Автоматика и телемеханика на перегонах

Числовая кодовая автоматическая блокировка, электрические рельсовые цепи на перегонах. Автоматическая блокировка с тональными рельсовыми цепями, схема исключения разрешающего сигнала на светофоре при потере шунта. Питание устройств сигнальной установки.

Рубрика Транспорт
Вид дипломная работа
Язык русский
Дата добавления 14.10.2009
Размер файла 3,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

С момента прекращения импульса кода КЖ в длинном интервале (0,57 с) реле И отпускает якорь и выключает счетчик 1 и реле В. Выдержав замедление 0,3 с, эти реле отпускают свои якори. Реле Ж продолжает получать питание за счет разряда конденсатора С2 и удерживает якорь притянутым.

При поступлении следующих импульсов кода КЖ работа цепей дешифратора повторяется. Происходит срабатывания счетчика 1 и периодический подзаряд конденсаторов С1 и С2. Реле Ж за счет разряда конденсаторов С1 и С2 получает непрерывное питание и на все время приема кода КЖ удерживает якорь притянутым. На светофоре 5 продолжает гореть желтый огонь.

Примечание: В схеме предусмотрен перенос красного огня на позади стоящий светофор в случае перегорания лампы красного огня. Если на светофоре 3 перегорает лампа красного огня, то фронтовым контактом реле О размыкается цепь кодирования КЖ, в которую включено реле Т. Реле Т перестает работать, кодирование рельсовой цепи 5П прекращается и на светофоре 5 загорается красный огонь. Перегорание ламп разрешающих огней не контролируется.

При горение на светофоре 5 желтого огня замыкается цепь кодирования кодом Ж рельсовой цепи 7П:

Реле Т, работая в режиме кода Ж и переключая свой контакт в цепи трансформатора П, передает два импульса в каждом кодовом цикле в рельсовую цепь 7П. длительность импульсов кода равна 0,35 и 0,6 с, длинного интервала - 0,79 с, короткого интервала - 0,12 с.

В случае свободности блок - участка 3П и при поступление из рельсовой цепи 3П кода Ж на сигнальной установке светофора 3 в режиме этого кода работает реле И и замыкает следующие цепи дешифратора:

По цепи 1 с замедлением на притяжение 0,15 с срабатывает счетчик 1; по цепи 2 происходит заряд емкости С1; в цепи 2 тыловым контактом реле Т проверяется асинхронное прохождение импульсов тока в смежной рельсовой цепи 5П; по цепи 3 срабатывает реле В с контролем отсутствия импульсов тока в смежной рельсовой цепи 5П, что проверяется тыловым контактом реле ПТ, и контролируется поступления кодового импульса из собственной рельсовой цепи 3П фронтовым контактом реле И. притягивая якорь, реле - счетчик 1 самоблокируется, отключает цепь 2 и включает цепь 4, по которой конденсатор С1 разряжается на реле Ж и заряжает конденсатор С2.

В малом кодовом интервале реле И отпускает якорь, реле - счетчик 1 и реле В, обладая большим замедлением, чем время интервала (0,12 с), удерживают якоря притянутыми. Создается цепь 5 для возбуждения интервального реле - счетчика 1А (см. цепь а).

До момента включения на светофоре 3 зеленного огня цепь 5 проходит через тыловой контакт реле И собственной рельсовой цепи и фронтовой контакт реле Т смежной рельсовой цепи. Путем такого включения контактов проверяется наличие кодового импульса в смежной рельсовой цепи при отсутствии кодового импульса в собственной рельсовой цепи, т.е. асинхронное прохождение кодовых импульсов в смежных рельсовых цепях, что необходимо для контроля короткого замыкания изолирующих стыков.

От второго импульса кода Ж притягивает якорь реле И и замыкает цепь 6 для возбуждения реле З и заряда конденсатора С3 (см. цепь б).

При возбужденном состоянии реле Ж и З через их фронтовые контакты на светофоре 3 загорается зеленый огонь.

По окончании приема двух импульсов кода Ж в длинном интервале кодового цикла с замедлением 0,3 с отпускают якоря реле - счетчик 1 и реле В. Реле В выключает реле - счетчик 1А, который с замедлением 0,25 с также отпускает якорь по окончании длинного интервала. При включенных реле - счетчиках 1 и 1А реле Ж получает питание от конденсатора С1, а после выключения этих счетчиков - от конденсатора С2.

Реле З возбуждается только при поступлении кода, имеющего менее двух импульсов в кодовом цикле, что проверяется возбуждением двух реле - счетчиков 1 и 1А. Срабатыванием реле - счетчика 1 фиксируется поступление первого импульса в кодовом цикле, а срабатыванием реле - счетчика 1А - короткого интервала между импульсами. Вторичным срабатыванием реле И при возбужденных счетчиках 1 и 1А фиксируется поступление второго импульса в кодовом цикле.

На все время приема кода Ж у светофора 3 реле З возбуждено по цепи, проходящей через фронтовые контакты счетчиков 1, 1А и реле И, или при выключенных счетчиках за счет разряда конденсатора С3. Таким образом, на все время поступление кодовых импульсов кода Ж реле Ж и З находятся в возбужденном состоянии и на светофоре 3 горит зеленный огонь.

На время горения на светофоре 3 зеленного огня замыкается цепь кодирования кодом З рельсовой цепи 5П:

Реле Т работает в режиме кода З и посылает этот код в рельсовую цепь 5П. Код З состоит из трех кодовых импульсов в кодовом цикле (0,35 с - первый импульс, 0,22 с - второй, 0,22 с - третий). Кодовые импульсы разделены двумя короткими интервалами длительностью 0,12 с каждый; длинный интервал между циклами составляет 0,57 с.

При приеме кода З из рельсовой цепи 5П в сигнальной установке светофора 5 в режиме кода З работает реле И и своим контактом включает дешифратор.

Дешифратор ДА построен таким образом, что не различает коды Ж и З, поэтому при приеме кода З дешифратор работает так же, как при приеме кода Ж. От первого импульса кода З по кратковременной цепи заряжается конденсатор С1, затем срабатывают счетчик 1 и реле В. С этого момента конденсатор С1 начинает разряжаться на реле Ж и конденсатор С2. В первом коротком интервале возбуждается счетчик 1А. От второго импульса кода возбуждается реле З и заряжается конденсатор С3. Во втором коротком интервале счетчики не изменяют свое состояние. В третьем импульсе повторяется зарядка конденсатора С3 и подает питание на реле З непосредственно от источника питания. Таким образом, при трехзначной сигнализации код З равноценен коду Ж. Через фронтовые контакты реле Ж и З на светофоре 5 включается лампа зеленного огня. Одновременно включается цепь кодирования рельсовой цепи 7П кодом З.

Двухпутная трехзначная автоблокировка переменного тока 25 и 50 Гц для участков с двустороннем движением

Участки с автономной и электрической тягой постоянного или переменного тока оборудуют числовой кодовой автоблокировкой. При проектировании двухпутной автоблокировки используют типовые схемы рельсовых цепей 25 и 50 Гц и схемы одиночных и спаренных сигнальных установок.

В числовой кодовой автоблокировке предусмотрены устройства организации двустороннего движения по одному из путей при занятии другого на период производства ремонтных или строительных работ. Числовые коды, посылаемые в рельсовую цепь навстречу движущемуся поезду, используются одновременно для работы устройств автоблокировки и автоматической локомотивной сигнализации непрерывного типа.

