Електроніка та мікропроцесорна техніка

Фізичні властивості електроніки. Електрофізичні властивості напівпровідників. Пасивні елементи електроніки, коливальні контури, їх використання. Кремнієві стабілітрони: будова, принцип дії, галузі використання. Напівпровідникові діоди, схеми з’єднання.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид учебное пособие
Язык украинский
Дата добавления 16.10.2009
Размер файла 7,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Мета: Формування потреби безперервного, самостійного поповнення знань; розвиток творчих здібностей та активізації розумової діяльності.

ІІ. Студент повинен знати:

- Призначення та будову іонних приладів з несамостійним розрядом;

- Область застосування приладів.

ІІІ. Студент повинен уміти:

- Застосовувати при побудові схем газорозрядні прилади.

ІV. Дидактичні посібники: Методичні вказівки до опрацювання.

V. Література: [5, с. 35-50].

VІ. Запитання для самостійного опрацювання:

1. Іонні прилади з несамостійним розрядом - газотрони, тиратрони дугового розряду.

VІІ. Методичні вказівки до опрацювання: Теоретична частина.

VІІІ. Контрольні питання для перевірки якості засвоєння знань:

1. Що таке газотрон?

2. Призначення та будова газотрону?

3. Будова та призначення іскрового розрядника?

ІХ. Підсумки опрацювання:

Підготував викладач: Бондаренко І.В.

Теоретична частина: Електровакуумні та іонні прилади

План:

1. Іонні прилади з несамостійним розрядом - газотрони, тиратрони дугового розряду.

Література

1. Іонні прилади з несамостійним розрядом - газотрони, тиратрони дугового розряду

Газотрон (рис. 4, а) -- це найпростіший прилад дугового розряду. Всередині колби газотрона, заповненої інертним газом (аргоном, гелієм, ксеноном) або парами ртуті, розміщено два електроди -- катод і анод. Конструкція приладу така, що дає можливість при порівняно невеликих анодних напругах утворювати режим дугового розряду, минаючи фазу тліючого розряду.

Вольт-амперна характеристика газотрона (рис. 4, б) показує, що при анодних напругах, які не перевищують напруги запалювання, через газотрон проходить незначний струм, зумовлений термоелектронною емісією катода (ділянка до А). Коли Ua=U3, відбувається інтенсивна іонізація газу й утворюється дуговий розряд. Напруга на аноді дещо зменшується (ділянка АВ) і далі майже не залежить від струму, що проходить через нього (ділянка ВС). Цей режим і є робочим режимом газотрона.

Рис. 4. Газотрон:

а -- будова; б -- вольт-амперна характеристика; в -- умовне позначення на схемах.

Збільшення струму понад iАдоп відповідає точці С на характеристиці, не допускається, оскільки газотрон може вийти з ладу. Основна властивість газотрона -- одностороння провідність. Коли до його анода прикладено негативну напругу (відносно катода), то дуговий розряд припиниться. Проте слід зазначити, що через газотрон все-таки піде (хоча й незначний) струм зворотного напрямку, зумовлений наявністю невеликої кількості електронів і іонів на ділянці анод -- катод. Цю напругу називають зворотною. Таким чином, газотрону властива одностороння провідність, тобто в одному напрямку він пропускає струм набагато краще, ніж у другому. Разом з тим, коли негативна напруга на аноді перевищить певну величину, то в газотроні утворюється тліючий розряд від анода до катода, який може перейти в дуговий розряд.

Зворотна напруга Uзв значно більша за напругу запалювання U3 тому властивість односторонньої провідності дає можливість використати газотрон у пристроях перетворення змінного струму на постійний -- у випрямлячах.

Газотрони порівняно з вакуумними випрямними приладами (кенотронами) мають набагато менший внутрішній опір і при тих самих розмірах пропускають більші струми при порівняно низьких (10--20 В) спадах напруги на ділянці анод -- катод. Газотрони мають суттєвий недолік -- зворотний струм проходить навіть у випадках невеликих зворотних напруг.

Умовне позначення газотрона подано на рис. 4, в.

Технічні дані газорозрядних газотронів марок ГП-0,3/8, ГП-1/22 і ГП-6/15 відповідно такі: допустима зворотна напруга 8, 22 і 15 кВ, робочий струм 0,3, 1,0 і 6,0 А, строк служби 500, 300 і 500 год.

Іскровий розрядник -- найпоширеніший представник іонних приладів, в яких використовується іскровий розряд. У скляному балоні 2 іскрового розрядника (рис. 5) розміщено два електроди 1, з'єднані з вивідними контактами 3. Балон заповнено інертним газом (звичайно це криптон), але на відміну від приладів тліючого або дугового розрядів тиск газу тут вищий. Такі розрядники призначені для захисту ліній зв'язку, антенних пристроїв, схем і приладів від грозових розрядів та інших видів короткочасних перенапружень.

Рис. 5. Іонні розрядники: а -- типу РА; б -- типу РБ; в -- умовне позначення на схемах.

Коли в схемі, яку захищають, діють звичайні напруги, що не перевищують розрахункові, в розряднику встановлюється режим тихого розряду. Опір розрядника в таких випадках настільки великий, що вмикання його в лінію або схему практично не впливає на їх роботу. Коли напруга перевищить допустиму, в розряднику утворюється іскровий розряд, опір його різко спадає, розрядник ніби замикає лінію накоротко, запобігаючи від перевантажень увімкнену в цю лінію апаратуру. Через розрядник при цьому проходить великий струм, а напруга на його електродах знижується.

Коли потужність джерела перенапруження велика, то іскровий розряд перетворюється на дуговий. Коли ж ця потужність мала, то із зменшенням розрядного струму прилад перейде в режим тихого розряду, оскільки при тиску, що в ньому існує, ні іскровий, ні тліючий розряди при нормальній напрузі на електродах не зберігаються.

Контрольні запитання:

1. Що таке газотрон?

2. Призначення та будова газотрону?

3. Будова та призначення іскрового розрядника?

Інструкційна картка №11 для самостійного опрацювання навчального матеріалу з дисципліни «Основи електроніки та мікропроцесорної техніки»

І. Тема: 2 Електронні прилади

2.4 Електровакуумні та іонні прилади

Мета: Формування потреби безперервного, самостійного поповнення знань; розвиток творчих здібностей та активізації розумової діяльності.

ІІ. Студент повинен знати:

- Правила маркування електровакуумних та іонних приладів;

- Область застосування приладів.

ІІІ. Студент повинен уміти:

- Розшифровувати умовні позначення ламп.

ІV. Дидактичні посібники: Методичні вказівки до опрацювання.

V. Література: [4, с. 22-23].

VІ. Запитання для самостійного опрацювання:

1. Маркування електровакуумних та іонних приладів.

VІІ. Методичні вказівки до опрацювання: Теоретична частина.

VІІІ. Контрольні питання для перевірки якості засвоєння знань:

1. Що позначає кожен елемент в маркуванні електровакуумних та іонних приладів?

