Государственная программа возрождения и развития села

Характеристика почвенно-климатических условий. Программирование урожая. Разработка структурной модели высокопродуктивного растения и посева. Разработка технологии возделывания овса для получения запрограммированного урожая.

Рубрика Сельское, лесное хозяйство и землепользование
Вид курсовая работа
Язык русский
Дата добавления 18.02.2011
Размер файла 49,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Государственной программой возрождения и развития села на 2005 - 2010 годы предусмотрено довести к 2010 году валовой сбор зерновых культур до 8,4млн. тонн при урожайности 33ц/га, что позволит обеспечить потребности страны в зерне.

Основная особенность развития сельского хозяйства республики заключается в наращивании производства сельскохозяйственной продукции при одновременной сокращении удельных затрат. Поэтому разработка и освоение новых энергосберегающих технологий и адаптивных систем землепользования является приоритетным направлением сельскохозяйственного производства.

Следует отметить, что производство высококачественных семян, проблема комплексная, требующая учета основных групп факторов:

- природных, связанных со значительной дифференциацией размещения посевов зерновых культур по территории страны, отличающейся разнообразием почвенно-климатических условий для их возделывании;

-биологических, определяемых реализацией генетического потенциала сортов и гибридов при их хозяйственном использовании;

- материально-технических;

- экономических;

-административно-правовых, устанавливающих, прежде всего, требования к качеству семян;

-организационных, обусловленных проводимой политикой государственного регулирования производства семян.

Вышеназванные факторы охватывают достаточно широкий и сложный спектр вопросов, связанных с проблемами производства семян, но, являясь ключевыми, они требуют оперативного решения на государственном, региональном и местном уровне.

Сельское хозяйство Беларуси вследствие географического положения, почвенно-климатического потенциала, объективно имеет мене благоприятные условия для производства растениеводческой продукции, чем большинство стран Европы и Америки. Плодородие пашни в республике на 75% - «рукотворная» и создано за последние 50 лет хозяйствования. Вместе с этим, реальный потенциал современных сортов и технологий при возделывании зерновых и колосовых на преобладающих супесчаных почвах республики составляет 45 - 50 ц/га. Это близко к среднеевропейской урожайности зерновых. Новые высокоурожайные сорта и высококачественные семена, способны обеспечить 50%-ую прибавку урожая.

сельское хозяйство плодородие

1. Характеристика почвенно-климатических условий

Республика Беларусь расположена в центральной части европейского континента. Ее территория является составной частью Русской равнины. Поверхность Беларуси в целом равнинная. Для нее характерно чередование возвышенных, равнинных и низменных пространств с болотами и озерами.

Климат данного региона умеренно-континентальный, с частыми атлантическими циклонами. Зима мягкая с продолжительными оттепелями, лето - умеренно - теплое. Средняя годовая температура воздуха составляет +5,5 - +5,7 градусов. Самый холодный месяц январь (-6,7 - -6,9 градусов), абсолютный минимум температуры равен -39 оС. Самый теплый месяц - июль (+17 - +18 оС) с абсолютным максимумом +35 градусов. Продолжительность зимы изменяется от 130 до 135 дней. Длительность периода с устойчивым снежным покровом составляет 100-125 дней. Среднемноголетняя высота снежного покрова изменяется в пределах 25-30 см.

Переход среднесуточной температуры через О оС весной в районе г. Жодино происходит 27 марта, переход через 5 оС - 15 апреля. А через 10 оС - 3 мая. Период с температурами выше 5 оС составляет 185-190 дней, сумма активных температур свыше 5 оС - 2500-2800 оС, свыше 10 оС - 2200-2300 оС.

Среднее годовое количество атмосферных осадков равно 650-700 мм. Гидротермический коэффициент (ГТК) Селянинова, рассчитанный за период с температурами воздуха > 10 оС составляет 1,4-1,5, но в отдельные годы наблюдаются засушливые явления или избыточное увлажнение, обусловленные пространственной и временной изменчивостью выпадения осадков. В 10% лет выпавшая сумма осадков превышает среднемноголетние значения и составляет более 700-900мм. Месячные суммы осадков имеют четко выраженный годовой ход с минимумов в феврале - марте и максимумом в летние месяцы. Около 70% годовой суммы осадков приходиться на теплый период года.

Весенние заморозки в районе г. Жодино прекращаются в начале мая. В отдельные годы они могут наблюдаться в конце мая и даже в начале июня.