В принципиальных схемах предусмотрены схемы увязки автоблокировки с автоматической переездной сигнализацией.

Контроль исправного состояния устройств сигнальных установок автоблокировки осуществляют средства частотного диспетчерского контроля.

С целью повышения надежности и бесперебойности действия автоблокировки в линзовых комплектах светофоров для красных огней устанавливают двухнитевые лампы. Перенос красного огня на позади стоящий светофор происходит только при перегорании основной и дополнительной нитей лампы.

На рис. 1.10. приведена принципиальная схема числовой кодовой автоблокировки 25 Гц для проходных светофоров 3, 5 и 7 одного пути двухпутного перегона.

Работа автоблокировки при установленном правильном направлении движения.

Состояние цепей, приведенных на схеме, соответствует одностороннему движению поездов в правильном направлении и нахождению поезда на участке ЗП. На сигнальной установке 3 прекратилось поступление кодов, не работает реле И и дешифратор.

Выключаются реле 3, Ж, Ж1, Ж2 и ЖЗ. Через тыловой контакт реле Ж2 образуется цепь включения лампы красного огня на светофоре 3 по основной нити накала с контролем горения лампы огневым реле О. При выключенном реле Ж2 цепь тока накала красной лампы проходит через нижнюю низкоомную обмотку реле О, что обеспечивает горение лампы. Цепь тока дополнительной нити накаливания лампы проходит через верхнюю высокоомную обмотку реле ОД, чем контролируется целость нити лампы в холодном состоянии.

После включения красного огня на светофоре 3 образуется цепь кодирования кодом КЖ рельсовой цепи 5П:

В режиме кода КЖ работает реле ПТ в блоке БИ и трансмиттерное реле Т. Переключая свой контакт в цепи трансформатора П, реле Т передает код КЖ в рельсовую цепь 5П.

В случае перегорания основной и дополнительной нитей накаливания лампы красного огня выключаются реле О и ОД. Контактами этих реле размыкается цепь кодирования, что приводит к переносу красного огня на позади стоящий светофор.

При приеме кода КЖ на сигнальной установке 5 в режиме этого кода работает реле И. Импульсная работа реле И расшифровывается дешифратором, и через его выход 42 (БС) срабатывает реле Ж. Через выход 71 (БС) и фронтовой контакт реле Ж срабатывает реле Ж1, после чего срабатывают повторители реле Ж2 и ЖЗ. По цепи, проходящей через фронтовой контакт реле Ж2 и тыловой контакт реле 3, на светофоре 5 включается лампа желтого огня. После включения желтого огня на светофоре 5 образуется цепь кодирования кодом Ж рельсовой цепи 7П:

В режиме кода Ж работает реле ПТ в блоке БИ и трансмиттерное реле Т. Переключая свой контакт в цепи трансформатора П, реле Т передает код Ж в рельсовую цепь 7П. В случае перегорания лампы желтого огня светофора 5 кодирование рельсовой цепи 7П не изменяется. В нее поступает код Ж -- светофор погасший.

При приеме кода Ж на сигнальной установке 7 в режиме этого кода работает реле И. Импульсная работа реле И расшифровывается дешифратором. Через образовавшиеся выходы дешифратора срабатывают сигнальные реле: через выход 42 (БС) -- реле Ж; через выход 71 (БС) -- реле Ж1; через выход 41 (БС) -- реле 3. После этого срабатывают реле-повторители Ж2 и ЖЗ. По цепи, проходящей через фронтовые контакты реле 3 и Ж2, на светофоре 7 включается лампа зеленого огня. После включения зеленого огня на светофоре 7 образуется цепь кодирования кодом 3 рельсовой цепи 9П:

В случае перегорания лампы зеленого огня светофор 7 остается погасшим. Кодирование рельсовой цепи 9П кодом 3 не изменяется, и на позади стоящем светофоре продолжает гореть зеленый огонь. В табл. 2 показана увязка сигнальных показаний и состояния реле сигнальных установок при нормальном горении и перегорании ламп светофоров.

Таблица 2

Номер сигнальной установки

Показание светофора

Состояние реле сигнальной устаноки

И

Ж

Ж1

Ж2, Ж3

З

О

ОД

ПТ

Т

7

5

3

З

Ж

К

И

И

0

1

1

0

1

1

0

1

1

0

1

0

0

1

1

1

1

1

1

0

Ж

КЖ

З

Ж

КЖ

7

5

3

Ж

К

Х(К)

И

0

0

1

0

0

1

0

0

1

0

0

0

0

0

1

1

0

1

1

0

Ж

КЖ

0

Ж

КЖ

0

7

5

3

З

Х(Ж)

К

И

И

0

1

1

0

1

1

0

1

1

0

1

0

0

1

1

1

1

1

1

0

Ж

КЖ

З

Ж

КЖ

7

5

3

З

Х(З)

Ж

И

И

И

1

1

1

1

1

1

1

1

1

1

1

0

1

1

1

1

1

1

0

0

Ж

З

З

Ж

Примечание: И - реле работает в импульсном режиме; 1 - реле под током; 0 - реле без тока; З, Ж, КЖ - работа реле ПТ и Т в режиме соответствующего сигнального тока; Х - перегорание лампы светофора.

Работа автоблокировки при переходе на двустороннее движение

Для перехода на двустороннее движение каждая сигнальная установка имеет дополнительные реле Н, ПН, ДТ, ПДТ, ОИ, ИП и ИП1, а также настроечные перемычки (типы и назначение этих реле указаны выше).

Переключают схемы на правильное и неправильное направление движения с помощью двухпроводной схемы изменения направления, в линейную цепь которой включены реле Н. Правильное направление движения устанавливают путем возбуждения реле Н током прямой полярности. При этом реле ПН остаются выключенными и действуют те же цепи, что и при одностороннем правильном направлении движения. Переход на неправильное направление движения осуществляют путем Переход на неправильное направление движения осуществляют путем возбуждения реле Н током обратной полярности. Реле Н переключает поляризованный якорь и включает реле ПН. Тыловыми контактами реле ПН отключает цепи разрешающих огней светофоров и цепи кодирования кодами Ж и 3 для правильного направления движения, фронтовым контактом оно замыкает цепь кодирования всех блок - участков кодом КЖ в сторону правильного движения:

На приведенной схеме в рельсовые цепи ЗП, 5П, 7П и 9П с питающих концов подается импульсное (кодовое) питание в режиме кода КЖ. При приеме и дешифрации кодов КЖ на каждой сигнальной установке возбуждаются реле Ж, Ж1, Ж2 и ЖЗ, чем контролируется свободность всех блок - участков.

Реле Ж1, Ж2 и ЖЗ применяют для того, чтобы ускорить переключение на светофорах разрешающего огня на красный при правильном направлении движения, и для замыкания цепей посылки кодов в рельсовые цепи при неправильном направлении движения. Реле Ж1 включается через фронтовые контакты реле-счетчика 1 ячейки БС-ДА и реле Ж. При приеме кодов, получая подпитку в каждом кодовом цикле через контакт реле-счетчика 1, реле Ж1 удерживает якорь притянутым. Замедление на отпускание якоря реле Ж1 обеспечивается параллельным подключением его обмоток. В случае залипания якоря реле-счетчика 1 реле Ж1 выключается контактом реле Ж (см. рис. 1).