ІХ. Підсумки опрацювання:

Підготував викладач: Бондаренко І.В.

Теоретична частина: Електровакуумні та іонні прилади

План:

1. Маркування електровакуумних та іонних приладів.

Література

1. Маркування електровакуумних та іонних приладів

Позначення приймально-підсилювальних ламп складаються з декількох цифрових і буквених елементів.

Перший елемент - число, вказує напругу напруження у вольтах (закруглено).

Другий елемент - буква, що характеризує тип лампи: Д - діоди, Ц - кенотрони, X - подвійні діоди, С - тріоди, Н - подвійні тріоди, П - вихідні пентоди і променеві тетроди, Ж - пентоди з короткою характеристикою, К - пентоди з подовженою характеристикою, Г - діод - тріод, Б - діод - пентоди, А - багатосіткові лампи.

Третій елемент - порядковий номер даного типу лампи.

Четвертий елемент - буква, що характеризує конструктивне оформлення лампи: С - в скляному балоні діаметром більше 22,5 мм; П - мініатюрні (пальчикові) в скляному балоні діаметром 19 і 22,5 мм; Б - надмініатюрні в скляному балоні діаметром від 6 до 10,5 мм; А - надмініатюрні в скляному балоні діаметром від 4 до 6 мм.

Наприклад: 6Д6А - напруга напруження 6,3 В; діод надмініатюрний в скляному балоні діаметром 6 мм; шостий номер розробки; 1Ц21П - напруга напруження 1,4 В; кенотрон пальчикової серії з діаметром балона 22,5 мм; двадцять перший номер розробки.

Контрольні запитання:

1. Що позначає кожен елемент в маркуванні електровакуумних та іонних приладів?

Інструкційна картка №12 для самостійного опрацювання навчального матеріалу з дисципліни «Основи електроніки та мікропроцесорної техніки»

І. Тема: 2 Електронні прилади

2.5 Гібридні інтегральні мікросхеми

Мета: Формування потреби безперервного, самостійного поповнення знань; розвиток творчих здібностей та активізації розумової діяльності.

ІІ. Студент повинен знати:

- Конструкції гібридних ІМС;

- Методи створення;

- Галузь застосування гібридних ІМС.

ІІІ. Студент повинен уміти:

- Розрізняти різні типи гібридних ІМС.

ІV. Дидактичні посібники: Методичні вказівки до опрацювання.

V. Література: [1, с. 60-62].

VІ. Запитання для самостійного опрацювання:

1. Конструктивні елементи гібридних інтегральних мікросхем. маркування гібридних мікросхем.

VІІ. Методичні вказівки до опрацювання: Теоретична частина.

VІІІ. Контрольні питання для перевірки якості засвоєння знань:

1. Які основні конструктивні елементи гібридних ІМС?

2. Які переваги та недоліки гібридних ІМС на відміну від напівпровідникових ІМС?

ІХ. Підсумки опрацювання:

Підготував викладач: Бондаренко І.В.

Теоретична частина: Гібридні інтегральні мікросхеми

План:

1. Конструктивні елементи гібридних інтегральних мікросхем, маркування гібридних мікросхем.

Література

1. Конструктивні елементи гібридних інтегральних мікросхем, маркування гібридних мікросхем

Гібридні ІМС складаються з таких конструктивних вузлів:

1) ізоляційна основа із склопластику або керамічна, на поверхню якої у вигляді плівок нанесені резистори, конденсатори невеликої ємності, котушки невеликої індуктивності, електричні з'єднання;

2) дискретні безкорпусні НП прилади;

3) дискретні конденсатори великої ємності, трансформатори, дроселі;

4) ізоляційний корпус, що забезпечує герметизацію усіх елементів ІМС і має вивідні контакти.

Рис. 1 - Конструкція плівкових резисторів з малим (а) і великим (б) опором

На рис. 1 показано конструкцію плівкових резисторів з малим і великим опором. Тонку плівку з чистого хрому, ніхрому або танталу наносять безпосередньо на ізоляційну основу. У такий спосіб одержують резистори з опором від 0,001 до десятків кілоом. Щоб одержати більш високоомні резистори (до десятків мегаом), використовують металодіелектричні суміші (наприклад, хром та монооксид кремнію).

Рис. 2. - Конструкція плівкового конденсатора

На рис. 2 зображена конструкція плівкового конденсатора. Нижня та верхня обкладки конденсатора 2 є тонкими плівками із міді, срібла або золота. Діелектриком 1 є плівка із силікату алюмінію, двоокисиду титану або кремнію. Розміщені вони на діелектричній основі 3.

Ємність таких конденсаторів може бути від десятих часток мікрофарад до десятків тисяч мікрофарад.

Провідники виконують у вигляді тонкої (1 мкм) плівки із золота чи міді з підшарком нікелю або хрому.

Дискретні елементи із гнучкими виводами (золотий дріт діаметром 30 - 50 мкм) приєднується до плівкової мікросхеми пайкою або зваркою.

Електронні пристрої на гібридних ІМС можуть мати щільність монтажу до 60 - 100 елементів на 1 см3. За такої щільності об'єм пристрою, що має 107 елементів, може складати 0,1-0,5 м3, а середній час безвідмовної роботи - 103-104 годин і більше.

На відміну від гібридних ІМС, напівпровідникові виконуються на основі кристалу НП, де окремі його області виконують ролі транзисторів, діодів, конденсаторів, резисторів і т. ін., які з'єднуються за допомогою алюмінієвих плівок, що наносяться на поверхню кристалу.

Електронні пристрої на напівпровідникових ІМС можуть мати щільність монтажу до 500 елементів у 1 см3 і цей параметр з року в рік зростає.

Контрольні запитання:

1. Які основні конструктивні елементи гібридних ІМС?

2. Які переваги та недоліки гібридних ІМС на відміну від напівпровідникових ІМС?

Інструкційна картка №13 для самостійного опрацювання навчального матеріалу з дисципліни «Основи електроніки та мікропроцесорної техніки»

І. Тема: 2 Електронні прилади

2.5 Гібридні інтегральні мікросхеми

Мета: Формування потреби безперервного, самостійного поповнення знань; розвиток творчих здібностей та активізації розумової діяльності.

ІІ. Студент повинен знати:

- Типи безкорпусних напівпровідникових приладів;

- Способи їх під'єднання.

ІІІ. Студент повинен уміти:

- Класифікувати безкорпусні напівпровідникові прилади.

ІV. Дидактичні посібники: Методичні вказівки до опрацювання.

V. Література: [2, с. 162-163].

VІ. Запитання для самостійного опрацювання:

1. Активні елементи - безкорпусні напівпровідникові прилади

VІІ. Методичні вказівки до опрацювання: Теоретична частина.

VІІІ. Контрольні питання для перевірки якості засвоєння знань:

1. Як класифікуються безкорпусні напівпровідникові прилади?

2. Які існують способи під'єднання виводів до контактних майданчиків?

3. В чому недолік конструкції безкорпусних напівпровідникових приладів?

