а также имеются отличия в параметрах технических характеристик.
      • 6. Помехи
      • Понятие, которое имеет решающее значение для функционирования каждой системы связи,- помехи.
      • Насколько не одинаковы неисправности системы из-за потерь в сети питания или отказов каких-либо элементов, встречающиеся в каждом приборе или устройстве, настолько же не одинаковы помехи, вызванные электромагнитными полями. Это поля, создаваемые плохо экранированными электродвигателями, радиоизлучениями автомобилей, часто вызывающими сильные помехи в радио или телевизионной аппаратуре, и т.п.
      • В условиях отсутствия шумов разработчик мог бы безгранично увеличивать длину усилительного участка. Требуется только соответственно увеличивать мощность сигнала, поступающего на вход приемника. Но шум существует и уменьшает чувствительность каждого приемника и возможности каждого усилителя. Если мощность полезного сигнала на входе меньше мощности помех, то сигнал перекрывается ею и не может быть выделен приемным устройством или усилен. Даже когда сигнал и помехи имеют почти одинаковую мощность, шум становится довольно значительным. Причины и источники шумна разнообразны. К ним относятся корпускулярные шумы электрического тока (дробовой шум), температурные шумовые процессы, шумы квантования световых пучков. Источник света сам вносит в систему шумовые составляющие, добавляют их также фотодиод и оконечный электронный усилитель. Если используется лавинный фотодиод, то возникают дополнительные шумовые составляющие из-за эффекта умножения в этом элементе.
      • Если рассмотреть электрический сигнал на выходе фотоприемника, то можно установить, что различные шумовые источники проявляют себя в нем тем или иным способом. Вместо чистой формы сигнала, которой модулировалась выходная мощность светового сигнала передатчика, на вход приемника поступает сигнал, амплитуда которого случайным образом более или менее меняется вблизи данного значения. Средние значения соответствуют истинной форме переданного сигнала, но мгновенные значения отклоняются от заданного вследствие влияния помех. Первоначальный сигнал можно лишь приблизительно выделить из суммы полезного и мешающего сигналов.
      • 6.1 Длина оптической линии
      • Основная задача - обеспечение того, чтобы посланный сигнал с достаточной для соответствующей цели точно воспроизводился в приемнике, т. е. разработчик будет пытаться по возможности приблизиться к первоначальной (правильной) форме сигнала путем получения среднего значения по возможно большому количеству мгновенных значений сигнала, искаженного помехой. Для этого служат, различного рода электрические фильтры. Конечно, для усреднения амплитуды сигнала можно использовать только такое количество мгновенных значений сигнала, чтобы сами полезные изменения сигнала не были сглажены и не оказались из-за этого потерянными. То, что остается после этой фильтрации, более не уничтожается. С этим разработчик системы должен считаться и, например, выбирать длину передающей линии настолько короткой, чтобы мощность сигнала не оказалась близкой к мощности шумового фона.
      • Для инженера связи из этой модели формирования среднего значения следует важный вывод: качество передачи сигнала при одинаковом уровне помех тем лучше, чем медленнее изменяется сигнал (так как тем большими могут быть интервалы времени усреднения и тем точнее получаемый результат) и чем меньше необходимая для данной цели ширина полосы частот (пропускная способность).
      • Из этих рассуждений ясно, что для фотоприемника имеется нижняя граница мощности принимаемого сигнала. На этой границе мощность сигнала в определенное число раз больше суммарной мощности шумов, которые появляются в приемнике. Этот коэффициент обозначается как отношение сигнал/шум и выражается в децибелах. Если необходимо передать двоичные сигналы, то достаточно, например, отношения сигнал/шум (в электрическом сигнале), равного 18 Дб. Это означает, что полезная мощность приблизительно в 63 раза больше, чем наложенная шумовая мощность, что позволяет осуществить достаточно достоверное распознавание одиночного импульса. Если, напротив, необходимо передать непрерывные сигналы, которые реагируют на помехи гораздо чувствительнее, чем двоичные, то отношение сигнал/шум должно быть выше и в зависимости от рода сигнала и требуемого его количества должно достигать 30 - 60 дБ.
      • По крайней мере, существуют два других фактора, которые, как и ослабление, ограничивают длину усилительного участка: материальная дисперсия и модовая дисперсия. С увеличением длины усилительного участка они вызывают уширение посланного импульса и при этом тем большее, чем выше пропускная способность линии. Так как модовая дисперсия зависит от конструкции световода (для световода с градиентным профилем показателя преломления она гораздо меньше, чем при ступенчатом показателе), то тип применяемого световода при заданной пропускной способности линии, пожалуй, гораздо сильнее ограничивает дальность действия, чем ослабление. Таким же образом, ограничивая длину линии световода с малой модовой дисперсией и малым ослаблением, можно влиять на ширину спектра источника света (например, использовав светоизлучающий диод).
      • Итак, на вопрос о дальности действия оптической связи однозначного ответа может не быть, так как имеется ряд факторов, влияние которых необходимо учитывать при проектировании.
      • 6.2 Сращивание отдельных участков кабелей
      • Особый класс образуют кабели, встроенные в грозотрос.
      • Отдельно рассмотрим способы сращивания строительных длин кабелей.