Цепи кодирования для неправильного направления движения включаются фронтовым контактом реле ПН. Полное замыкание этих цепей происходит только с момента вступления поезда на блок-участок и замыкания фронтового контакта реле ОИ. Данное реле включено по схеме обратного повторителя через тыловые контакты реле И и Ж1. Оно срабатывает с контролем действительного отпускания якорей этих реле.

Выбор значности кодов при неправильном направлении движения происходит с помощью известительного реле ИП и его повторителя ИП1. Порядок работы цепей кодирования при движении поезда в неправильном направлении движения поясняется табл. 3 и протекает в такой последовательности.

Таблица 3

Состояние б/у

Кодирование участка ЗП по направлению

Состояние реле сигнальной установки 3

Неправильн.

Правильн.

Н

ПН

ДТ

ПДТ

ИП

ОИ

Ж2,Ж3

И

1

-

-

-

-

-

1

1

0

-

-

-

1

1

1

0

0

0

1

0

0

0

1

1

-

З

Ж

КЖ

КЖ

Интервал кода КЖ

КЖ

-

-

-

КЖ

КЖ

П

П

П

П

П

П

1

1

1

1

1

1

0

З

Ж

КЖ

КЖ

-

0

З

Ж

КЖ

КЖ

-

Н

Н

П

0

0

0

0

1

1

1

1

0

1

0

0

0

0

1

И

0

0

0

0

И

Примечание: 1 - реле возбуждено; 0 - реле не возбуждено; П - реле возбуждено током обратной полярности; Н - реле возбуждено током прямой полярности; З, Ж, КЖ - коды, посылаемые в рельсовые цепи; И - реле работает в импульсном режиме.

Положение 1. Все блок-участки свободны. Движение в неправильном направлении не началось. Рельсовая цепь ЗП кодируется кодом КЖ в правильном направлении, чем контролируется свободность участка ЗП.

Положение 2. Поезд вступает на участок ЗП при свободных участках 5П, 7П. Прекращается прием кода КЖ у светофора 3, перестает работать реле И и выключает дешифратор. Последовательно выключаются и отпускают якорь реле Ж, Ж1, Ж2 и ЖЗ, срабатывает реле ОИ. Фронтовыми контактами реле ПН и ОИ замыкается цепь трансмиттерных реле ПДТ и ДТ. При свободном состоянии блок-участков 5П и 7П реле ИП на сигнальной установке 3 возбуждается током прямой полярности и включает свой повторитель ИП1. Контактами поляризованного и нейтрального якорей этих реле выбирается цепь кодирования кодом 3 блок-участка ЗП:

Переключая свои контакты в цепи трансформатора Р, трансмиттерные реле ПДТ и ДТ передают код 3 в рельсовую цепь 3П в неправильном направлении.

Положение 3. Поезд вступает на участок ЗП. Блок-участок 5П свободен, 7П -- занят. Реле ИП на сигнальной установке 3 по цепи И-ОИ возбуждается током обратной полярности через тыловые контакты ИП1 сигнальной установки 5. Контактами реле ИП и ИП1 замыкается цепь кодирования кодом Ж блок-участка ЗП:

Переключая свои контакты в цепи трансформатора Р, трансмиттерные реле ПДТ и ДТ передают код Ж в рельсовую цепь ЗП в неправильном направлении.

Положение 4. Поезд вступает на участок ЗП. Блок-участок 5П занят. Реле ИП на сигнальной установке 3 обесточено, так как цепь И-ОИ разомкнута фронтовыми контактами реле ЖЗ сигнальной установки 5. Тыловым контактом реле ИП1 замыкается цепь кодирования кодом КЖ блок-участка ЗП:

Переключая свои контакты в цепи трансформатора Р, трансмиттерные реле ПДТ и ДТ передают код КЖ в рельсовую цепь ЗП.

В случае выхода поезда на занятый блок-участок 5П прием кодов на локомотив прекращается и на локомотивном светофоре загорается красный огонь.

Положение 5. Поезд вступил на блок-участок 5П и освободил блок-участок ЗП при движении в неправильном направлении. Сохраняется кодирование кодом КЖ блок-участка ЗП в неправильном направлении и восстанавливается кодирование этого же блок-участка кодом КЖ в правильном направлении. В первый момент после освобождения блок-участка ЗП в рельсовую цепь с обоих ее концов поступают коды КЖ. В правильном направлении код КЖ передается в рельсовую цепь контактом реле Т сигнальной установки 1 (на схеме не показана), а в неправильном направлении -- контактами реле ПДТ и ДТ сигнальной установки 3. За счет чередования трансмиттеров типов КПТШ-5 и КПТШ-7 на этих сигнальных установках указанные трансмиттерные реле срабатывают асинхронно.

Положение 6. При свободном блок-участке ЗП на сигнальной установке 3 в длинных интервалах кода КЖ, посылаемого в неправильном направлении, от кода КЖ, посылаемого в правильном направлении, работают реле И и дешифратор. По истечении времени 2--3 с на сигнальной установке 3 возбуждаются реле Ж и Ж1. Тыловым контактом Ж1 выключается реле ОИ, которое, отпуская якорь, фронтовым контактом выключает цепь питания трансмиттерных реле ПДТ и ДТ. Вследствие этого прекращается кодирование в неправильном направлении и сохраняется импульсное питание рельсовой цепи ЗП в правильном направлении. По мере движения поезда и освобождения рельсовых цепей импульсное питание других блок-участков восстанавливается аналогично.

2. Автоматическая блокировка с тональными рельсовыми цепями (АБТ)

2.1 Система АБТ

Автоблокировка с рельсовыми цепями тональной частоты без изолирующих стыков предназначена для применения на двухпутных участках железнодорожных линий при любом виде тяги, в первую очередь на участках с цельносварными рельсовыми плетями и при пониженном сопротивлении балласта.

В состав системы входят:

передающие и приемные устройства рельсовых цепей с частотой сигнального тока в диапазоне 420-480 Гц (ТРЦ3) и частотой - в диапазоне 4,5-5,5 кГц (ТРЦ4);

путевые устройства числовой АЛС;

устройства управления огнями светофоров;

линейные цепи;

устройства контроля и измерения;

устройства электропитания и кабельная сеть.

2.2 Рельсовые цепи

В системе АБТ для контроля состояния блок-участков используются два типа рельсовых цепей ТРЦ3 и ТРЦ4.

К аппаратуре рельсовых цепей ТРЦ3 относятся:

генератор путевой: ГП8, ГП9, ГП11;

фильтр питающего конца: ФПМ8, ФПМ9, ФПМ11;

приемник путевой: ПП8-8, ПП8-12, ПП9-8, ПП9-12, ПП11-8, ПП11-12.

К аппаратуре рельсовых цепей ТРЦ4 относятся:

генератор путевой: ГРЦ4;

путевой фильтр: ФРЦ4;

приемники путевые: ПРЦ4/8, ПРЦ4/12, ПРЦ4-5/8, ПРЦ4-5/12, ПРЦ4-6/8, ПРЦ4-6/12.

Устройства ТРЦ3 и ТРЦ4 допускают совмещение приемных концов, а также при необходимости приемного конца ТРЦ4 с питающим концом ТРЦ3 (см. рис 2.1).