ІХ. Підсумки опрацювання:

Підготував викладач: Бондаренко І.В.

Теоретична частина: Гібридні інтегральні мікросхеми

План:

1. Активні елементи - без корпусні напівпровідникові прилади

Література

1. Активні елементи - без корпусні напівпровідникові прилади

У гібридних інтегральних мікросхемах як активні елементи застосовують дискретні напівпровідникові прилади. За способом герметизації вони діляться на безкорпусні і корпусні. Оскільки безкорпусні прилади мають малі габарити і масу, застосування їх в гібридних інтегральних мікросхемах слід вважати найбільш доцільним і перспективним.

За способом монтажу в мікросхему безкорпусні напівпровідникові прилади можна розділити на дві групи: прилади з гнучкими виводами і прилади з жорсткими об'ємними виводами.

На мал. 8.4 показана одна з типових конструкцій безкорпусного приладу (діодної матриці) з гнучкими виводами. Діаметр дротяних виводів складає зазвичай 30-40 мкм. Виводи до контактних майданчиків під'єднуються різними методами, головними з яких є термокомпресійний і ультразвуковий. Метод термокомпресії заснований на одночасній дії тепла і тиску на область контакту. Метод ультразвукової зварки заснований на одночасній дії коливань ультразвукової частоти, збуджених в зварюваних деталях, і тиску в області зварки. Вібрації високої частоти, руйнуючи плівку оксиду на поверхні розділу металів в області зварки, сприяють підвищенню якості зварного з'єднання.

Мал. 8.4. Діодна матриця з гнучкими виводами

Мал. 8.5. Схема установки транзистора з жорсткими сферичними виводами: 1 - вивід бази; 2 - вивідна колекторі; 3- вивід емітера

Недолік конструкції безкорпусних напівпровідникових приладів з гнучкими виводами полягає в трудності автоматизації процесів установки приладів в мікросхему. Тому при збірці активних елементів широко використовуються прилади з жорсткими виводами. Для них характерна відсутність сполучних провідників, що дозволяє автоматизувати процес зварки мікросхем і підвищити надійність з'єднань. На мал. 8.5. схематично показана структура установки транзистора з жорсткими сферичними (кульковими) виводами. Як матеріал виводів застосовують мідь і срібло. Для запобігання дії зовнішніх чинників кристали напівпровідника в безкорпусних приладах покривають спеціальними захисними покриттями (лаки, емалі, смоли, компаунди і ін.).

Контрольні запитання:

1. Як класифікуються безкорпусні напівпровідникові прилади?

2. Які існують способи під'єднання виводів до контактних майданчиків?

3. В чому недолік конструкції безкорпусних напівпровідникових приладів?

Інструкційна картка №14 для самостійного опрацювання навчального матеріалу з дисципліни «Основи електроніки та мікропроцесорної техніки»

І. Тема: 2 Електронні прилади

2.6 Напівпровідникові інтегральні мікросхеми

Мета: Формування потреби безперервного, самостійного поповнення знань; розвиток творчих здібностей та активізації розумової діяльності.

ІІ. Студент повинен знати:

- Правила маркування електровакуумних та іонних приладів;

- Область застосування приладів.

ІІІ. Студент повинен уміти:

- Розшифровувати умовні позначення ламп.

ІV. Дидактичні посібники: Методичні вказівки до опрацювання.

V. Література: [4, с. 214-215].

VІ. Запитання для самостійного опрацювання:

1. Маркування напівпровідникових інтегральних мікросхем.

VІІ. Методичні вказівки до опрацювання: Теоретична частина.

VІІІ. Контрольні питання для перевірки якості засвоєння знань:

1. Що позначає кожен елемент в маркуванні електровакуумних та іонних приладів?

ІХ. Підсумки опрацювання:

Підготував викладач: Бондаренко І.В.

Теоретична частина: Напівпровідникові інтегральні мікросхеми

План:

1. Маркування напівпровідникових інтегральних мікросхем.

Література

1. Маркування напівпровідникових інтегральних мікросхем

Система умовних позначень сучасних типів інтегральних мікросхем встановлена ОСТ 11073915-80. У основу системи позначень покладений буквено-цифровий код.

Перший елемент - цифра, що позначає групу інтегральної мікросхеми по конструктивно-технологічному виконанню:

1,5,6,7 - напівпровідникові ІМС; 2,4,8 - гібридні; 3 - інші (плівкові, вакуумні, керамічні).

Другий елемент - дві або три цифри (від 01 до 99 або від 001 до 999), вказують на порядковий номер розробки даної серії ІМС.

Перший і другий елемент утворюють серію мікросхем.

Третій елемент - дві букви, що позначають функціональну підгрупу і вид мікросхеми.

1. Обчислювальні пристрої:

ВЕ - МІКРО-ЕВМ; ВМ - мікропроцесори; ВС - мікропроцесорні секції; ВУ - пристрої мікропрограмного управління; ВР - функціональні розширювачі; ВБ - пристрої синхронізації; ВН - пристрої управління перериванням; ВВ - пристрої управління вводом-виводом; ВТ - пристрої управління пам'яттю; ВФ - функціональні перетворювачі інформації; ВА - пристрої сполучення з магістраллю; ВІ - часозадаючі пристрої; ВХ - мікрокалькулятори; ВГ - контроллери; ВК - комбіновані пристрої; ВЖ - спеціалізовані пристрої; ВП - інші.

2.Генератори сигналів:

ГС - гармонійних; ГГ - прямокутної форми; ГЛ - лінійно - що змінюються; ГМ - шуму; ГФ - спеціальної форми; ГП - інші.

3.Детекторы:

ТАК - амплітудні; ДІ - імпульсні; ДС - частотні; ДФ - фазові; ДП - інші.

4.Пристрої, що запам'ятовують:

РМ - матриці ОЗУ; РУ - ОЗУ; РВ - матриці ПЗП; РЕ - ПЗП; РТ - ПЗП з можливістю одноразового програмування; РР - ПЗП з можливістю багатократного електричного перепрограмування; РФ - ПЗП з ультрафіолетовим стиранням і електричним записом інформації; РА - асоціативні пристрої, що запам'ятовують; РЦ - пристрої, що запам'ятовують, на ЦМД; РП - інші.

5.Джерела вторинного живлення:

ЕМ - перетворювачі; ЕВ - випрямлячі; ЕН - стабілізатори напруги безперервні; ЕТ - стабілізатори струму; ЕК - стабілізатори напруги імпульсні; ЕУ - пристрої управління імпульсними стабілізаторами напруги; ЕС - джерела вторинного живлення; ЕП - інші;

6. Комутатори і ключі:

КТ - струму; КН - напруга; КП - інші;

7.Логічні елементи:

ЛИ - И; ЛЛ - ИЛИ; ЛН - НЕ; ЛС - И-ИЛИ; ЛА - И-НЕ; ЛЕ - ИЛИ-НЕ; ЛР - И-ИЛИ-НЕ; ЛК - И-ИЛИ-НЕ (И-ИЛИ); ЛМ - ИЛИ-НЕ (ИЛИ); ЛБ - И-НЕ / ИЛИ-НЕ; ЛД.