Переход среднесуточной температуры воздуха через 10 оС в сторону понижения происходит 24-26 сентября. Первые осенние заморозки в воздухе отмечаются 4-5 октября, однако они возможны во второй декаде сентября и в виде исключения - в конце августа. Зима начинается в середине ноября. Устойчивый снежный покров образуется 12-24 декабря, мощность его достигает 18-20 см. В зимнее время довольно часто максимальная глубина промерзания супесчаных и легкосуглинистых почв составляет 60 см. Часты оттепели. Сходит снежный покров в третьей декаде марта. Вероятность зим без устойчивого снежного покрова колеблется от 10 до 12%.

Почвы, на которых возделывается яровое тритикале дерново-подзолистые языковатые, развивающиеся на водно-ледниковой супеси, подстилаемые с глубины 0,8-1 м мореным суглинком, связнопесчаные. Пахотный слой характеризуется следующими агрохимическими показателями (таблица 1).

Таблица 1 - Агрохимическая характеристика почв.

Наименовние

агрохимических показателей

Единица

измерения

Величина показателя

Метод определения

рН солевой вытяжке

Ед. рН

6,0 - 6,4

Потенциометрический

Гидролитическая кислотность

Мг эквивалент/ 100 г почвы

2,65

По Каппену

Сумма поглощенных оснований

Мг эквивалент/ 100 г почвы

7,62

По Каппену-Гильковицу

Степень насыщения

%

73,2

Расчетный

Гумус

%

2,2 - 2,4

По Тюрину

Общий азот

%

0,108

По Кьедалю

Подвижный фосфор (Р2О5)

Мг / 1 кг почвы

280 - 310

По Кирсанову

Обменный калий

2О)

Мг / 1 кг почвы

260 - 300

По Кирсанову

2. Программирование урожая

Под программированием урожайности понимают разработку комплекса взаимосвязанных мероприятий, своевременное и высококачественное выполнение которых обеспечивает получение запланированного уровня урожайности сельскохозяйственных культур заданного качества при одновременном повышении плодородия почвы и удовлетворения требований охраны окружающей среды.

Процесс программирования урожайности включает два этапа: разработку научно обоснованной программы получения расчетной урожайности и практическую реализацию разработанной программы в производственных условиях. Выполнение этих этапов предусматривает следующие элементы:

определение потенциально возможного уровня урожайности (ПУ) по лимитирующему в данном районе почвенно-климатическому фактору;

определение действительно возможного урожая (ДВУ) с учетом почвенного плодородия, климатических и экономических факторов;

выявление причин несоответствия между фактически получаемым и действительно возможными урожаями;

расчет доз удобрений под программируемый урожай для каждого поля севооборота, с учетом агрохимических показателей почвы, биологических особенностей культуры и сорта;

разработка технологических карт, включающих все необходимые агротехнические приемы с указанием способов и сроков их выполнения;

своевременное и качественное выполнение агротехнических приемов, предусмотренных технологической картой;

учет урожая и условий выращивания сельскохозяйственных культур на каждом поле с целью накопления информации, необходимой для оперативной корректировки разработанной программы и последующих уточнений нормативов и показателей программирования урожаев.

Все факторы и условия, необходимые для получения любого программируемого урожая делят на две группы: 1) биологические факторы - растение, посев, структура агроценоза и урожая; 2)энергия и питательные и вещества, непосредственно входящие в состав органической массы растения, в урожай.

В условиях интенсификации сельскохозяйственного производства программирование урожаев позволяет наиболее полно и эффективно использовать почвено-климатические, материальные, трудовые ресурсы и генетический потенциал выращиваемых сортов и гибридов. Внедрение программированного выращивания сельскохозяйственных культур означает интенсификацию технологических процессов в растениеводстве при качественно более высоком уровне производительности труда. Так, широко распространяемые в нашей стране интенсивные технологии возделывания сельскохозяйственных культур, ориентируемые на конечный результат - получение запрограммированного урожая, уже показали высокую эффективность.

Величина возможного урожая может быть рассчитана по первым пяти принципам: 1) по приходу фотосинтетически активной радиации и использовании ее посевами; 2) по биоклиматическим показателям; 3) по влагообеспеченности посевов; 4) по фотосинтетическому потенциалу посевов; 5) по потенциальным способностям культуры (сорта, гибрида), агрофитоценозов и набора культур в пожнивных и поукосных посевах. Для разработки технологической схемы программированного выращивания культур предназначены остальные принципы: 6) разработка системы удобрения с учетом эффективного плодородия почвы и потребности растений в питательных веществах; 7) разработка комплекса агротехнических мероприятий исходя из требований культуры (сорта, гибрида); 8) всесторонний учет и правильное применение основных законов земледелия и растениеводства; 9) разработка системы мер борьбы с болезнями и вредителями выращиваемых растений; 10) использование математического аппарата для наиболее точного определения комплекса агроприемов, обеспечивающих формирование запланированных урожаев.