Тип ТРЦ3 (тональные рельсовые цепи с применением аппаратуры третьего поколения) используют несущие частоты 420, 480, 580, 720 или 780 Гц и частоты модуляции 8 и 12 Гц. Тип ТРЦ4 (тональные рельсовые цепи с применением аппаратуры четвертого поколения) используют несущие частоты 4545, 5000 или 5555 Гц и частоты модуляции 8 и 12 Гц.

Практически на перегонах, где отсутствуют переезды, для защиты от взаимных влияний достаточно использовать две несущие частоты 420 и 480 Гц.

Исключение подпитки рельсовой цепи одного пути от рельсовых цепей смежного пути осуществляется применением для каждого пути своей комбинации частот сигнальных (несущих) и модулирующих частот, отличных друг от друга, а именно, для нечетного пути применяются комбинации 420/8, 480/12, 5000/8, 5555/8, для четного 420/12, 480/8, 5000/12, 5555/12.

Исключение взаимного влияния рельсовых цепей одного пути осуществляется чередованием комбинаций несущих и модулирующих частот таким образом, что любой путевой приемник данной рельсовой цепи был удален от путевого генератора рельсовой цепи с одинаковыми комбинациями частот на расстояние, обеспечивающее затухание сигнала настолько, что он практически не воспринимается путевым приемником. Рельсовые цепи с одинаковыми несущими частотами и частотами модуляции могут повторяться при расстоянии 2000 м от питающего конца ТРЦ3 одной рельсовой цепи до приемного конца ТРЦ3 на тех же частотах, если длина влияющей ТРЦ3 более 750 м. При длине ТРЦ3 менее 750 м это расстояние может быть 1750 м.

Аппаратура ТРЦ-3:

Генератор ГП - предназначен для образования и усиления амплитудно-модулированных сигналов для работы РЦ (см. рис. 2.2). Он содержит выпрямитель- диодный мост VD3-VD6 со сглаживающими конденсаторами С6,С7 и параметрический стабилизатор на стабилитронах

Установкой внешних перемычек на выводах блока, генератор может быть настроен на формирование одной из трех возможных частот. Это обеспечивается изменением индуктивности контура при постоянной емкости конденсатора С1.

Контур генератора при регулировке настраивают подстроечным сердечником в трансформаторе Т1.

Генератор частот модуляции выполнен в виде мультивибратора на операционном усилителе DA2. Частота модуляции задается в цепи отрицательной обратной связи емкостью конденсатора С2 и суммарным сопротивлением R2-R7 для одной частоты модуляции (8 Гц) и R3-R8 для другой (12 Гц).

Независимо от типа генератора частота 8Гц образуется при установке внешней перемычки между выводами 62-42, а частота 12 Гц - при установке перемычки между выводами 62-33. Требуемую частоту 8 или 12 Гц настраивают переменными подстроечными резисторами R2 и R3.

Модулятор, обеспечивающий получение амплитудно-модулированных сигналов, выполнен на транзисторе VT1. Его коллекторная цепь получает питание с выхода генератора несущей частоты. Управление в базовой цепи обеспечивается выходным сигналом генератора модулирующей частоты.

В течении одного полупериода модулирующей частоты транзистор VT1 закрыт. В результате все напряжение несущей частоты поступает на вход каскадов предварительного усиления.

В следующем полупериоде частоты модуляции транзистор VT1 будет открыт. Напряжение несущей частоты на нем и на входе предварительного усилителя будет близко к нулю. То есть, к входу усилителя будут подаваться импульсы несущей частоты, следующие с частотой модуляции.

Предварительный усилитель, выполненный на транзисторах VT2-VT5, служит для согласования выхода схемы DA1, с регулятором выходного напряжения блока ГП и работает в режиме насыщения. Регулятор выходного напряжения содержит последовательно-соединенные резисторы R20-R22, и (посредством внешней перемычки на выводах 83-72) обмотку 1-3 трансформатора Т2. Ток в этой цепи, а следовательно, на обмотке 1-3 и выводах 2-52 генератора регулируют переменным резистором R20.

Наличие трансформатора Т2 в цепи регулятора вызвано необходимостью обеспечить гальваническую развязку цепи регулятора от выходной цепи выходного усилителя. При этом сопротивление трансформатора Т2, приведенное к обмотке 4-5, осуществлено меньшее входное сопротивление выходного усилителя. Это позволяет исключить возрастание выходного напряжения при различных повреждениях в цепи регулятора и изменения входного сопротивления выходного усилителя от температуры.

Для исключения искажений амплитудно - модулирующих сигналов при выведенном резисторе R20 трансформатор Т2 настраивают конденсатором С3 в резонанс на несущую частоту, а последовательно с его обмоткой 1-3 включены постоянные резисторы R21, R22.

При перемычке 83-72 переменным резистором R20 регулируют выходное напряжение в пределах 2-12 В, при немодулированном сигнале, или 1-6,4 В, при модулированном. При перемычке 83-71 выходные напряжения уменьшаются в 2 раза.

Выходной усилитель выполнен на двух каскадах с общим коллектором (транзисторы VT6,VT7 и VT8,VT9); он работает в линейном режиме. За счет 100%-ой отрицательной обратной связи в нем исключены изменения выходного напряжения от изменения коэффициента усиления транзисторов. Питание к выходному усилителю подается внешними перемычками на выводах 3-4 и 51-61.

Номинальная выходная мощность усиления 20 ВА. На номинальной нагрузке 7 Ом он обеспечивает напряжение не менее 12 В при немодулированном сигнале, и не менее 6,4 В при модулированном. Режим немодулированной несущей (при выполнении проверочных измерений) устанавливают замыканием выводов 32-2 внешней перемычкой. В этом случае транзистор VT1 оказывается закрытым, независимо от полярности сигнала на выходе генератора модулирующих частот и на вход предварительного усилителя будет непрерывно подаваться несущая частота.

При необходимости получить более мощный сигнал к генератору ГП может быть подключен путевой усилитель ПУ-1. В этом случае питание на выходной усилитель не подается (перемычки 3-4 и 51-61 не установлены). Вместо перемычки 83-72 устанавливают перемычку 83-2, а к входу ПУ-1 подключают выводы 53-83 ГП. Для нормальной работы ПУ-1 в режиме немодулированной несущей на его входе резистором R20 устанавливают напряжение 4,5-5,5 В.

На передней панели кожуха блока ГП имеются отверстия, которые наружу выведены ручка резистора R20 и 2 светодиода. Положение ручки резистора R20 во избежание самопроизвольного поворота, фиксируется стопорным устройством.

Ровное свечение светодиода VD8 свидетельствует о наличии питания на выходном каскаде. Мигающие (с частотой модуляции) свечение светодиода VD2 свидетельствует о нормальной работе задающих генераторов и предварительного усилителя.

Коэффициент полезного действия (к.п.д.) генератора ГП зависит от режима его работы. При максимальной выходной мощности, он максимален и равен примерно 0,65 с уменьшением выходного напряжения он уменьшается.

Фильтр ФПМ - предназначен для защиты выходных цепей генератора от влияния токов локомотивной сигнализации, тягового тока и атмосферных перенапряжений (см. рис. 2.3). Важнейшей его задачей также является обеспечение требуемого по условиям работы рельсовых цепей обратного входного сопротивления питающего конца рельсовой цепи. Кроме этого, он также служит для гальванического разделения выходных цепей генератора от кабеля и получения на нем требуемого напряжения при относительно низких выходных напряжениях генератора.