8.Багатофункціональні пристрої:

ХА - аналогові; ХЛ - цифрові; ХК -комбіновані; ГМ - цифрові матриці; ХИ - аналогові матриці ХТ - комбіновані матриці; ХИ - інші.

9.Модуляторы:

МА - амплітудні; MИ - імпульсні; MС - частотні; MФ - фазові; МП - інші.

10.Набори елементів:

НД - діодів; НТ - транзисторів; НР - резисторів; НЕ - конденсаторів; НК - комбіновані; НФ - функціональні; НП - інші.

11.Перетворювачі:

ПС - частоти; ПФ - фази; ПД - тривалість (імпульсів); ПН - напруга; ПМ - потужності; ПУ - рівня (узгоджувачі); ПЛ - синтезатори частоти; ПЕ - дільники частоти аналогові; ПЦ - дільники частоти цифрові; ПА - цифро - аналогові; ПВ - аналого - цифрові; ПР - код - код; ПП - інші.

12.Тригери:

ТЛ - Шмітта; ТД - динамічні; ТТ - Т - тригер; ТР - RS - тригер; ТМ - D - тригер; ТБ - JK - тригер; ТК - комбіновані; ТП - інші.

13.Підсилювачі:

УТ - постійного струму; УИ - імпульсні; УЕ- повторювачі; УВ - високої частоти; УР - проміжної частоти; УН - низької частоти; УК - широкосмугові; УЛ - прочитування і відтворення; УМ - індикації; УД - операційні; УС - диференціальні; УП - інші.

14.Пристрої затримки:

БМ - пасивні; БР - активні; БП - інші.

15.Пристрої селекції і порівняння:

CА - амплітудні; CВ - тимчасові; CС - частотні; CФ - фазові; CП - інші.

16.Фильтры:

ФВ - верхніх частот; ФН - нижніх частот; ФЕ - смугові; ФР - режекторні; ФП - інші.

17.Формувачі:

АГ - імпульсів прямокутної форми; АФ - імпульсів спеціальної форми; АА - адресних струмів; АР - розрядних струмів; АП - інші.

18.Фоточутливі пристрої із зарядовим зв'язком:

ЦМ - матричні; ЦЛ - лінійні; ЦП - інші.

19.Цифрові пристрої:

ИР - регістри; ИМ - суматори; ИЛ - напівсуматори; ИЕ - лічильники; ИД - дешифратори; ИК - комбіновані; ИВ - шифратори; ИА - арифметично - логічні пристрої; ИП - інші.

Четвертий елемент - число, що позначає порядковий номер розробки мікросхеми в серії.

У позначення також можуть бути введені додаткові символи (від А до Я), що визначають допуски на розкид параметрів мікросхем і т.п. Перед першим елементом позначення можуть стояти наступні букви: К - для апаратури широкого застосування; Э - на експорт (крок виводів 2,54 і 1,27 мм); Р - пластмасовий корпус другого типу; М - керамічний, металло- або склокерамічний корпус другого типу; Е - металополімерний корпус другого типу; А - пластмасовий корпус четвертого типу; И - склокерамічний корпус четвертого типа Н - кристалоносій.

Для безкорпусних інтегральних мікросхем перед номером серії може додаватися буква Б, а після неї, або після додаткового буквеного позначення через дефіс указується цифра, що характеризує модифікацію конструктивного виконання:

1 - з гнучкими виводами; 2 - із стрічковими виводами; 3 - з жорсткими виводами; 4 - на загальній пластині (неподілені); 5 - розділені без втрати орієнтування (наприклад, наклеєні на плівку); 6 - з контактними майданчиками без виводів(кристал).

Контрольні запитання:

1. Що позначає кожен елемент в маркуванні електровакуумних та іонних приладів?

Інструкційна картка №15 для самостійного опрацювання навчального матеріалу з дисципліни «Основи електроніки та мікропроцесорної техніки»

І. Тема: 2 Електронні прилади

2.7 Оптоелектронні прилади

Мета: Формування потреби безперервного, самостійного поповнення знань; розвиток творчих здібностей та активізації розумової діяльності.

ІІ. Студент повинен знати:

- Будову та призначення оптрона;

- Види оптоелектронних пар;

- Умовні позначення.

ІІІ. Студент повинен уміти:

- Використовувати оптоелектронні пристрої в схемних рішеннях.

ІV. Дидактичні посібники: Методичні вказівки до опрацювання.

V. Література: [2, с. 184-192].

VІ. Запитання для самостійного опрацювання:

1. Оптоелектронні інтегральні мікросхеми

VІІ. Методичні вказівки до опрацювання: Теоретична частина.

VІІІ. Контрольні питання для перевірки якості засвоєння знань:

1. Що таке оптоелектроніка?

2. На чому заснована оптоелектроніка?

3. Що собою являє оптоелектронна пара?

4. Які існують способи застосування оптоелектроніки?

ІХ. Підсумки опрацювання:

Підготував викладач: Бондаренко І.В.

Теоретична частина: Оптоелектронні прилади

План:

1. Оптоелектронні інтегральні мікросхеми

Література

1. Оптоелектронні інтегральні мікросхеми

Оптоелектроніка - один з найбільш розвинених напрямів у функціональній мікроелектроніці, оскільки оптичні і фотоелектричні явища досить добре вивчені, а технічні засоби, засновані на цих явищах, тривалий час використовуються в електроніці (фотоелементи, фотоелектронні помножувачі, фотодіоди, фототранзистори і ін.). Проте оптоелектроніка як самостійний науково-технічний напрям виникла порівняно недавно, а її досягнення нерозривно пов'язані з розвитком сучасної мікроелектроніки.

Спочатку оптоелектроніка вважалася порівняно вузькою галуззю електроніки, що вивчає лише напівпровідникові світловипромінювачі і фотоприймачі. Проте останнім часом поняття «оптоелектроніка» значно розширилося. Тепер в нього включають і такі недавно виниклі напрями, як лазерна техніка, волоконна оптика, голографія і ін. Відповідно до рекомендацій МЕК (Міжнародній електротехнічній комісії) оптоелектронний прилад визначається як прилад, чутливий до електромагнітного випромінювання у видимій, інфрачервоній або ультрафіолетовій областях; або прилад, що випромінюючий і перетворює некогерентне або когерентне випромінювання в цих же спектральних областях; або ж прилад, що використовує таке електромагнітне випромінювання для своєї роботи.

Оптоелектроніка заснована на електронно-оптичному принципі отримання, передачі, обробки і зберігання інформації, носієм якої є електрично нейтральний фотон. Поєднання в оптоелектронних функціональних пристроях двох способів обробки і передачі інформації - оптичного і електричного - дозволяє досягати величезної швидкодії, високої щільності розміщення інформації, що зберігається, створення високоефективних засобів відображення інформації. Дуже важливою перевагою елементів оптоелектроніки є те, що вони оптично зв'язані, а електрично ізольовані між собою. Це забезпечує надійне узгодження різних оптоелектронних ланцюгів, сприяє однонаправленості передачі інформації, перешкодостійкості каналів передачі сигналів. Виготовлення напівпровідникових елементів оптоелектроніки - оптронів - сумісно з інтегральною технологією, тому їх створення може бути включене в єдиний технологічний цикл виробництва інтегральних мікросхем.

