Общая методика выполнения прочностных расчетов
Цель расчетов статистической, вибро– и ударопрочности конструкций. Оценка качества принятых конструкторско–технологических решений при обработке конструкций радиоэлектронной аппаратуры, ее составных частей и деталей, порядок выполнения расчетов.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 26.08.2010 |
Размер файла | 36,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
ОБЩАЯ МЕТОДИКА ВЫПОЛНЕНИЯ ПРОЧНОСТНЫХ РАСЧЕТОВ
При обработки конструкций радиоэлектронной аппаратуры (РЭА), ее составных частей и деталей радиоконструктору необходимо оценить качество принятых конструкторско-технологических решений для выбора оптимального варианта или определения степени соответствия требованиям технического задания (ТЗ).
В процессе эксплуатации на несущие элементы конструкции РЭА, электроэлементы и узлы действуют различные механические силы. На стационарную РЭА действует, в основном, сила тяжести самой конструкции и ее составных частей. Аппаратура, устанавливаемая на подвижных объектах, а также стационарная РЭА во время транспортировки подвергается внешним механическим воздействиям : вибрациям (периодическим колебаниям) или ударам (кратковременно действующим силам).
В ТЗ на конструирование РЭА, как правило, регламентируется следующие параметры механических воздействий :
линейное ускорение а, м/c2, или перегрузка rп, g;
частота вибраций f, Гц, или полоса частот Дf, Гц ;
амплитуда вибраций А, мм ;
продолжительность вибраций Т, ч ;
длительность ударного импульса и, мс ;
частота ударов в минуту ,х ;
число ударов N.
Цель расчетов статистической, вибро- и ударопрочности конструкций - определить параметры механических напряжений в конструкциях РЭА в наихудших условиях и сопоставить их с предельно допустимыми.
Если из расчета выяснится, что прочность конструкции РЭА недостаточна, то конструктор принимает решение о вводе добавочных элементов крепления, ребер жесткости, отбортовок и других упрочняющих элементов или о применении для конструкций материалов с лучшими прочностными или демпфирующими свойствами.
Теория сопротивления материалов является основой для оценки статистической прочности конструкций РЭА.
Точная методика для расчета вибрационной и ударной прочности конструкций пока недостаточно разработана, поэтому обще принятым инженерным подходом является приведение динамических задач к статическим. При выполнении оценочных прочностных расчетов студенту следует придерживаться методики, содержащей несколько этапов :
1) выбор расчетных моделей конструкций РЭА и ее элементов ;
2) определение нагрузок, испытываемых элементами конструкций : напряжений, растяжений ур, смятия усм, среза ср ;
3) расчет допускаемых значений прочности элементов конструкций - напряжений растяжения [у ]р, смятия [у ]см, среза [ ]ср ;
4) сравнение расчетных показателей прочности с допускаемыми.
При оценочном расчете деталей конструкций на прочность принято считать, ели расчетные напряжения у и в опастных сечениях не превышают допустимых, то прочность конструкции соответствует требованиям ТЗ. Следовательно, условие обеспечение прочности выражается зависимостями :
у ? [ у ] или ? [ ]
В проектных расчетах параметры конструкций а или внешних воздействий ц, обеспечивающие требования прочности, определяются из соотношений :
а = f ([ у ], [ ]); Р = ц ([ у ], [ ]).
При расчете прочности конструкцию РЭА условно заменяют эквивалентной расчетной схемой, для которой известно аналитическое выражение основных колебаний f0. Основное условие замены состоит в том, чтобы расчетная схема наилучшим способом соответствовала реальной конструкции и имела минимальное число степеней свободы.
Наиболее часто применяются два вида моделей - балочное и пластинчатые.
К балочным моделям следует приводить элементы конструкций призматической формы, высота (толщена) которых мала по сравнению с длиной. Концы жестко защемлены, оперты или свободны.
К жесткому замещению приравнивают сварку, пайку и приклеивание, к опоре - винтовое закрепление.
В нижеприведенных формулах приведены виды и схемы балок при различных нагрузках и соответствующие им расчетные соотношения для определения максимального прогиба zmax, м ; максимального изгибающего момента Мизг, Н·м и частоты собственных колебаний f0 Гц.Здесь - модуль упругости материала, Па ; I - момент инерции, м4 ; l - длина, м ; М и m - масса блоков и балки, кг ; Р - сила, Н.