Фильтр ФПМ представляет собой последовательный контур, содержащий трансформатор Т в качестве индуктивности и конденсаторы. Входной сигнал подается от генератора ГП на входные выводы 11-71. Фильтр настраивают на требуемую частоту установкой внешних перемычек между соответствующими выводами трансформатора Т и конденсаторами.

Одновременное изменение индуктивности и емкости при настройке фильтра позволяет иметь примерно одинаковые его входные сопротивления на различных частотах. Это положительно сказывается на режиме работы генератора.

В фильтре ФПМ 8, 9, 11 на частоте 420 Гц используется вся индуктивность трансформатора (вывод 43 блока). На частотах 480 и 580 Гц она уменьшается примерно пропорционально частоте (выводы 42 и 41 соответственно). В фильтрах ФПМ 11, 14, 15 выводы 43, 42 и 41 используются соответственно на частотах 580, 720, и 780 Гц.

Для фактических значений емкостей, индуктивности, а также влияния емкости кабеля, подключаемого к выходу фильтра, блок ФПМ настраивают на месте его включения изменением емкости конденсатора. Для этого можно добавлять и снимать отдельные перемычки, идущие от подстроечных конденсаторов.

Критерием настройки является получения максимума напряжения на выходе блока, что соответствует равенству напряжений на индуктивности (выводы 23-11) и емкости (выводы 23-71).

Фильтры ФПМ имеют три выхода, отличающиеся различным выходным сопротивлением (выводы 61-12, 62-12, 63-12). Эти выводы используют в зависимости от применения РЦ.

На участках с низким сопротивление балласта при относительно коротких длинах РЦ используют выводы 63-12 при электротяге и 62-12 при автономной тяге. Выход 63-12 используют при централизованном размещении аппаратуры.

Выходное сопротивление блока на выходе 63-12 составляет примерно 140 Ом. На участках с электротягой при наличии в схеме РЦ защитного резистора такое входное сопротивление обеспечивает оптимальное по условиям работы при низком сопротивлении балласта сопротивление питающего конца (0,4 Ом). На участках с автономной тягой при отсутствии в схеме электрической цепи защитного резистора, сопротивление 0,4 Ом обеспечивается использованием выхода ФПМ 62-12 с выходным сопротивлением примерно 400 Ом. При этом мощность сигнала с выхода генератора уменьшается более чем в 2 раза (по сравнению с выходом 63-12), что упрощает технические решения использованию на участках с автономной тягой в качестве резервного источника питания аккумуляторных батарей.

Выход 6-12 имеет выходное сопротивление примерно 800 Ом. Он является наиболее энергетически выгодным и может использоваться в РЦ на участках с нормальным сопротивлением балласта (Rб>=1 Ом*км).

Настроечная таблица ФПМ:

ТИП

f (Гц)

Перемычки

ФПМ

8,9,11

420

43-23-22-21-83

480

42-23-22-21

580

41-23-22-73-81

ФПМ 11,14,15

580

43-23-22-73-81

720

42-23-21-82-83

680

41-23-21-81-83

Рис. 2.3 Принципиальная схема фильтра питающего конца ФПМ ТРЦ-3

Путевой приемник ТРЦ3.

Технические данные:

Диапазон рабочих температур окружающей среды от -45о до 65о С.

Питание ПП должно осуществляться от источника однофазного переменного тока частотой 50 Гц , номинальным напряжением 17,5В с допустимыми отклонениями от 15,7 до 18,4В.

Мощность, потребляемая от источника однофазного переменного тока, не превышает 5ВА.

Нагрузка ПП - нейтральное малогабаритное реле постоянного тока типа АНШ2-1230 с параллельно включенными обмотками.

Входное сопротивление сигналу средней частоты полосы пропускания входного фильтра составляет от 120 до 160 Ом.

Чувствительность ПП (величина действующего значения входного напряжения АМ - сигнала с номинальными частотами, при которых нагрузка ПП- реле типа АНШ2-1230 притягивает свой якорь), составляет: в нормальных климатических условиях от 0,32 до 0,38 В; при придельных значениях рабочих температур окружающей среды от 0,30 до 0,50 В.

Максимальное значение действующего рабочего напряжения АМ сигнала на входе ПП составляет Напряжение постоянного тока на выходе (нагрузке) ПП при наличии на входе АМ- сигнала с номинальной несущей частотой и частотой модуляции соседнего сигнала не более 0,1В.

Схема электрическая принципиальная (см. рис. 2.4) cодержит следующие функциональные узлы: входной фильтр, демодулятор, амплитудный ограничитель, усилитель тока, низкочастотный промежуточный фильтр, буферный каскад, пороговое устройство, выходной усилитель, выходной фильтр, вторичный источник питания постоянного тока.

Входной фильтр представляет собой полосовой фильтр служащий для выделения несущей и боковых частот АМ - сигнала и подавления частот соседних каналов РЦ, АЛС и гармоник тягового тока. Входной фильтр включает в себя две системы спаренных контуров, выполненных на трансформаторах TV1-TV4 и конденсаторах С1-С4. Связь в спаренных контурах (между первым и вторым, третьем и четвертым контурами) трансформаторная, выше критической и обеспечивает заданную ширину полосы пропускания фильтра. Связь между спаренными системами слабая и осуществляется через усилитель, выполненный на транзисторе VT1 включенном по схеме с общим эмиттером. Резисторы R4-R5 в эмиттерной цепи этого транзистора обеспечивают обратную связь по току и определяют коэффициент усиления каскада. Для защиты входного фильтра от перенапряжений, которые могут возникнуть на входе приемника со стороны рельсовой линии, к входной обмотке трансформатора TV1 подключены, встречено включенные, стабилитроны VD1 и VD2. Выделенный исходным фильтром частотный сигнал снимается с обмотки трансформатора TV4 четвертого контура и поступает на вход демодулятора.

Демодулятор выполнен по схеме усилителя с общим эмиттером на транзисторе VT2. С нагрузки усилителя (R8,C5), включенной цепи транзистора, снимается низкочастотный сигнал. Величина этого сигнала, а также чувствительность данного приемника регулируется резистором R5, включенном в эмиттерную цепь транзистора VT1. Выделенный низкочастотный сигнал с демодулятора поступает на вход амплитудного ограничителя.

Амплитудный ограничитель выполнен на транзисторе VT4, включенном по схеме с общим коллектором и служит для усиления низкочастотного сигнала по току, нагрузкой усилителя является низкочастотный фильтр.

Низкочастотный промежуточный фильтр представляет собой LC- контур, выполненный на дросселе TV5 и конденсаторах С7, С8, настроенный на собственную частоту модуляции и служащий для выделения и пропускания собственной частоты модуляции приемника и подавления частотных сигналов, частоты которых располагаются вне полосы пропускания фильтра (сигналы частот модуляции соседнего канала, пульсации выпрямленного напряжения и др.). Выделенный фильтром частотный сигнал через буферный каскад, выполненный на транзисторах VT5, VT6 и включенных по схеме с общим коллектором, поступает на вход симметричного триггера.

Симметричный триггер выполнен на транзисторах VT1, VT8, резисторах R20-R25 и служит пороговым элементом и формирователем скважности выходного сигнала.