Мал. 10.1. Структурна схема оптрона

Розглянемо основні технічні засоби оптоелектроніки.

Основним елементом оптоелектроніки, як вже наголошувалося вище, є оптрон. Простий оптрон є чотириполюсник (мал. 10.1), що складається з трьох елементів: джерела випромінювання (фотовипромінювача) 1, світлодіода 2 і приймача випромінювання (фотоприймача) 3, розміщених в герметичний світлонепроникний корпус.

Поєднання фотовипромінювача і фотоприймача в оптроні отримало назву оптоелектронної пари. Найбільш поширеними випромінювачами є світлодіоди, виконані на основі арсеніду галію, фосфіду галію, фосфіду кремнію, карбіду кремнію і ін. Вони мають високу швидкодію (близько 0,5 мкс), мініатюрні і достатньо надійні в роботі. По своїх спектральних характеристиках світлодіоди добре узгоджуються з фотоприймачами, виконаними на основі кремнію. Оскільки можливості схемотехніки оптрона визначаються головним чином характеристиками фотоприймача, цей елемент і дає назву оптрона в цілому. До основних різновидів оптронів відносяться: резистори (фотоприймачем служить фоторезистор); діодні (фотоприймач - фотодіод); транзисторні (фотоприймач - фототранзистор) і тиристори (фотоприймач - фототиристор).

Схематичне зображення вказаних оптронів показане на мал. 10.2, приклади конструктивного оформлення оптронів (дискретного і мікромініатюрного виконання) і їх цоколівки - на мал. 10.3.

Мал. 10.2. Схематичні зображення оптронів:

а - резистора; б - діодного; у - транзисторного; г - тиристора

Мал. 10-3. Приклад конструктивного оформлення і цоколівки оптронів:

а - дискретного виконання; б- мікровиконання

Мал. 10.4. Застосування оптронів:

а - як керовані резистори; 6 - в ключових схемах; в - в схемі оптичного зв'язку

Залежно від сукупності характеристик використовуваної оптронної пари оптрон може виконувати різні функції в електронних ланцюгах: перемикання, підсилення, узгодження, перетворення, індикація і ін.

Як приклади технічного використання оптронів на мал. 10.4 приведені деякі прості схеми, що дозволяють реалізувати специфічні властивості цих приладів. Наприклад, оптрон резистора, включений по схемі мал. 10.4, а, може бути використаний як керований резистивного дільника напруги. Під впливом вхідної напруги, змінюється прямий струм світлодіода і його випромінювання. Відповідно змінюється і опір фоторезистора, а отже, і розподіл напруги джерела на фоторезисторі і вихідному (навантаженні) резисторі.

Подібний керований резистор може бути використаний в різних електронних схемах, наприклад, для дистанційного керування коефіцієнтом підсилення в підсилювачах. Зазвичай для цієї мети застосовуються ручні регулятори, що є винесеними з пристрою регуляторами потенціометрів підсилення. Проте такі регулятори не дають добрих результатів при використанні їх в апаратурі високого класу для дистанційного керування на значній відстані, оскільки в сполучних проводах навіть при ретельному їх екрануванні можливі значні наведення змінних електромагнітних полів, що приводять до появи фону. Для повного усунення наведень необхідно розділити ланцюг сигналу від ланцюга управління. Це завдання і вирішується за допомогою дільника напруги на оптронному керованому резисторі.

На мал. 10.4, б показана проста схема включення діодного оптрона. Ця схема може працювати в ключовому (імпульсному) режимі і при цьому створювати на виході імпульсну напругу, що перевищує по своїй амплітуді рівень вхідних імпульсів. Напруга на виході, що є частиною щодо високої напруги джерела живлення, залежить від струму фотодіода. Величина струму фотодіода, у свою чергу, управляється світловим потоком світлодіода, який змінюється (модулюється) за законом зміни імпульсного вхідного сигналу. При цьому амплітуда вхідних імпульсів, що впливають на світлодіод, може бути значно менше, ніж напруга. Аналогічним способом можуть бути побудовані ключові схеми на транзисторних і тиристорах оптронах, виступаючих як аналоги таких широко поширених електронних елементів, як імпульсні трансформатори, перемикачі, роз'єми і т.п.

Принципова можливість здійснення оптичного зв'язку за допомогою оптронів ілюструється на мал. 10.4, в. У пристрої такої лінії зв'язку, що передає, головний елемент - випромінювач світла (світлодіод, лазер), в приймальному - фотоприймач (фотодіод, фототранзистор). Зв'язок між передавачем і приймачем здійснюється за допомогою спеціального світловода - волоконно-оптичного кабелю, що забезпечує перешкодостійкість і надійність зв'язку. Широкополосність такого оптичного каналу величезна (по одній лінії зв'язку може бути одночасно передані 1010 телефонних розмов або 106 телепередач). Подібні лінії зв'язку можуть бути використані в обчислювальній техніці для передачі величезних масивів інформації, що обробляється в різних блоках ЕОМ.

Контрольні запитання:

1. Що таке оптоелектроніка?

2. На чому заснована оптоелектроніка?

3. Що собою являє оптоелектронна пара?

4. Які існують способи застосування оптоелектроніки?

Інструкційна картка №16 для самостійного опрацювання навчального матеріалу з дисципліни «Основи електроніки та мікропроцесорної техніки»

І. Тема: 2 Електронні прилади

2.8 Прилади відображення інформації

Мета: Формування потреби безперервного, самостійного поповнення знань; розвиток творчих здібностей та активізації розумової діяльності.

ІІ. Студент повинен знати:

- Будову та призначення ЕПТ;

- Основні складові елементи конструкції;

- Умовні позначення типу ЕПТ.

ІІІ. Студент повинен уміти:

- Розшифровувати позначення ЕПТ.

ІV. Дидактичні посібники: Методичні вказівки до опрацювання.

V. Література: [2, с. 386-393].

VІ. Запитання для самостійного опрацювання:

1. Електронно-променеві трубки з електростатичним керуванням. Маркування електронно-променевих трубок

VІІ. Методичні вказівки до опрацювання: Теоретична частина.

VІІІ. Контрольні питання для перевірки якості засвоєння знань:

1. Що називають електронно-променевими трубками (ЕПТ)?

2. З яких основних елементів складається ЕПТ?

3. Призначення та область застосування ЕПТ?

4. Маркування ЕПТ?

ІХ. Підсумки опрацювання:

Підготував викладач: Бондаренко І.В.

Теоретична частина: Прилади відображення інформації

План:

1. Електронно-променеві трубки з електростатичним керуванням. Маркування електронно-променевих трубок

Література: [2, с. 386-393].