      • Сращивание строительных длин оптических кабелей производится с использованием кабельных муфт специальной конструкции. Эти муфты имеют два или более кабельных ввода, приспособления для крепления силовых элементов кабелей и одну или несколько сплайс-пластин. Сплайс-пластина - это конструкция для укладки и закрепления сращиваемых волокон разных кабелей.
      • После того, как оптический кабель проложен, необходимо соединить его с приемо-передающей аппаратурой. Сделать это можно с помощью оптических коннекторов (соединителей). В системах связи используются коннекторы многих видов.
      • Конструкция фиксатора, например, фирмы "Push-Pull" обеспечивает подключение коннектора к розетке наиболее простым образом - на защелке. Защелка-фиксатор обеспечивает надежное соединение, при этом не нужно вращать накидную гайку. Важное преимущество разъемов с фиксацией Push-Pull - это высокая плотность монтажа оптических соединителей на распределительных и кроссовых панелях и удобство подключения.
      • 6.3 Новейшие электронные компоненты систем оптической связи
      • В последние годы наряду с когерентными системами связи развивается альтернативное направление: солитоновые системы связи. Солитон - это световой импульс с необычными свойствами: он сохраняет свою форму и теоретически может распространяться по "идеальному" световоду бесконечно далеко. Солитоны являются идеальными световыми импульсами для связи. Длительность солитона составляет примерно 10 трилионных долей секунды (10 пс). Солитоновые системы, в которых отдельный бит информации кодируется наличием или отсутствием солитона, могут иметь пропускную способность не менее 5 Гбит/с на расстоянии 10 000 км.
      • Такую систему связи предполагается использовать на уже построенной трансатлантической линии ТАТ-8. Для этого придется поднять подводный ВОК, демонтировать все регенераторы и срастить все волокна напрямую. В результате на подводной магистрали не будет ни одного промежуточного регенератора.
      • Перспективными волноводами можно считать также и созданные совсем недавно дырчатые волноводы, т.е. волноводы с оболочкой, представляющей собой двумерный набор плотно упакованных и вытянутых при высокой температуре полых стеклянных волокон. Их можно считать одним из наиболее значительных достижений оптических технологий за последние пять лет. Замечательные свойства этих волноводов детально изучаются, область их практических приложений неуклонно расширяется, стремительно растет число научных групп, использующих дырчатые волноводы в своих исследованиях, в частности для абонентских сетей.
      • Выводы
      • Оптическая абонентская сеть, широкополосный аппарат абонента в каждой квартире более не являются утопией.
      • Волоконно-оптические линии связи в настоящее время считается самой совершенной физической средой для передачи информации.
      • ВОЛС целесообразно использовать при объединении локальных сетей в разных зданиях, в многоэтажных и протяженных зданиях, а также в сетях, где предъявляются особо высокие требования к информационной безопасности и защите от электромагнитных помех.
      • Волоконная оптика и ВОК обладают рядом безусловных преимуществ.
      • 1. Широкополосность ВОЛС оптических сигналов, обусловленная чрезвычайно высокой частотой несущей (Fo=10 14 Гц). Это означает, что по волоконно-оптической линии связи (ВОЛС) можно передавать информацию со скоростью порядка 10^12 бит/с.
      • 2. Очень малое затухание ВОЛС светового сигнала в волокне, что позволяет строить волоконно-оптические линии связи (ВОЛС) длиной до 100 км и более без регенерации сигналов.
      • 3. Устойчивость ВОЛС к электромагнитным помехам со стороны окружающих медных кабельных систем, электрического оборудования (линии электропередачи, электродвигательные установки и т.д.) и погодных условий.
      • 4. Защита волоконно-оптических линий связи (ВОЛС) от несанкционированного доступа - информацию, передающуюся по волоконно-оптическим линиям связи, практически нельзя перехватить неразрушающим способом.
      • 5. Электробезопасность волоконно-оптических линий связи (ВОЛС). Из-за отсутствия искрообразования оптическое волокно повышает взрыво- и пожаробезопасность сети, что особенно актуально на химических, нефтеперерабатывающих предприятиях, при обслуживании технологических процессов повышенного риска.
      • 6. Невысокая стоимость волоконно-оптических линий связи (ВОЛС) - волокно изготовлено из кварца, основу которого составляет двуокись кремния, широко распространенного, а потому недорогого материала, в отличие от меди.
      • 7. Долговечность ВОЛС - срок службы волоконно-оптических линий связи составляет не менее 25 лет.
      • К недостаткам можно отнести, пожалуй, только:
      • Относительно высокую стоимость активных элементов ВОЛС, преобразующих электрические сигналы в свет и свет в электрические сигналы.
      • Относительно высокая стоимость сварки оптических волокон - для этого требуется прецизионное, а потому дорогое, технологическое оборудование. Как следствие, при обрыве оптического кабеля затраты на восстановление ВОЛС выше, чем при работе с медными кабелями.
      • Список литературы
      • 1. Глазер В. "Световодная техника" М. Энегроатомиздат 1985 г.
      • 2. Савельев И. В. "Курс общей физики" М. Наука 1978, 1982 г.
      • 3. Оптические кабели связи российского производства. Справочник - М.: Эко-трэнд, 2003.-288 с.
      • 4. Палмер М., Синклер Р. - Проектирование и внедрение компьютерных сетей.2ed.2004
      • 5. Уэнделл О. - Компьютерные сети. Первый шаг.2006.
      • 6. Олифер В.Г., Олифер Н.А. - Компьютерные сети. Принципы, технологии, протоколы. 2006.
      • Размещено на Allbest.ru