3. Определение потенциального урожая по приходу солнечной энергии (использование ФАР)

В процессе фотосинтеза, в результате которого образуется органическое вещество, составляющее 90-95% биомассы растений, используется только часть солнечной радиации, находящейся в спектральном интервале длин волн от 380 до 710 нм. Эту часть солнечной энергии называют фотосинтетически активной радиацией (ФАР). Установлено, что урожаи, получаемые в производстве, намного ниже тех, которые могут быть обеспечены приходом ФАР и другими климатическими ресурсами.

Поэтому при программировании урожаев, прежде всего, определяют величину потенциального урожая, который может быть получен в данной климатической зоне при оптимальных почвенных и агротехнических условиях. Она зависит от величины ФАР и возможностей ее использования культурой (сортом).

Зная приход ФАР в конкретном районе за вегетационный период, можно поставить задачу усвоения посевами 2-3% или более ФАР и на основании этих показателей с учетом калорийности единицы органической массы урожая определить возможную урожайность культуры (сорта) или нескольких культур, выращиваемых на одном поле. В среднем каждый килограмм сухой органической массы аккумулирует 16750 кДж (4000 ккал) энергии. Расчет проводят по формуле:

Убиол = EQK ,

100q

Где Убиол - биологический урожай абсолютно сухой растительной массы, т/га; EQ - суммарный приход ФАР за вегетационный период культуры в данной зоне млрд. кДж/га (млрд. ккал/га); К - запланированный коэффициент использования ФАР, %; q - количество энергии, выделяемое при сжигании 1 кг сухого вещества биомассы (обычно принимают q = 16750 кДж).

Посевами тритикале запрограммировано усвоить 2% ФАР. За период вегетации в посевы приходится 19,80 млрд. кДж/га. При этих показателях ФАР урожай абсолютно сухой биомассы составит

Убиол = 9,913 * 109 *2 = 11,8 т/га абсолютно сухой биомассы;

105 * 16750

Для перехода от урожая абсолютно сухой биомассы к урожаю зерна при стандартной влажности пользуются формулой:

У о. пр. = 100 Убиол

(100 - В ст.) * а,

Где Уо.пр.- урожай основной продукции при стандартной влажности, т/га; Убиол - биологический урожай абсолютно сухой растительной массы, т/га; В ст. - влажность основной продукции по ГОСТу, %; а - сумма относительных частей основной и побочной продукции в общем урожае сухой биомассы.

У о. пр. = 100 * 11,8 = 5,97т/га.

(100 -14) * 2,3

Итак, урожай абсолютно сухой биомассы по приходу ФАР будет равен 11,8 т/га, а урожай основной продукции 5,97 т/га.

Определение потенциального урожая по биоклиматическим показателям.

По ограниченной теплообеспеченности величину потенциального урожая можно определить по гидротермическому показателю (ГТП) или величине биоклиматического потенциала (БКП), которые учитывают и влагообеспеченность. Урожай сухой биомассы по ГТП рассчитывают по формуле А. М. Рябчикова:

Убиол. = 2,2 ГТП - 10.

Здесь ГТП = 0,46 Кувл * Тв,

Кувл. = 2453 * W

104 * R ,

где Убиол. - биологический урожай абсолютно сухой биомассы, т/га; ГТП - гидротермический показатель (потенциал) продуктивности; Тв - период вегетации культуры, декады; Кувл. - коэффициент увлажнения; 2453 - коэффициент скрытой теплоты испарения, кДж/кг (568 ккал/кг); W - количество продуктивной влаги за период вегетации, мм; R - суммарный радиационный баланс за этот период, кДж/см2, (ккал/см2).

Кувл. = 2453 * 338 = 1,24

104 * 67,0

ГТП = 0,46 * 1,24 * 12 = 6,84

Убиол. = 2,2 * 6,84 - 10 = 5,05 т/га.

Урожай зерна будет равен:

Уз. = 100 * 5,05 = 2,55 т/га.

(100-14) * 2,3

Итак, урожай сухой биомассы по ГТП будет равен 6,84 т/га, урожай зерна - 2,55 т/га.

Расчет возможного урожая по биоклиматическому потенциалу продуктивности проводят по формуле:

Убиол. = В * БКП,

В свою очередь, БКП = Кувл. Еt ›10 оС,

1000 оС

где В - коэффициент продуктивности равный 1 т зерна на 1 га при использовании 1% ФАР, 2 и 3 т - соответственно при использовании 2 и 3% ФАР; БКП - биоклиматический потенциал продуктивности; Кувл. - коэффициент увлажнения; Еt ›10 оС - сумма среднесуточных температур выше 10 о С за период вегетации культуры; 1000 оС - сумма температур выше 10 о С на северной границе земледелия.