1. Електронно-променеві трубки з електростатичним керуванням. Маркування електронно-променевих трубок

Електронно-променевими трубками (ЕПТ) називають електровакуумні прилади, в яких використовується потік електронів, зфокусованих у тонкий промінь. ЕПТ можна розподілити на дві основні групи. До першої відносять ті, що призначені для перетворення електричних сигналів у видимі зображення (в осцилографах, телевізорах тощо), до другої зараховують ЕПТ, які застосовуються в передавальній телевізійній апаратурі для зворотного перетворення (тут розглядаються тільки ЕПТ першої групи).

У загальному вигляді електронно-променева трубка складається з чотирьох основних частин: колби, електронної гармати, відхиляючої системи й екрана (рис. 1).

Колба ЕПТ виготовляється з спеціального міцного скла. На стінки колби всередині нанесено графітове покриття -- аквадаг Ак, призначений для відведення вторинних електронів, що вибиваються з екрана. До нього підводиться висока напруга (10 і більше кіловольтів) для додаткового прискорення електронів у промені.

Електронна гармата формує з потоку електронів тонкий електронний промінь. Вона складається з катода К, модулятора М і двох анодів А1, А2.

Катод ЕПТ непрямого розжарення (підігрівач П) набагато потужніший, ніж катоди приймально-підсилювальних радіоламп, оскільки він має випромінювати значно більшу кількість електронів за одиницю часу.

Рисунок 1 - Будова електронно-променевої трубки.

Модулятор М -- це кругла металева пластинка з невеликим отвором, через який пролітають електрони. Подаючи на модулятор негативну (відносно катода) напругу, можна регулювати інтенсивність електронного променя, а отже, й яскравість свічення екрана.

Аноди А1 і А2, виготовлені у вигляді порожнистих циліндрів з діафрагмами, призначені для розгону електронів та їх фокусування. Часто між першим анодом А1 і модулятором М установлюють керуючий електрод, завдяки якому неможливий взаємний вплив регулювання яскравості й фокусування. На аноди подається звичайно досить висока напруга (близько кількох тисяч вольт).

Відхиляюча система спрямовує електронний промінь у задану точку екрана. Широко застосовуються відхиляючі системи двох типів: електростатична і магнітна.

Електростатичну відхиляючу систему утворюють вертикальні і горизонтальні відхиляючі пластини. Коли на пластини подано електричну напругу, то поле, що утворюється між ними, відхиляє електронний промінь, який проходить упоперек силових ліній. Чим вища напруга на відхиляючих пластинах, тим більше відхиляється промінь. Одна пара пластин зміщує промінь у горизонтальній площині, а друга -- у вертикальній.

У магнітній відхиляючій системі замість пластин застосовуються котушки, по яких пропускають струм. Магнітне поле, утворюване навколо котушок, спрямовує електронний промінь у задану точку екрана. Відхиляючі котушки розміщують зовні, на горловині ЕПТ. Іноді поряд із цими котушками застосовують фокусуючу котушку, яка використовується для додаткового фокусування електронного пучка. За рахунок струму, потрібного для утворення магнітного поля, в магнітних відхиляючих і фокусуючих котушках витрачається електричної енергії більше, ніж в електростатичній системі.

В осцилографах для спостереження і реєстрування електричних процесів широко використовують лінійну розгортку. Для цього промінь переміщують по екрану зліва направо, потім гасять, подаючи на модулятор негатигну напругу, і швидко повертають у вихідне положення. Після цього процес починається спочатку. Коли частота повторення таких процесів (частота розгортки) досить велика, то на екрані видно світну горизонтальну лінію -- розгортку. Щоб дістати таку розгортку, треба на горизонтальні відхиляючі пластини (котушки) подавати напругу (струм) пилкоподібної форми. Коли ж далі на пластини (котушки) вертикального відхилення подати досліджувану напругу (струм), то на екрані буде відтворено форму цієї напруги (струму). Треба тільки відповідно підібрати частоту розгортки.

Екран ЕПТ покривають зсередини спеціальною світною речовиною -- люмінофором.

У позначенні ЕПТ перше місце займають цифри, що визначають діаметр екрана або його розмір по діагоналі; друге - букви: ЛО -- в осцилографічних трубках з електростатичним відхиленням променя; ЛМ -- в осцилографічних трубках з магнітним відхиленням променя; ЛК -- в кінескопах; після них ставиться номер заводської розробки трубки, а в кінці ставиться буква, що показує колір екрана (Б -- білий, Ц -- кольоровий).

Контрольні запитання:

1. Що називають електронно-променевими трубками (ЕПТ)?

2. З яких основних елементів складається ЕПТ?

3. Призначення та область застосування ЕПТ?

4. Маркування ЕПТ?

Інструкційна картка №17 для самостійного опрацювання навчального матеріалу з дисципліни «Основи електроніки та мікропроцесорної техніки»

І. Тема: 2 Електронні прилади

2.8 Прилади відображення інформації

Мета: Формування потреби безперервного, самостійного поповнення знань; розвиток творчих здібностей та активізації розумової діяльності.

ІІ. Студент повинен знати:

- Призначення індикаторів;

- Конструкції різних типів індикаторів;

- Область застосування.

ІІІ. Студент повинен уміти:

- Відрізняти індикатори різних типів;

- Використовувати індикатори при різних схемних рішеннях.

ІV. Дидактичні посібники: Методичні вказівки до опрацювання.

V. Література: [2, с. 406-410].

VІ. Запитання для самостійного опрацювання:

1. Буквено-цифрові індикатори - газорозрядні, вакуумні, напівпровідникові

VІІ. Методичні вказівки до опрацювання: Теоретична частина.

VІІІ. Контрольні питання для перевірки якості засвоєння знань:

1. Яке призначення мають буквено-цифрові індикатори?

2. Будова та принцип дії газорозрядних індикаторів?

3. Будова та принцип дії вакуумних електролюмінесцентних і розжарювальних індикаторів?

4. Напівпровідникові індикатори, призначення та їх будова?

ІХ. Підсумки опрацювання:

Підготував викладач: Бондаренко І.В.

Теоретична частина: Прилади відображення інформації

План:

1. Буквено-цифрові індикатори - газорозрядні, вакуумні, напівпровідникові

Література

1. Буквено-цифрові індикатори - газорозрядні, вакуумні, напівпровідникові

У пристроях відображення інформації, разом з електроннопроменевими трубками, знаходять широке застосування різноманітні індикатори, побудовані на різній фізичній основі. Ретроспективний (звернений до минулого) і перспективний аналіз розвитку індикаторних приладів дозволяє виділити три етапи (три покоління) їх розвитку.

Перше покоління характеризується невеликим числом використовуваних фізичних явищ, відносно низькими значеннями ккд і яскравості, великими габаритами, одноколірністю, високою керуючою напругою. Типовими представниками цього покоління є газорозрядні і вакуумні (накалювання і електролюмінесценції) індикатори, які все ще знаходять широке застосування в електронній апаратурі.