Пластинчатые модели студенту следует использовать для тел призматической формы, высота (толщина) h которых мала по сравнению с размерами основания а, в. Крепление пластин жесткое, опертое или свободное. Жесткое закрепление (нет угловых и линейных перемещений): сварка, пайка, приклеивание, закрепление несколькими винтами. Шарнирная опора (нет линейного перемещения, но возможен поворот по опертой стороне): направляющие, закрепление 1-2 винтами или разъемом. Свободная сторона пластины допускает линейные и угловые перемещения.
Собственная частота пластины с распределенной нагрузкой, Гц :
(1.1)
где Ka - коэффициент определяемый способом крепления пластины и соотношением ее сторон а, в;
D = 0,09Eh3 - жесткость платы, Н·м ;
a, в, h - собственно длина, ширина, высота пластины, м ;
m'' = m/ав - распределенная по площади масса пластины, кг/м2.
Если в центре пластины сосредоточена масса М, а по площади распределена масса пластины m, целесообразно применять формулу :
(1.2)
Для пластины с числом точек крепления n = 4, 5, 6
(1.3)
где А = 1/а2 при n = 4 ; А = 4/(а2+в2) при n = 5 ; А = 1/4а2 при n = 6.
Для круглых пластин, жестко закрепленных по контуру
(1.4)
где R - радиус пластины, м; D = 0,09Eh3 - жесткость пластины,
Н·м; m'' = 0,318m/R2 - распределенная по площади массы пластины m.
Величина прогиба Zmax, м, и частота собственных колебаний элемента конструкции f0, Гц, связаны формулой Гейгера:
Повышение прочности можно достичь, используя ребра жесткости, которые должны крепиться не только к пластине, жесткость которой они повышают, но и к опорам конструкции.
Для прямоугольной пластины, свободно опертой по контуру и имеющей ребра жесткости, параллельные осям координат.
(1.6)
где а в - длина и ширина пластины, м; ах, hx - параметры сечения ребра, параллельного оси Х, м; Вх, By - жесткости ребер, параллельных осям соответственно X и Y, Н·м,
Bx = 0,09Eaxhx3; By = 0,09Eвyhy3;
Mx, My - масса ребер; r, K - число ребер, параллельных осям соответственно X и Y; mn - масса пластины, кг; n, m - число полу волн в направлении осей X и Y; D - цилиндрическая жесткость пластины, Н·м.
Если ребра, параллельные оси Y отсутствуют, то
(1.7)
Расчет элементов на прочность следует проводить исходя из основных соотношений теории сопротивления материалов:
при растяжении - сжатии
ур-сж = р/s ? [ у ]р-сж ;
при срезе
ср = р/s ? [ ]ср ;
при изгибе
уи = Мu / W < [ у]u ;
при кручении
кр = Мкр / Wp ? [ ]кр,
где Р - усилие действующее на деталь, Н ; S - площадь сечения детали, м2 ; Mu, Mкр - изгибающии и крутящии моменты, Н·м ; W, Wp - моменты сопротивления при изгибе и кручении, м3 .
Таким образом, определение нагрузок сводится к определению сил и моментов, действующих на деталь.
Нагрузки статистического режима :
а) сила тяжести P, H:P = mg, где m - масса элемента, кг; g - ускорение свободного падения g = 9,8 м/с2
б) сумма систем сил (равнодействующая),
в) момент силы, Н·м ; Mp = Ph ;
г) сумма моментов сил, Н·м :
д) момент сопротивления сечения W ;
е) момент инерции сечения I.
Нагрузки при вибрациях
P = mgзnn(1.8)
где m - масса детали с учетом массы элементов, закрепленных на ней, кг; g - ускорение свободного падения, м/с2 ; nn - вибрационная перегрузка, действующая на деталь при резонансе ; з - коэффициент динамичности, позволяющий привести задачу к статической,
(1.9)
здесь д0 - параметр, пропорциональный коэффициенту демпфирования в,
(1.10)
К - жесткость элемента, Н/м, К = 4р2f02m ; f - частота вибраций, Гц ; f0 -частота собственных колебаний элемента, Гц.