С выхода симметричного триггера сигнал поступает на вход выходного усилителя.

Выходной усилитель представляет собой двухкаскадный, двухтактный усилитель мощности с двухполярным питанием, служащий для усиления сформированного симметричным триггером прямоугольного сигнала частоты модуляции. Первый каскад усиления выполнен на транзисторах VT9-VT10, включенных по схеме с общим эмиттером. Второй каскад усиления выполнен на транзисторах VT11-VT12, включенных также по схеме с общим эмиттером.

Величина сопротивления R27, включенного на выходе первого каскада, определяет величину тока в базовой цепи транзисторов VT11 и VT12, достаточную для работы этих транзисторов в ключевом режиме.

Выходной фильтр Выполнен на трансформаторе TV6 и конденсаторах C9, С10. Функции этого фильтра аналогичны низкочастотному фильтру (VT5,C7,C8). Выделенный фильтром частотный сигнал выпрямляется диодным мостом, собранным на диодах VD7-VD10 и поступает с последнего на выход блока для питания нагрузки обмотки реле АМШ2-1230.

Вторичный источник питания постоянного тока представляет собой однополупериодный выпрямитель переменного тока, выполненный по схеме выпрямителя на диодах VD14,VD15, конденсаторах С11, С12 и выравнивающих резисторах.

Нестабилизированное выпрямленное двухполярное напряжение +-18 В, снимаемое с конденсаторов С11, С12 и средней точки (общая точка соединения конденсаторов), служит для питания выходного усилителя, а одно его плечо -18 В для питания транзистора VT1.

Стабилизированное, выпрямленное, двухполярное напряжение +-6 В, снимаемое со стабилитронов VD12 и VD13 и средней точки, служит для питания демодулятора и симметричного триггера. Однако его плечо +6 В, снимаемое со стабилитрона VD12- для питания усилителя тока и амплитудного ограничителя (транзисторы VT4 и VT3). Напряжение +12 В, снимаемое с VD11, VD12 служит для питания буферного каскада.

Электронный изолирующий стык ТРЦ4:

ТРЦ4 - короткая тональная рельсовая цепь, использует высокие несущие частоты - 4545Гц, 5000Гц, 5555Гц, в результате чего длина рельсовой цепи сократилась до нескольких метров, что позволило организовать электронный изолирующий стык.

На границе блок участка, в зоне расположения путевых светофоров, предусмотрена зона дополнительного шунтирования (т.е. в неограниченных РЦ конец одной РЦ является началом другой). Длина зоны дополнительного шунтирования зависит от сопротивления изоляции, т.е максимальна при минимальном сопротивлении изоляции, и составляет не более 15м. Длиной зоны дополнительного шунтирования называется участок за пределами

Рис. 2.5 Зоны дополнительного шунтирования ТРЦ-4

конструктивной длины, при занятии которой подвижным составом путевое реле данной РЦ отключается, фиксируя занятость (см. рис. 2.5). Светофор должен располагаться в районе электронного стыка, в таком месте, чтобы не было перекрытия сигнала при нахождении подвижного состава перед светофором, но перекрытие светофора было бы надежнее, при удалении его на некоторое расстояние, т.е. в зоне дополнительного шунтирования ТРЦ4 встречно направленно движению.

На рис. 2.5:

Lздш - длина зоны дополнительного шунтирования;

Lк - конструктивная длина;

Ln - натуральная длина;

Генератор ТРЦ 4 - этот генератор предназначен для образования и усиления амплитудно-модулированных сигналов. Генератор содержит: выпрямитель, генератор несущих частот, генератор модулирующих частот, предварительный усилитель, регулятор выходного напряжения, выходной усилитель.

Выпрямитель служит для получения выпрямленных напряжений +8,2 В и -8,2 В для питания цифровых микросхем, +10 и -10 В для операционного усилителя и +24 -24 В для транзисторных схем.

Напряжение +-24В получается с помощью выпрямительного моста VD7-VD10, на вход которого (выводы 41-43 блока) подается переменное напряжение 35 В. Сглаживание выпрямленного напряжения обеспечивается конденсаторами С13, С14.

Напряжение +-10 В образуется параметрическим стабилизатором (R39, VD15 и R40, VD16).

Стабилизированное напряжение +- 8,2 В для питания цифровых микросхем образуется стабилитронами VD13, VD14. Для того, чтобы иметь одинаковый потенциал относительно общей точки (выводы 32 или 2 блоков), эти стабилитроны соединяются с шинами питания +-24 В через балластные сопротивления R35, R37, R36, R38.

Для исключения паразитных связей по стабилизированным цепям питания используются конденсаторы С12, С15, С16.

Генератор несущих частот состоит из задающего генератора, выполненного на микросхемах DD1-1, DD1-4 , делителя частоты на микросхемах DD2-1, DD2-2, DD3-1, DD3-2, дешифратор состояния делителя на микросхемах DD4-1, DD4-2 и двух триггеров на микросхемах DD5-1, DD5-2.

Частота задающего генератора составляет 100 Кгц и определяется частотой кварцевого резонатора GB. Сигнал с частотой задающего генератора поступает на вход делителя частоты.

Генератор одной из трех несущих частот обеспечивается изменением коэффициента деления делителя частоты. Это достигается подключением внешней перемычкой соответствующего разряда счетчика делителя к дешифратору состояний.

Номера выводов блока ТРЦ4 для установки перемычек, соответствующих различным несущим частотам, представлены ниже:

Несущая частота (Гц)

4545

5000

5555

Выводы для установки внешних перемычек на генераторе несущей частоты

12-21

12-22

12-23

Выводы для установки внешних перемычек на фильтре

81-63

81-82

____

Конец каждого цикла работы делителя фиксируется на выходе 8 микросхемы DD4-2, что обеспечивает перевод в единичное состояние триггера на микросхеме DD5-2.

Сигнал с выхода 9 триггера приводит в исходное состояние делитель, подготавливая его к следующему циклу счета. Им же осуществляется управление триггером на микросхеме DD5-1, который обеспечивает на своем выходе импульсы несущей частоты со скважностью равной двум. Перевод триггера DD5-2 в исходное (нулевое состояние) происходит в следующем после окончания цикла счета полупериоде сигнала задающего генератора с помощью сигнала на выходе инвертора DD1-4.

Таким образом, на выходе 9 триггера DD5-2 присутствуют короткие импульсы, следующие с удвоенной частотой несущей, а на выходе 6 триггера на микросхеме DD5-1 - импульсы несущей частоты с одинаковой длительностью импульсов и пауз.

Для получения несущих частот, достаточно близких к значениям 4,5; 5 и 5.5 кГц, коэффициенты деления делителя должны составлять соответственно 11, 10 и 9 . В результате частоты на выходе триггера на микросхеме DD4-2 составляет 9,09; 10 и 11,11 кГц, а несущие частоты -4545, 5000 и 5555 Гц.

Генератор модулирующих частот выполнен на мультивибраторе с использованием операционного усилителя DA1. При внешней перемычке 62-42 блока частота модуляции составляет 8 Гц, а при перемычке 62-33 - 12 Гц.