До типових представників другого покоління індикаторних приладів слід віднести напівпровідникові і рідкокристалічні індикатори, а також багаторозрядні люмінесцентні і плазмові монодисплеї. Ці прилади характеризуються високою яскравістю свічення, економічністю, підвищеною інформаційною місткістю, багатоколірністю, сумісністю з інтегральними мікросхемами. Перехід від першого покоління до другого став можливим завдяки вивченню і використанню нових фізичних явищ в напівпровідниках і рідких кристалах.

Третє покоління індикаторних приладів поки можна намітити лише в найбільш загальному вигляді. Передбачається, що це будуть багатоколірні голографічні пристрої плоскої конструкції з чималою (до 104 см3) робочою площею, високою довговічністю (до I06 ч) і надійністю).

Газорозрядні індикатори

Буквено-цифрові газорозрядні індикатори є іонними приладами тліючого розряду, в яких свічення газу в процесі іонізації використовується для оптичної індикації символів, що відображаються.

Цифрові і знакові газорозрядні індикатори (типа ИН-1, ИН-2, ИН-4 і ін.) конструктивно оформляються у вигляді скляного балона, заповненого Неоном під тиском порядку (4...5) ?103 Па. У балоні розміщено один або два сітчасті аноди і необхідну кількість індикаторних дротяних катодів виконаних у вигляді цифр (0...9), букв, символів і інших знаків (кома, мінус, плюс і т. д.).

Мал. 22.1. Цифрова індикаторна лампа:

а - пристрій; б - вигляд з боку торцевої частини колби при включеній цифрі

Мал. 22.2. Схема включення газорозрядного цифрового індикатора

Катоди індикатора мають самостійні виводи і розташовані один за іншим на відстані близько 1 мм. Пристрій двоханодного цифрового індикатора показаний на мал. 22.1, а. Подача напруги між анодом і вибраним катодом викликає тліючий розряд між цими електродами, внаслідок чого символ починає світитися. Свічення спостерігається через балон приладу (мал. 22.1, б). Яскравість свічення може досягати 200 кд/м2 і більше.

Газорозрядні індикатори виконуються як з торцевою, так і з бічною індикацією. Для пристроїв індикації з великою кількістю десяткових знаків переважними виявляються лампи з бічною індикацією.

Схема включення газорозрядного цифрового індикатора приведена на мал. 22.2. Живляча напруга подається на анод щодо одного з катодів. Якщо напруга між анодом і одним з катодів буде рівним напрузі запалення, в балоні спостерігається розряд. Прикатодна область відрізняється яскравим свіченням газу і в оглядовому вікні добре є видимим відповідна цифра. Щоб висвітити іншу цифру, необхідно підключити інший катод за допомогою зовнішнього комутуючого пристрою.

Разом з розглянутими вище газорозрядними індикаторами з десятьма ізольованими катодами, що висвічують окремі знаки, все більш широкого поширення набувають багаторозрядні плазмові дисплеї панельного типу. Один з варіантів такого індикатора представлений на мал. 22.3, а.

Мал. 22.3. Основні конструктивні елементи (а) і схема пристрою управління (б) плазмовою панеллю:

1 - скляні пластини; 2 - центральна мозаїчна пластина; 3 - електроди; К - комутатори; П - генератор того, що підтримує напрузі; Г2 - генератор імпульсів, що «пишуть» (що стирають)

Електронна частина індикатора утворена двома металевими гратами (електродами), що формують зображення, які зміцнюються на прозорих скляних пластинах. Пластини потім з'єднуються в гарячому стані, а освічена плоска судина вакуумується, заповнюється газом і герметизується. Екран є керамічною мозаїчною пластиною, в якій зроблено безліч отворів, створюючи ізольовані один від одного розрядні проміжки.

Проста плоска конструкція подібних індикаторів (їх товщина не перевищує декількох міліметрів) дозволяє створити на їх основі матричні екрани (плазмові панелі), що містять не меншого 104...105 елементарних газорозрядних осередків при роздільній здатності 10...20 лін/см. На екрані можуть висвічуватися різні символи, образи і навіть цілі картини.

Схема пристрою управління такою панеллю приведена на мал. 22.3, б. Високочастотний екран живиться двома напругами від генератора G1 і G2: з частотою в декілька кілогерц, підтримує розряд, і що записує (або що стирає) у вигляді коротких прямокутних імпульсів, «запалювалює» той або інший осередок. Напруга, що виробляється генераторами, підводиться до відповідних шин панелі через спеціальні комутатори (S), що дозволяють управляти формованим зображенням на екрані. Пристрої управління індикатором зазвичай збираються на інтегральних мікросхемах і вмонтовуються на задній стороні панелі. Для отримання кольорового зображення виготовляється прозора панель, кожен шар якої генерує свічення певного кольору (зазвичай червоного, зеленого і синього), а необхідна кольоровість забезпечується управлінням яскравістю свічення відповідного шару.

Вакуумні електролюмінесцентні і розжарювальні індикатори

Основними недоліками газорозрядних індикаторів є необхідність використання для їх роботи порівняно високої напруги, що викликає запалення відповідного газового проміжку. Цей недолік усунений у вакуумних електролюмінесцентних індикаторах, що набули достатньо широкого поширення. Такі індикатори зовні нагадують мініатюрні електронні лампи. Вони є трьохелектродними приладами: електрони, що випускаються нагрітим катодом, прискорюються в електричному полі керуючої сітки, і бомбардують сегменти анода, покриті люмінофором. Пристрій вакуумного люмінесцентного індикатора зображено мал. 22.4, а. Усередині балона послідовно один за іншим розташовані катод прямого розжарення 1, сітка 2 і декілька анодів - сегментів, розташованих в одній площині на загальній керамічній пластинці 3. Для чіткішого обмеження контурів формованого знаку аноди прикриваються металевою пластинкою (маскою) 4 з прорізами, розташованими проти відповідних анодів.

Залежно від хімічного складу люмінофора сформовані знаки можуть бути різного кольору і різної яскравості. Потужність, споживана вакуумними люмінесцентними індикаторами, невелика - долі ватів, що живиться напругою близько 10...30 В. Випускаються в даний час вакуумні люмінесцентні індикатори призначені для роботи в ланцюгах виведення інформації, відтворення знаків в обчислювальних і вимірювальних пристроях широкого застосування.

Мал. 22.4. Вакуумний індикатор електролюмінесценції:

а - пристрій; 6 - зовнішній вигляд; в - комбінацій анодів; г - цоколівка

Мал. 22.5. Сегмент тонкоплівкового розжарювального індикатора:

I - сапфірова підкладка; 2 - тонна вольфрамова смужка (нитка розжарення); 3 - потовщені вольфрамові струмопідводи: 4 - отвір в сапфіровій підкладці

Зовнішній вигляд, комбінація анодів і цоколівка виводів типового вакуумного люмінесцентного індикатора зображені на мал. 22.4, б, в і г.