В околорезонансной области частот
(1.11)
где ш - логарифмический декремент затухания.
Нагрузки при ударах если принять форму ударного импульса прямоугольной, длительностью ф, то ударную нагрузку можно определить по формуле
(1.12)
где Uн - начальная скорость элемента конструкции при ударе ; Uк - конечная скорость элемента конструкции при ударе.
Начальную скорость обычно находят из равенства потенциальной и кинетической энергий, например при падении РЭА с высоты
Скорость в конце удара определяется коэффициентом восстановления Кв.
Тогда выражение (1.12) принимает вид
(1.13)
Для более сложных форм ударных импульсов необходимо определить спектр воздействующих частот и рассчитать ударную нагрузку как взвешенную сумму спектральных составляющих.
Для моделей типа балок и пластин при падении конструкции ударная перегрузка
(1.14)
где Н - высота падения, м; Zmax - максимальный прогиб детали, м.
В качестве допускаемых параметров прочности обычно принимают допускаемые механические напряжения в конструкциях.
Допускаемые механическим напряжением называется такое безопастное напряжение, которое деталь может выдержать в течение заданного срока эксплуатации.
Допускаемое напряжение при расчете деталей на прочность определяется по формулам :
[ у ] = упред/n и [ ] = пред/n,
где упред, пред - продельные значения механических напряжений ; n - запас прочности.
Определение запаса прочности при статических нагрузках. При постоянных напряжениях, возникающих при статических нагрузках, прочность хрупкого материала и материала с низкой пластичностью определяется приделом прочности упред = ув, а пластичного - приделом текучести упред = ут.
Запас прочности устанавливают в виде произведения частных коэффициентов :
n = n1n2n3, (1.15
где n1 - коэффициент достоверности определения расчетных нагрузок и напряжений ; при повышенной точности n1 = 1,2 - 1,5 ; для оценочных расчетов n1 = 2 - 3 ; n2 -коэффициент, учитывающий степень ответственности детали, обусловливающий требования к надежности ; для мало ответственных и не дорогих деталей n2 = 1 - 1,2, если поломка детали вызывает отказ - n2 =1,3, аварию - n2 =1,5 ; n3 - коэффициент, учитывающий однородность механических свойств материалов, который при статических нагрузках следует выбирать в зависимости от степени пластичности материала (ут/ув) : при ут/ув = 0,49 - 0,55 коэффициент n3 =1,2 - 1,5 ; при ут/ув = 0,55 - 0,70 n3 =1,5 - 1,8 ; при ут/ув = 0,7 - 0,9 n3 =1,8 - 2,2. Для деталей, отлитых из пластмасс, n3 =1,6 - 2,5 ; для хрупких однородных материалов n3 = 3 - 4 ; для хрупких неоднородных материалов n3 = 4 - 6 . При переменных нагрузках для однородных материалов и высокоточных технологий n3 = 1,3 - 1,5, для среднего уровня технологии n3 = 1,5 - 1,7 ; для материалов пониженной однородности n3 = 1,7 - 3.
Прочность при цилиндрических нагрузках. В процессе эксплуатации на детали ботовой, морской, возимой и носимой РЭА в большинстве случаев действуют нагрузки, циклически изменяющиеся по частоте и амплитуде. Следовательно, в них возникают различные циклические напряжения. Необходимо различать следующие основные циклы напряжений:
1) симметричный знакопеременный, когда наибольшие и наименьшие напряжения противоположны по знаку и одинаковы по значению ;
2) асимметичный знакопеременный, когда наибольшие и наименьшие напряжения противоположны по знаку и неодинаковы по значению ;
3) пульсирующий, когда напряжения изменяются от нуля до максимума.
Придел выносливости для симметричных циклов обозначают индексом (-1), для пульсирующих - индексом (0).
Приделы выносливости на изгиб с симметричным циклом :
для стального проката упред = у-1=(0,2 -0,3)ув(1+ у0,2/ув), где у0,2 - условный придел текучести при статическом растяжении ;
для стального литья и медных сплавов упред = у-1=(0,3 -0,4)ув ;
для алюминиевых и магнитных сплавов упред = у-1=(0,3 -0,6)ув ;
Приделы выносливости при симметричном цикле связаны ориентировочной зависимостью :
-1 = (0,5 - 0,7)у-1 .