Убиол. = 1,24 2246 = 2,79 тогда

1000

При использовании 1% ФАР - У1 = 2,79 * 1 = 2,79 т/га; при 2% ФАР - У2 = 2,79 * 2 = 5,58, и при 3% ФАР У3 = 2,79 * 3 = 8,37 т/га.

4. Определение возможного урожая по влагообеспеченности посевов

Величину возможного урожая рассчитывают по формуле:

Убиол. = 100 * W ,Кв

где W - суммарное количество продуктивной влаги, мм; Кв - коэффициент водопотребления, мм га/т. Все данные берутся из справочника.

Убиол. = 100 *55 = 12,2 т/га.

450

Итак, величина возможного урожая по влагообеспеченности посевов равна 12,2 т/га абсолютно сухой массы.

5. Разработка структурной модели высокопродуктивного растения и посева

Проблема получения максимального количества растениеводческой продукции с минимальными затратами заключается в оптимизации земледельческой отрасли, в первую очередь за счет подбора соответствующих культур и технологии их возделывания.

Формирование высокопродуктивного посева зерновых требует точного регулирования многочисленных факторов, определяющих высокую биологическую и, особенно, хозяйственную урожайность. Поэтому процесс формирования продуктивности необходимо рассматривать в сочетании с теми факторами, от которых зависит величина, как общей биологической продукции, так и основной ее части - урожая зерна.

При этом только точное знание законов и закономерностей формирования урожайности, учет количественных и качественных дозировок основных факторов среды и агротехники, влияющих на урожай, выбор этапов их наиболее эффективного воздействия на урожай может обеспечить успех в получении высокого урожая.

Реакция ярового тритикале на почвенно-климатические условия Беларуси. К почве яровое тритикале менее требовательно, чем другие яровые хлеба. При высоком уровне агротехники он хорошо удается на супесчаных, суглинистых, глинистых и торфяных почвах, что объясняется особенностями корневой системы. Может произрастать при повышенной кислотности (рН 5-6). На известкование кислых почв реагирует положительно.

На формирование 100 кг зерна и соответствующее количество соломы яровое тритикале потребляет 2,5-2,9 кг азота, 0,7-1,4 кг фосфора и 1,8-3,3 кг калия. Использование азота и калия растениями тритикале происходит равномерно во все фазы вегетации. В фосфоре он больше всего нуждается в начальный период роста. Благодаря развитой корневой системе и высокой поглотительной способности корней овес эффективно использует последействие удобрений и усваивает питательные вещества из трудно растворимых соединений.

Фазы роста и развития растений. Жизненный цикл растений ярового тритикале разделяется на различные фазы, в каждой из которых происходят определенные изменения в развитии. Степень развития органов в каждой фазе, как и время прохождения их, меняется в зависимости от генотипа образца и окружающей среды.

Прорастание и всходы. Все культурные виды ярового тритикале прорастают быстро и дружно. При прорастании семян развиваются три зародышевых корешка, затем из верхней части зародыша вытягивается почечка. Почечка выходит наружу под прикрытием первичного влагалищного пленчатого листочка - колеоптиле, лишенного пластинки. Этот влагалищный лист быстро прекращает рост, а росток развивается в первый зеленый лист с листовой пластинкой. Всходы обычно появляются на 6-7 день, при пониженных температурах весной на 11-12 день и позднее. Начало всходов отмечают с появлением у растений первого зеленого листа.

Кущение. После появления первого листа главный стебель временно приостанавливается в росте и начинается процесс кущения, который заключается в том, что на подземных узлах из листовых пазух развиваются новые побеги. Последние выйдя на поверхность земли, развиваются также как и главный стебель. Эта фаза начинается обычно через 10-15 дней после появления всходов, в момент развития 3-4-го листа. Число всех стеблей на одно растение обозначается как общая кустистость, а число стеблей с нормально развитой метелкой - как продуктивная. Последняя обычно составляет 2-4 стебля. В разреженных посевах кустистость возрастает. В фазе полного кущения у ярового тритикале различают следующие формы куста: прямостоячую, распластанную и промежуточную.

Выход в трубку. Начинается фаза через 10-15 дней после кущения и означает начало образования соломины. На практике можно определить прощупыванием узла на стебле от поверхности почвы. Обычно с этого момента начинается быстрый рост надземных органов и корней, который продолжается до цветения; позднее процессы роста замедляются и постепенно затухают. После выхода в трубку появляются органы полового размножения - цветки, собранные в колоски и соцветие - метелку.

Выметывание метелки. В полевых условиях эту фазу определяют по появлению первого колоска из влагалища первого листа. У разных видов и сортов срок выметывания различен.