У розвитку вакуумних індикаторів так само, як і газорозрядних, чітко визначився перехід на створення багаторозрядних матричних дисплеїв. При цьому, разом з люмінесцентними індикаторами, розглянутими вище, можуть бути використані і розжарювальні індикатори, в яких використовується свічення розжарених металевих (вольфрамових) плівок, нанесених на ізоляційну підкладку. Послідовність операцій при виготовленні такого індикатора полягає в наступному (мал. 22.5). На ретельно відполіровану сапфірову підкладку наносять вольфрамову плівку достатньо великої товщини. Потім з лицьового боку підкладки в цій плівці методом фотолітографії формують комутаційні доріжки (потовщені вольфрамові струмопроводи) і тонкі вольфрамові смужки (нитки розжарення) відповідної конфігурації. Далі із зворотного боку підкладки витравляються вікна, внаслідок чого розжарювальні тонкоплівкові елементи виявляються підвішеними на сапфірових траверсах (утримувачах). Малий поперечний перетин розжарювальних елементів і відсутність контакту їх поверхні з підкладкою дозволяють понизити споживану потужність до міліват. Подібні індикатори, розміщені у відповідних вакуумних корпусах - панелях, забезпечують дуже високу яскравість свічення (що обов'язково при сильному сонячному засвіченні) і високі експлуатаційні характеристики (довговічність, температурну і радіаційну стійкість, сумісність з інтегральними мікросхемами і ін.). Таким чином, використання планарної технології істотно змінює підхід до принципів розробки і конструктивного оформлення вакуумних індикаторів.

Напівпровідникові індикатори

У напівпровідникових (твердотільних) індикаторах широке застосування знаходять світлодіоди, що володіють високою яскравістю свічення, великою швидкодією і довговічністю. Індикатори на світлодіодах виготовляються двох типів; сегментні (цифрові) і матричні (універсальні). Сегментні цифрові індикатори є комбінацією певного числа світлодіодів, розташованих таким чином, що при подачі напруги на відповідні виводи висвічуються цифри 0...9. Один індикатор, що містить сім діодів прямокутної форми, здатний висвічувати всі цифри і деякі букви.

Мал. 22.6. Габарити і цоколівка світлодіодного цифрового індикатора

Мал. 22.7. Структура світлодіодних індикаторів:

а, б - семисегментного цифрового індикатора і його типології, в - матричного цифробуквенного індикатора

Індикатор, що містить шістнадцять діодів, дозволяє відтворювати практично необмежене число знаків.

Габарити і цоколівка типового світлодіодного цифрового індикатора (КЛ104) показані на мал. 22.6. Індикатор оформлений в металевому корпусі, забезпеченому дев'ятьма штирьовими ніжками для підключення живлячої напруги. Маса приладу - не більше 7 р. Максимальний кут (щодо оптичної осі), при якому можливо неспотворене прочитування данних індикатора, рівний 60°. Колір свічення - жовтий.

Розміри робочого кристала світлодіода малі - близько 400 х 400 мкм. Тому випромінюючий кристал - це крапка, що світиться. Символи і цифри не повинні бути менше 3 мм. Для збільшення масштабу світловипромінюючого кристала застосовують лінзи, рефлектори, конічні призми (фокони).

Структура сегментного цифрового індикатора показана на мал. 22.7, а. Цей індикатор дозволяє відтворювати всі десять цифр і крапку. Схема розміщення діодів і їх з'єднань на платі (топологія) показана на мал. 22.7, б (світлодіод, що зображає крапку, обведений кружком).

Матричний індикатор (мал. 22.7, е) містить 35 діодів (7 х 5) і дозволяє відтворювати всі цифри, букви і знаки стандартного коду для обміну інформацією.

Управління світлодіодами в індикаторах здійснюється за допомогою ключових схем. Приклад такої схеми для випадку управління десятирозрядним цифровим семисегментним дисплеєм приведений на мал. 22.8.

Мал. 22.8 - Структурна схема управління десятирозрядним семисегментним дисплеєм


Подобные документы

  • Фізичні основи будови та принцип дії напівпровідникових приладів. Класифікація та характеристики підсилювальних каскадів. Структурна схема та параметри операційних підсилювачів. Класифікація генеруючих пристроїв. Функціональні вузли цифрової електроніки.

    курсовая работа [845,3 K], добавлен 14.04.2010

  • Сутність і властивості напівпровідників, їх види. Основні недоліки напівпровідникових приладів, їх типи. Характеристика двохелектродної лампи-діода, її принцип роботи. Опис тріода, транзистора. Сфера використання фоторезистора, тетрода, світлодіода.

    презентация [2,5 M], добавлен 06.06.2013

  • Ефективність електронної апаратури, процеси перетворення енергії в приладах електроніки та застосування інтегральних мікросхем. Розрахунок та визначення технічних параметрів схеми генератора трикутних напруг, сфера його застосування та принцип роботи.

    курсовая работа [414,4 K], добавлен 03.12.2009

  • Короткий огляд систем автоматизації проектування електроніки: Quartus II, KiCad, MAX + PLUS II. Розробка охоронного пристрою на основі мікроконтролера за допомогою пакету Proteus VSM. Розрахунок споживаної потужності, пошук і усунення несправностей.

    курсовая работа [990,9 K], добавлен 10.05.2014

  • Методи вирощування плівок термічного SiO2. Основні властивості диоксиду кремнію та меж розділу з напівпровідником та металом. Дослідження пористості плівок термічного SiO2. Електрофізичні характеристики структур.

    дипломная работа [1,9 M], добавлен 08.08.2007

  • Властивості напівпровідникового матеріалу в транзисторах Шотткі. Структура, принцип дії польових транзисторів із затвором. Підсилювачі потужності, генератори. Електрофізичні параметри елементів приладу. Розрахунок напруги відсікання і насичення.

    курсовая работа [640,7 K], добавлен 13.12.2011

  • Історія назви кремнію, його поширення в природі, хімічні та фізичні властивості. Основні властивості діелектрика. Отримання промислового кремнію. Виробництво напівпровідникової техніки. Розрахунок кількості заряду в залежності від площі та густини заряду.

    курсовая работа [1,3 M], добавлен 13.12.2013

  • Сутність та характерні властивості гіроскопа. Характеристика і принцип дії гірокомпаса Фуко та гіростабілізатора. Гіроскопи в науці. Використання гіроскопа в смартфонах та ігрових приставках. Перспективним є напрям розвитку квантових гіроскопів.

    реферат [35,7 K], добавлен 24.01.2011

  • Методи розширення смуги пропускання вібраторних антен. Спрямовані властивості систем із двох вібраторів. Особливості конструкції та спрямованих властивостей директорних та логоперіодичних антен. Типи щілинних та рамкових випромінювачів, їх властивості.

    реферат [614,8 K], добавлен 18.11.2010

  • Структура мережі GPRS, переваги цієї технології. Склад та принцип роботи GSM /GPRS мережі, взаємодія її елементів. Особливості використання пакетної передачі для систем моніторинга. Цінові показники використання GPRS на автомобільному транспорті.

    курсовая работа [300,3 K], добавлен 19.05.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.