Приделы выносливости при пульсирующем и знакопеременном симметрических циклах связаны зависимостями :
при изгибе упред = у ? (1,4 - 1,6)у-1 ;
при растяжении упред = у0 ? (1,5 - 1,8)у-1(1.16)
Эти зависимости справедливы для деталей, длительное время работающих при циклических нагрузках (свыше 107 циклов).
Если вибрация или удары носят кратковременный характер, допускаемое напряжение при N циклах
уN = у-1 + 0,167 (уT - у-1) (в - lgN) (1.17)
Список использованных источников
1. Основы теории цепей: Методические указания к курсовой работе для студентов - заочников специальности 23.01 “Радиотехника”/ Сост. Коваль Ю.А., Праги О.В. - Харьков: ХИРЭ, 2001. - 63 с.
2. Зернов Н.В., Карпов В.Г. “Теория электрических цепей”. Издание 2-е, перераб. и доп., Л.,”Энергия”,2002.
Подобные документы
Произведение расчета собственных частот колебаний резистора, инерционной силы, изгибающих моментов, максимальных допустимых напряжений в местах крепления и виброперегрузок для оценки прочности конструкций электрорадиоэлементов на примере печатных плат.
курсовая работа [203,5 K], добавлен 26.08.2010Расчет интегрального показателя качества аппаратуры. Структурный анализ аппаратуры на уровне микросхем. Распределение блоков и микросхем по типам. Влияние условий окружающей среды на интенсивность отказа аппаратуры. Проведение профилактических осмотров.
курсовая работа [1,3 M], добавлен 07.02.2013Цели и задачи технологического контроля. Содержание и порядок его проведения. Соблюдение требований технологического контроля в конструкторской документации. Правила оформления сборочного чертежа катушки трансформатора радиоэлектронной аппаратуры.
контрольная работа [11,4 K], добавлен 31.03.2009Особенности применения дросселей переменного тока для конструирования радиоэлектронной аппаратуры. Назначение дросселей. Параметры и примеры типовых конструкций. Эквивалентная схема дросселя высокой частоты. Магнитопроводы дросселей. Нагрев и охлаждение.
реферат [331,8 K], добавлен 14.01.2017Методы и этапы конструирования радиоэлектронной аппаратуры. Роль языка программирования в автоматизированных системах машинного проектирования. Краткая характеристика вычислительных машин, используемых при решении задач автоматизации проектирования РЭА.
реферат [27,0 K], добавлен 25.09.2010Описание приборов в составе теплосчетчика "Логика 8941". Расчет гидравлических потерь на узле учета тепловой энергии теплоносителя. Схема подключения внешних устройств. Листинг программы для автоматизации выполнения расчетов и создания чертежей.
отчет по практике [1,6 M], добавлен 08.08.2013Сущность и параметры надежности как одного из основных параметров радиоэлектронной аппаратуры. Характеристика работоспособности и отказов аппаратуры. Количественные характеристики надежности. Структурная надежность аппаратуры и методы ее повышения.
реферат [1,5 M], добавлен 17.02.2011Маркетинговый подход к разработке радиоэлектронной аппаратуре. Этапы разработки, испытания и вывода изделия на рынок. Отбор и оценка проектов научно-исследовательских и опытно-конструкторских работ. Особенности финансового анализа в процессе НИОКР.
презентация [268,5 K], добавлен 31.10.2016Ознакомление с предприятием, особенности работы. Осуществление входного контроля радиоэлементов, подготовка к монтажу, механическая регулировка. Организация рабочего места по обслуживанию радиоэлектронной аппаратуры. Выполнение должностных обязанностей.
отчет по практике [23,4 K], добавлен 23.04.2009Методы создания монтажных соединений. Классификация методов выполнения электрических соединений. Схема измерения падения напряжения в зоне контакта. Накрутка и обжимка. Формы поперечного сечения выводов. Виды соединений накруткой. Схемы для расчетов.
реферат [813,4 K], добавлен 16.12.2008