Цветение и оплодотворение. Цветение начинается одновременно с выходом метелки из влагалища с растрескиванием пыльников самых верхних ее колосков и концов отдельных веточек. Затем цветение последовательно переходит к основанию веточек и мутовок метелки. В колоске оно начинается с нижнего цветка и идет в восходящем порядке, поэтому колоски в метелке разновозрастные. По характеру цветения яровое тритикале относят к типу раскрытоцветковых. Во время этого процесса чешуи цветков в той или иной мере расходятся иногда в угол 450 и более, что обусловливается набуханием двух нежных пленочек - лодикул, скрытых внутри чешуи. Пыльники лопаются и выбрасывают пыльцу, когда еще находятся вблизи рылец, внутри цветка, что и способствует самоопылению. Позднее цветковые пленки в той или иной мере раскрываются, тычиночные нити вытягиваются, пыльники выходят наружу и освобождаются от остатков пыльцы. Интенсивность цветения строго зависит от погодных условий. Наиболее благоприятна для цветения влажная погода с температурой воздуха 20-25 градусов. Массовое обильное цветение наступает в ясную теплую погоду после дождя. Большое влияние на формирование урожая оказывает режим питания или избыток основных элементов минерального питания. Белоколосость возникает также на кислых торфяных почвах и при механическом повреждении метелки во влагалище листа.

Созревание зерна. После оплодотворения начинается приток питательных веществ к завязи и формирование зерна. При наступлении молочной спелости зерно содержит до 50% воды. Зародыш в этот период способен прорастать. Вегетативные органы в основном еще зеленые, но начинается пожелтение нижних листьев с верхушки по направлению к листовому влагалищу и затем их отмирание. Приток питательных веществ к зерну из листьев и других частей растения увеличивается, лишняя влага в зерне испаряется, доходя до 25-30%, после чего наступает желтая, или восковая спелость. Зерно в это время имеет консистенцию воска, желтеет и легко режется ногтем. С наступлением восковой спелости листья отмирают, стебли становятся желтыми, за исключением самого верхнего междоузлия; узлы соломины, начиная с нижних, постепенно сморщиваются. В дальнейшем приток питательных веществ прекращается, зерно высыхает до влажности 10-14% и переходит в состояние полной спелости, становясь твердым. Соломина в это время полностью желтеет. Зерна, образовавшиеся в соцветии раньше, обычно крупнее и тяжелее тех, которые сформировались позднее.

Полевая всхожесть семян. Оптимальная густота растений - одно из важнейших условий, определяющих продуктивность посевов. Изреженный стеблестой исключает возможность получения высоких урожаев, ухудшает перезимовку растений; излишне густой - вызывает снижение продуктивности отдельных колосьев и качества зерна, увеличивает опасность поражения растений болезнями. Полевая всхожесть оказывает существенное влияние на формирование густоты растений, сохраняемость их к уборке и густоты продуктивного стеблестоя. Как правило, она значительно ниже лабораторной и зависит от взаимодействия агротехнических, почвенных, метеорологических условий и качества семян. Чем выше культура земледелия, тем более значительно полевая всхожесть приближается к уровню лабораторной всхожести семян. Основными причинами снижения всхожести в полевых условиях являются поражение проростков болезнями, недостаток или избыток влаги в почве, глубокая или мелкая заделка семян при севе.

Доказано, что полевая всхожесть семян снижается при увеличении нормы высева семян и заглублении их в почву. В значительной мере зависит от метеорологических условий в период сев-всходы и в первую очередь от влажности почвы и температуры воздуха и почвы.

Общая и продуктивная кустистость. Для получения высоких и стабильных урожаев недостаточно создать оптимумы влагообеспеченности и содержания элементов минерального питания в почве, важно сформировать соответствующие морфоструктуры растений и продуктивный агрофитоценоз, которые бы позволили эффективно использовать эти факторы для накопления урожая.

В современных интенсивных системах возделывания зерновых культур формирование оптимальной плотности продуктивного стеблестоя является одним из ключевых моментов. По данным К.А.Касаевой (1986) уровень урожайности на 50% зависит от плотности продуктивного стеблестоя, на 15% - от числа зерен в колосе и на 25% - от массы 1000 семян.

Густота растений и коэффициент продуктивного кущения обусловливают плотность продуктивного стеблестоя.

Установлено, что увеличение нормы высева семян ярового тритикале и, следовательно, загущенности посевов, вызывает снижение как общей, так и продуктивной кустистости. Внесение азотных удобрений способствует кущению растений до определенного предела, после чего повышение доз удобрений незначительно изменяет кустистость, либо снижает ее при полегании посевов.