Фильтр ФРЦ4:

Основное назначение фильтра состоит в защите генератора ГРЦ4 от токов АЛС в диапазоне 25-325Гц. Кроме этого, фильтр обеспечивает требуемое по условиям выполнения основных режимов работы РЦ сопротивление аппаратуры питающего конца. При этом выходное сопротивление его с учетом внутреннего сопротивления генератора составляет 120-160Ом.

Рис. 2.6 Принципиальная схема фильтра ФРЦ-4

Входной сигнал от генератора ГРЦ4 подается на выводы 1-3 блока ФРЦ4 (см. рис. 2.6). Выходной сигнал снимается с выводов 23-4. При несущей частоте 5,5кГц внешние перемычки на блоке не устанавливают. Фильтр настраивают на частоту 5кГц подключением конденсатора С2 к конденсатору С1 при установке внешней перемычки на блоке между выводами 23-43. При перемычке 23-63 фильтр настраивается на частоту 4,5кГц.

Путевой приемник ПРЦ4Л.

Технические данные:

Диапазон рабочих температур окружающей среды от - 45о до +65о С.

Питание ПРЦ4Л должно осуществляться от источника однофазного переменного тока частотой 50 Гц, номинальным напряжением 17,5В с допустимыми отклонениями от 15,7 до 18,4 В.

Мощность, потребляемая от источника однофазного переменного тока, не превышает 6 ВА.

Нагрузка ПРЦ4Л - нейтральное малогабаритное реле постоянного тока типа АНШ2-1230 с параллельно включенными обмотками.

Входное сопротивление сигналу средней частоты полосы пропускания входного фильтра составляет от 120 до 160 Ом.

Чувствительность ПРЦ4Л (величина действующего значения входного напряжения АМ - сигнала с номинальными частотами, при которых нагрузка ПРЦ4Л - реле типа АНШ2-1230 притягивает свой якорь), составляет: в нормальных климатических условиях от 0,11 до 0,13 В; при придельных значениях рабочих температур окружающей среды от 0,10 до 0,17 В.

Максимальное значение действующего рабочего напряжения АМ сигнала на входе ПРЦ4Л составляет 0,5 В.

Напряжение постоянного тока на выходе (нагрузке) ПРЦ4Л должно находиться в пределах 4-8В.

Напряжение постоянного тока на выходе (нагрузке) ПРЦ4Л при наличии на входе АМ-сигнала с номинальной несущей частотой и частотой модуляции соседнего сигнала не более 0,1 В.

Регулировка перегонных тональных рельсовых цепей

Регулировка ТРЦ в соответствии с нормалями осуществляется путем изменения выходного напряжения генератора сигнала с помощью переменного резистора, выведенного на переднюю панель блока.

При регулировки ТРЦ основной нормативной величиной, подлежащей регулировке, является напряжение на входе приемника. При этом напряжение на выходе генератора не должно превышать предельно допустимого значения, указанного в регулировочной таблице.

Значение напряжения на выходе фильтра является вспомогательным и необходимо для определения исправности блока.

На передней панели блоков путевого генератора и путевого приемника установлены светодиоды, сигнализирующие об исправности блока и о режиме его работы. Погасшее состояние светодиодов свидетельствует об отсутствии питающего напряжения или о неисправности самого блока.

При наличии питания и исправности самого путевого генератора, один из светодиодов должен иметь ровное свечение, а второй - мигающее с частотой модуляции сигнала. Пропадание мигающего показания сигнализирует о неисправности блока.

При свободности РЦ и правильной регулировке на путевом приемнике, оба светодиода должны попеременно мигать с частотой модуляции сигнала ТРЦ. Пропадание мигающего показания светодиодов сигнализирует о недостаточном уровне сигнального тока на входе приемника (в следствии шунта или повреждения РЦ) или о неисправности приемника. Необходимо помнить, что превышение максимально допустимого уровня сигнала на входе путевого приемника приводит к обесточиванию путевого реле. Ровное свечение любого из двух светодиодов свидетельствует лишь о наличии напряжения питания.

2.3 Путевой план перегона

Расстановка светофоров по каждому пути осуществляется на основе тяговых расчетов с проверкой обеспечения тормозного пути и видимости светофоров. Границами блок-участков для движения по неправильному пути служат светофоры, установленные для движения по правильному пути.

Длины блок-участков, определенные для движения по правильному пути, проверяются на соответствие тормозным путям при движении по неправильному пути (в задании на курсовой проект длины блок-участков соответствуют тормозным путям при движении, как по правильному, так и по неправильному пути).

В пределах каждого блок-участка организованы рельсовые цепи тональной частоты двух типов ТРЦ3 и ТРЦ4. Структура построения этих рельсовых цепей такова, что от одного генератора, как правило, осуществляется питание двух рельсовых цепей. Подключение путевых приемников смежных РЦ к рельсам производится одной парой проводов. Путевые приемники между собой соединяются последовательно. Длины РЦ, имеющих общий питающий конец, должны, как правило, быть равными. Если длина ветви одной РЦ (ТРЦ3) более 800 м, а сами ветви отличаются между собой более чем на 10%, или при длине ветви равной или менее 800 м они отличаются на 20% и более, то должна производиться проверка выполнения контрольного, шунтового и режима перегрузки более короткой ветви. Длина рельсовой цепи ТРЦ4 у каждого проходного светофора принимается, как правило 200-250 м с частотой 5000 или 5555 Гц.

Проходные светофоры устанавливаются на расстоянии 20 м перед местом подключения генератора рельсовой цепи ТРЦ4 вне зоны шунтирования впереди лежащей рельсовой цепи.

Остальная длина блок-участка оборудуется одной, двумя или более ТРЦ3, в зависимости от длины блок-участка и наличии на нем переезда.

Аппаратура ТРЦ3 и ТРЦ4 размещается в релейных шкафах, а подключение её к рельсам осуществляется через путевые ящики ПЯ-1, которые должны устанавливаться в габарите приближения строений.

На путевом плане должны быть указаны ординаты путевых светофоров и ординаты подключения аппаратуры рельсовых цепей к рельсам, где устанавливаются путевые ящики ПЯ, в которых размещены согласующие трансформаторы и аппаратура защиты тональных рельсовых цепей от перенапряжений.

На участках с электрической тягой на перегоне для выравнивания тягового тока на ординате светофоров устанавливаются дроссель-трансформаторы. Дроссель-трансформаторы устанавливаются при наличии изолирующих стыков у станции, а также в местах подсоединения отсасывающих фидеров тяговых подстанций, подключения заземлений, объединения рельсовых нитей соседних путей двухпутных линий (при электротяге постоянного тока).

Для питания сигнальных установок током промышленной частоты применяются однофазные подъемно-отпускные комплектные трансформаторные подстанции КТП-П-А-1,25/10 или используются существующие трансформаторы типа ОМ. При использовании линии ДПР применяются комплектные трансформаторные подстанции типа КТП-П-2/25. На путевом плане перегона указывается кабель для подключения основного и резервного питания. Питающие цепи от релейных шкафов спаренных сигнальных установок к трансформаторным подстанциям прокладываются в отдельных кабелях.

Питающие и релейные провода рельсовых цепей на перегонах укладываются в одном кабеле. Совместная прокладка питающих и релейных проводов с одинаковой частотой без применения схемы контроля исправности жил допускается: на частотах 420 и 480 Гц до 1000 м, на частоте 580 Гц до 750 м, на частотах 720 и 480 Гц до 500 м.