Подобные документы

  • Преимущества оптических систем передачи перед системами передачи, работающими по металлическому кабелю. Конструкция оптических кабелей связи. Технические характеристики ОКМС-А-6/2(2,0)Сп-12(2)/4(2). Строительство волоконно-оптической линии связи.

    курсовая работа [602,7 K], добавлен 21.10.2014

  • Расчет необходимого количества каналов, выбор конструкции кабеля, определение бюджета мощности и длины регенерационного участка с целью проектирования волоконно-оптической линии связи Томск-Северск. Составление сметы на прокладку и монтаж кабелей.

    курсовая работа [2,0 M], добавлен 01.02.2012

  • Схема строительства волоконно-оптической линии связи (ВОЛС) с использованием подвески оптического кабеля на осветительных опорах. Особенности организации по ВОЛС каналов коммерческой связи. Расчет длины регенерационных участков по трассе линии связи.

    курсовая работа [778,1 K], добавлен 29.12.2014

  • Первичная сеть, включающая линии передачи и соответствующие узлы связи, образующие магистральную, дорожную и отделенческую сеть связи как основа железнодорожной связи. Конструкция и характеристика оптических кабелей связи, особенности ее строительства.

    курсовая работа [428,0 K], добавлен 21.10.2014

  • Расчет числа каналов на магистрали. Выбор системы передачи, оптического кабеля и оборудования SDH. Характеристика трассы, вычисление длины регенерационного участка. Составление сметы затрат. Определение надежности волоконно-оптической линии передачи.

    курсовая работа [877,2 K], добавлен 21.12.2013

  • Обоснование трассы волоконно-оптической линии передач. Расчет необходимого числа каналов, связывающих конечные пункты; параметров оптического кабеля (затухания, дисперсии), длины участка регенерации ВОЛП. Выбор системы передачи. Схема организации связи.

    курсовая работа [4,3 M], добавлен 15.11.2013

  • Принцип построения волоконно-оптической линии. Оценка физических параметров, дисперсии и потерь в оптическом волокне. Выбор кабеля, системы передачи. Расчет длины участка регенерации, разработка схемы. Анализ помехозащищенности системы передачи.

    курсовая работа [503,0 K], добавлен 01.10.2012

  • Расчет числа каналов между городами, параметров оптического кабеля, длины участка регенерации. Выбор системы передачи и кабеля. Выбор и характеристика трассы волоконно-оптической линии передачи (ВОЛП). Смета проекта ВОЛП. Расчет надежности ВОЛП.

    курсовая работа [221,0 K], добавлен 19.05.2013

  • Исследование бюджета мощности волоконно-оптической линии передачи, работающей по одномодовому ступенчатому оптическому волокну на одной оптической несущей, без чирпа, на регенерационном участке без линейных оптических усилителей и компенсаторов дисперсии.

    курсовая работа [654,7 K], добавлен 24.10.2012

  • Проектирование и расчет локальной волоконно-оптической линии связи, ее элементная база и основные параметры. Топология сети "звезда". Код передаваемого сигнала. Выбор оптических кабеля, соединителей, разветвителей, типов излучателя, фотодетектора.

    реферат [218,1 K], добавлен 18.11.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.