Сохраняемость и общая выживаемость растений ярового тритикале. Одной из важнейших особенностей сорта интенсивного типа, определяющей высокую урожайность, является способность сохранять к уборке оптимальную густоту растений.

Под сохраняемостью понимают процентное соотношение числа сохранившихся к уборке растений на единице площади к числу взошедших. Общая выживаемость растений определяется как соотношение количества сохранившихся к уборке растений к числу высеянных на единицу площади всхожих семян, выраженное в процентах.

Выпадение растений происходит на разных этапах их роста и развития и зависит от множества факторов, необходимых для формирования урожая, основными из которых являются метеорологические условия и уровень агротехники.

У тритикале наибольшая гибель растений происходит в период от сева до всходов (15-20%). Значительные выпады растений вызывают вредители и болезни.

Глубина заделки семян предопределяет морфологическую структуру проростка и способность базальной зоны злаков к побегообразованию. При заделки семян на глубину 2-3 см формируется растение с мощным узлом кущения и высокой интенсивностью процесса побега - и корнеобразования. При более глубокой заделке семян, если проросток и достигает поверхности почвы, о его способность к побегообразованию снижена и закладывается малопродуктивная жизненная форма.

Доказано, что сохраняемость и общая выживаемость растений при увеличении нормы высева снижается. Внесение азотных удобрений и применение средств защиты несколько способствует сохраняемости и выживаемости растений. Выживаемость растений и сохраняемость их в ценозе до уборки обуславливаются в основном уровнем полевой всхожести семян и перезимовке растений.

Густота продуктивного стеблестоя. В основе формирования высоких урожаев колосовых лежат два важных показателя: большое количество стеблей (колосьев) на единице площади и хорошее развитие каждого стебля (колоса). Характерным признаком высокопродуктивных ценозов хлебных злаков является выравненность растений при оптимальном стеблестое. Добиваться высокой выравненности растений следует начинать с посева.

Выход на параметры оптимального стеблестоя может быть осуществлен двумя путями: 1) снижением продуктивной кустистости и увеличением количества растений на единице площади и 2) меньшим количеством растений и более высоким коэффициентом кущения. Во втором случае экономятся семена, более полно реализуется биологический потенциал растений и формируется наиболее высокий урожай зерна.

Густота продуктивного стеблестоя является производным показателем от норм высева, полевой всхожести семян, продуктивной кустистости растений и их сохраняемости. Поэтому количество продуктивных стеблей на единице площади перед уборкой не является постоянной величиной и меняется в зависимости, как от метеорологических условий, так и от агротехнических факторов.

Доказано, что формирование оптимальной густоты продуктивного стеблестоя зависит, в основном, от нормы высева семян, уровня минерального питания и средств химической защиты. С увеличением нормы высева возрастают густота растений и густота продуктивного стеблестоя. Однако чрезмерные нормы высева и повышенные дозы азотных удобрений, при хорошем водообеспечении могут вызвать полегание посевов, снизить выживаемость растений и вследствие этого густоту растений и густоту продуктивного стеблестоя.

Формирование элементов продуктивности колоса. Формирование зерен в колосе происходит после перехода растений от вегетативного развития к генеративному. Продолжительность отдельных этапов развития колоса, его величина и число колосков зависят от генотипа растений и внешних условий. Наибольшее влияние оказывают температура воздуха, продолжительность дня и интенсивность освещения. Более низкая температура удлиняет период развития, в результате чего образуется более длинный колос. При интенсивном освещении и низкой температуре образуется наибольшее число колосков. Высокие температуры в период формирования колоса уменьшают число закладывающихся колосков, а при дефиците влаги вызывают отмирание уже заложенных зачатков колоса. Длинный день ускоряет развитие колоса, а короткий задерживает закладку колосков и цветков.

Своевременная подкормка азотом удлиняет сроки прохождения решающих этапов органогенеза. Если ее проводят перед наступлением второго этапа, увеличивается число колосков, цветков и зерен в колосе.

Закладка и развитие цветков происходит на 5-6 этапах органогенеза. К концу 7 этапа число колосков и цветков в колосе снижается: происходит или засыхание заложенных или образование бесплодных цветков. Низкие положительные, а также повышенные температуры воздуха, низкая интенсивность освещения, дефицит или избыток влаги снижают фертильность пыльцы, задерживают цветение, сокращают число фертильных цветков и число зерен в колосе.

Максимальному завязыванию зерна благоприятствует невысокая температура и высокая интенсивность освещения, обуславливающие медленный рост и высокую интенсивность фотосинтеза. Недостаток азота также сказывается на завязывании зерен в верхних цветках. Отмечено, что применение азотной подкормки в фазе 4 листа способствует усилению степени кущения, в фазе 6-го листа - улучшению формирования колоса, в фазе начала выхода в трубку - снижению уровня редукции числа побегов, в фазе второго узла - уменьшению редукции продуктивных органов колоса, в фазе колошения-начало цветения - улучшению налива зерна и увеличению содержания в нем белка.