На участках с автономной тягой и электротягой постоянного тока вдоль перегона предусматривается прокладка двух кабелей для четного и нечетного путей с парной скруткой жил.

В этих сигнально-блокировочных кабелях для каждого пути предусматривается организация цепей: смены направления, линейных и известительных цепей, питающих и релейных проводов ТРЦ, цепей увязки со станцией и переездами. Цепи двойного снижения напряжения, аварийной и перегонной связи проходят в одном из двух кабелей и заводятся в релейные шкафы четного и нечетного путей. Жилы цепи перегонной и аварийной связи заводятся только в те релейные шкафы, где установка телефонных аппаратов предусмотрена проектом (в проекте предусмотреть установку телефонных аппаратов на каждой одиночной и на каждой одной из спаренных сигнальных точках). Жилы аварийной связи заводятся в путевые ящики вдоль перегона того пути, в кабеле которого организуется аварийная связь.

На участках с электротягой переменного тока цепи СЦБ предусматриваются в трех кабелях. В магистральном кабеле связи предусматривается организация цепей, проходящих по всему перегону от станции к станции. Это цепи: смены направления, двойного снижения напряжения, аварийной и перегонной связи. Для организации линейных и известительных цепей, цепей увязки со станцией и переездами, для цепей передающих концов аппаратуры ТРЦ и кодирования для каждого пути предусматривается прокладка двух кабелей СЦБ, отдельно для каждого пути (примерный путевой план перегона приведен на рис. 2.7.).

Выбор марки кабеля принимается на основании расчетов влияния тяговой сети на кабельные линии для конкретных перегонов (в проекте расчеты влияния не производятся).

В качестве кабелей СЦБ рекомендуется применять кабели марки СПБАШп. В случаях, когда по расчетам влияния контактной сети защищенность указанного кабеля недостаточна рекомендуется применять кабель марки ТЗА (в проекте принять недостаточную защищенность кабеля СПБАШп при электротяге переменного тока).

В проекте приняты следующие наименования цепей:

АВС - провода цепей аварийной связи;

ПГС - провода цепи перегонной связи;

ДСН, ОДСН - прямой и обратный провод схемы двойного снижения напряжения;

1Н, 1ОН - прямой и обратный провод схемы смены направления нечетного пути;

2Н, 2ОН - прямой и обратный провод схемы смены направления четного пути;

1К, 1ОК - прямой и обратный провод контроля перегона схемы смены направления нечетного пути;

2К, 2ОК - прямой и обратный провод контроля перегона схемы смены направления четного пути;

1Л, 1ОЛ - прямой и обратный провод линейной цепи нечетного пути;

2Л, 2ОЛ - прямой и обратный провод линейной цепи четного пути;

1И, 1ОИ - прямой и обратный провод извещения на станцию, нечетного пути;

2И, 2ОИ - прямой и обратный провод извещения на станцию, четного пути;

М, ОМ - прямой и обратный провод управления желтым мигающим огнем на предвходном светофоре;

1АП2 (П, М) - прямой и обратный провод цепи питания рельсовой цепи ТРЦ3 нечетного пути;

2АП2 (П, М) - прямой и обратный провод цепи питания рельсовой цепи ТРЦ3 четного пути;

1А/БК (П, М) - прямой и обратный провод цепи кодирования участка БП нечетного пути;

2А/БК (П, М) - прямой и обратный провод цепи кодирования участка БП четного пути;

1ИП, 1ОИП - прямой и обратный провод извещения на переезд, нечетного пути;

2ИП, 2ОИП - прямой и обратный провод извещения на переезд, четного пути;

1Т, 1ОТ - прямой и обратный провод передачи кодов АЛС нечетного пути;

2Т, 2ОТ - прямой и обратный провод передачи кодов АЛС четного пути.

Рельсовые цепи именуются относительно их положения к сигнальной установке:

АП - рельсовые цепи перед сигналом (А1П, А2П);

БП - рельсовые цепи за сигналом (Б1П, Б2П).

2.4 Схема кодирования рельсовых цепей

Путевые устройства числовой АЛС включают: кодовый путевой трансмиттер типа КПТШ-515, трансмиттерное реле типа ТШ-65В, дроссель РОБС-3А, конденсаторные блоки КБ4х1, КБ1х2. Передача в рельсовую цепь сигналов АЛС обеспечивается на время её занятия поездом.


Подобные документы

  • Аналитический обзор систем автоматики, телемеханики на перегонах магистральных железных дорог, линий метрополитенов. Функциональные схемы децентрализованных систем автоблокировки с рельсовыми цепями ограниченной длины. Управление переездной сигнализацией.

    курсовая работа [2,8 M], добавлен 04.10.2015

  • История развития рельсовых цепей, усовершенствование и модернизация. Путевая автоматическая блокировка. Назначение рельсовой цепи: информация о состояниях рельсовой линии в пределах контролируемого участка пути, занятости или нарушении целостности.

    реферат [1,8 M], добавлен 04.04.2009

  • Достоинства системы АБТ и ее отличительные особенности. Структурная схема автоблокировки с тональными рельсовыми цепями и плохим сопротивлением балласта. Увязка автоблокировки со станционными устройствами по пути приема, отправления, со светофорами.

    курсовая работа [488,3 K], добавлен 08.09.2009

  • Проведение системного анализа принципов и особенностей работы систем автоблокировки с тональными рельсовыми цепями. Схема путевых реле блок-участков. Последовательность подачи кодовых сигналов в рельсы. Преимущества системы АБТЦ, факторы надежности.

    презентация [606,1 K], добавлен 27.03.2019

  • Достоинства системы АБТ и ее отличительные особенности. Структурная схема автоблокировки с тональными рельсовыми цепями и плохим сопротивлением балласта. Увязка автоблокировки со станционными устройствами по пути отправления. Путевой план перегона.

    курсовая работа [778,5 K], добавлен 03.04.2009

  • Двухпутная автоблокировка постоянного и переменного тока для регулирования движения поездов на перегонах. Установка опор и защита воздушных линий сигнализации централизации блокировки. Техника безопасности при техническом обслуживании воздушных линий.

    курсовая работа [43,7 K], добавлен 17.04.2010

  • Сфера применения бесстыковых рельсовых цепей на линиях, где рельсовые нити пути составлены из цельносварных рельсовых плетей большой длины. Структурная схема бесстыковой рельсовой цепи. Зоны дополнительного шунтирования. Регулировка и кабельная сеть.

    реферат [729,3 K], добавлен 04.04.2009

  • Система регулирования движения поездов на перегоне. Правила включения проходного светофора. Принципиальная схема перегонных устройств автоблокировки. Схема переездной сигнализации типа ПАШ-1. Техника безопасности при обслуживании рельсовых цепей.

    курсовая работа [58,9 K], добавлен 19.01.2016

  • Значение железнодорожного транспорта для экономики России. Значение устройств железнодорожной автоматики и телемеханики в обеспечении безопасности движения поездов и регулировании их движения. Порядок разделения станции на изолированные участки.

    курсовая работа [116,0 K], добавлен 03.04.2009

  • Диспетчерская централизация – это комплекс устройств железнодорожной автоматики и телемеханики. Преимущества системы, структурная схема, строение сигналов ТУ и ТС и назначение каждого элемента кода соответственно с заданием. Принципы синхронизации.

    реферат [1,1 M], добавлен 28.03.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.