Некоторые авторы отмечают, что недостаток продуктивных побегов в процессе развития растений может быть компенсирован за счет большего числа фертильных колосков в колосе, а меньшее число фертильных колосков в колосе - за счет большего числа развитых зерен в колоске, малое количество образовавшихся зерен - за счет повышенной массы 1000 зерен.

Таким образом, окончательное число зерен в колосе, их масса определяются рядом агротехнических факторов: нормой высева семян, уровнем минерального питания, густотой продуктивного стеблестоя и особое влияние оказывают сложившиеся конкретные метеорологические условия в период формирования генеративных органов.

Установлено, что на формирование элементов продуктивности колоса оказывают влияние норма высева семян, уровень минерального питания, средства химической защиты и метеорологические условия в течение вегетации.

Масса 1000 зерен - наименее изменчивый элемент в структуре продуктивности тритикале. Повысить этот показатель можно продлением жизни верхних листьев, предотвратить с помощью фунгицидов их поражение грибными болезнями. Чем меньше завязывается зерен в колосе, тем лучше они развиваются и имеют большую массу.

Фотосинтетическая деятельность посевов ярового тритикале. После появления всходов дальнейший ход формирования генеративных органов и накопления вегетативной массы обуславливается фотосинтетической активностью растений. Эффективность большинства мероприятий, осуществляемых с целью повышения урожайности, зависит от того, насколько они создают условия для образования фотосинтетического аппарата и его активности.

При нормальной динамике роста и развития и оптимальной плотности посевы могут поглощать за период фактической вегетации до 50-60% приходящей энергии света. Поглощенная энергия может быть использована на фотосинтез современными сортами культур с коэффициентом полезного действия 4-5, в лучшем случае 8-10%. Однако в абсолютном большинстве КПД использования приходящей за время вегетации фотосинтетически активной радиации (ФАР) составляет около 0,5-1%.

Основная причина низкой продуктивности площадей, занятых культурными растениями, заключается в том, что значительная часть приходящей ФАР обесценивается как фактор фотосинтеза неблагоприятным соотношением приходящей солнечной радиации с другими факторами продуктивности - теплом, влажностью почвы, обеспеченностью минеральным питанием.

Агротехнику сельскохозяйственных растений следует совершенствовать таким образом, чтобы приходы энергии радиации, биологические особенности сортов, степень обеспеченности растений влагой и элементами питания составляли систему мероприятий, способную обеспечить наивысшие в данных условиях коэффициенты использования солнечной энергии и урожай.

Важнейшей причиной затухающего действия возрастающих доз удобрений при высокой обеспеченности посевов и растений влагой является ухудшение оптических свойств посевов, ограничивающих продуктивность современных сортов. Зачастую удобрения и посевы не могут дать наилучшего результата при изреженных посевах, когда площадь листьев не достигает оптимальных размеров, а также при излишней первоначальной загущенности посевов, когда площадь листьев будет превышать оптимальную.

По мере увеличения площади листьев в посевах до 30-40 тыс. м2/га процент поглощаемой энергии сильно повышается и достигает 85-90% приходящей на него ФАР при листовой поверхности в 40-60 тыс. м2/га. Дальнейшее возрастание площади листьев практически не увеличивает процент поглощения фотосинтетически активной радиации.

Большое значение для получения высокого урожая тритикале имеет динамика формирования ассимиляционной поверхности растений, ее интегральные и дифференцированные характеристики.

Оптимальным с хозяйственной точки зрения, считается такой ход формирования площади листьев в посевах, при которой происходит быстрое наращивание и достижение максимальной ее величины и в то же время длительный период сохраняется высокая активность листьев.

Величина площади листовой поверхности у растений значительно меняется под влиянием различных факторов среды: условий погоды, уровня минерального питания, водообеспеченности.

Установлено, что в начале вегетации площадь листьев у растений увеличивается примерно в одинаковой степени как под влиянием азотного, так и фосфорного питания. В последующем усиленный рост площади листьев имеет место у растений, удобренных азотом, тогда как на фоне фосфорного питания рост листьев относительно замедляется. Многие исследователи считают, что в большинстве случаев оптимальные размеры площади листьев составляют 40-50 тыс. м2/га.

Величина фотосинтетического потенциала (ФП) за весь период вегетации колеблется в зависимости от сорта, погодных условий года, агротехники и других факторов и бывает в пределах от 820-970 до 1560-1975 тыс.м2 дней/га. В образовании ФП всего растения максимальное участие принимают листья, междоузлия средней части стебля (3-6), значительно меньше - второго и седьмого междоузлий. В образовании урожая зерна доля листьев составляет 63,1-70,3%, стеблей и влагалищных оберток - 22,0-26,0; колосьев 106-11,3%.

Многочисленные исследователи указывают на то, что в течение вегетации величина чистой продуктивности фотосинтеза (ЧПФ) изменяется в широком диапазоне, как под влиянием внешних условий, так и в результате эндогенных причин, обусловленных онтогенетическими сдвигами в развитии растений причем, с возрастанием оптической плотности и площади листьев посевов при прочих равных условиях наблюдалось прямолинейное уменьшение величин чистой продуктивности фотосинтеза.

Необходимо отметить, что суммарное накопление органических веществ зависит от величин чистой продуктивности фотосинтеза и фотосинтетического потенциала. Поэтому формирование оптимальной структуры посева с достаточно высоким фотосинтетическим потенциалом и чистой продуктивностью фотосинтеза обеспечит наибольшее накопление сухих веществ растениями.

Таким образом, за вегетационный период роста формируется 40-45% величины фотосинтетического потенциала и 55-60% приходится на репродуктивный период. Именно в этот период, идет формирование и налив зерновки и поэтому более высокая чистая продуктивность фотосинтеза и высокий ФП в репродуктивный период позволяют растениям и посевам ячменя больше накапливать сухих веществ, что положительно сказывается на наливе зерна, соотношении между зерном и соломой и на конечной величине урожая.

6. Разработка технологии возделывания озимого ячменя для получения запрограммированного урожая

Место в севообороте. Лучшие предшественники для возделывания ярового тритикале - пропашные и бобовые культуры. Допустимые - зерновые колосовые, гречиха, злаковые травы.

Почвенные условия. Наиболее пригодными для ярового тритикале являются дерново-подзолистые суглинистые и супесчаные почвы, подстилаемые моренным суглинком. Допустимо возделывание на дерново-подзолистых суглинистых и супесчаных почвах, подстилаемых песками, а при достаточном обеспечении влагой успешно произрастает и на песчаных почвах, уступая в этом отношении только ржи. Тритикале по сравнению с яровой пшеницей и ячменем лучше переносит повышенную кислотность почвы. Его можно возделывать при рН 5,0-5,5, однако высокие и устойчивые урожаи он дает при рН- 5,6-6,0.

Обработка почвы. Обработка почвы осуществляется в соответствии с требованиями научно-обоснованных систем земледелия. В качестве первого приема применяют послеуборочное лущение стерни после зерновых предшественников: на почвах, чистых от корневищных и корнеотпрысковых сорняков - на глубину 5-7 см, на засоренных почвах - на глубину 10-12 см. Используют тяжелые дисковые бороны БДТ-7, дискаторы АПН-3, АПН-4, АПО-3 и чизельные культиваторы КЧ-5,1, КЧН-5,4, АКЧ-5,4, АПМ-6.

Наиболее важным элементом системы основной обработки является зяблевая вспашка. Она проводится через 2-3 недели после лущения при появлении всходов сорняков. Большое значение имеют сроки зяблевой вспашки. По опытным данным лаборатории тритикале, при вспашке 15 августа получена урожайность сорта Полонез 39,5 ц\га, а при вспашке 15 октября - 39,5 ц\га. На вспашке применяют плуги ППО-4-40, ППО-5-40, Lemken Vari-Titan. На почвах, чистых от многолетних сорняков проводят чизелевание в два следа с разрывом времени: первый - на глубину 10-12 см, второй - на глубину пахотного слоя. Чизельная обработка почвы значительно ускоряет сроки ее подготовки без снижения урожайности тритикале, а также способствует увеличению производительности и экономии топлива.

При традиционной весенней обработке почвы первую почвообрабатывающую операцию проводят при возможности выхода техники в поле: на легких почвах - тяжелыми зубовыми боронами БЗТС-1 в сцепке СП-11 в два ряда; на почвах тяжелого механического состава - культиваторами КШП-8, КПЗ-9, КПМ-8 на глубину 5-7 см. Культивация для заделки минеральных удобрений проводится теми же культиваторами на глубину 5-8 см.

Для предпосевной обработки применяют комбинированные агрегаты ФКШ-6, АКШ-7,2. Глубина обработки - 4-5 см. С целью сокращения сроков на обработку почвы и посев целесообразно использовать комбинированные почвообрабатывающие посевные агрегаты, позволяющие сократить затраты труда в 2,5 раза, а также сэкономить до 40% ГСМ. В зависимости от типа применяют следующие машины:

- с пассивными рабочими органами: RAPID, HORS PRONTO, СПП-3,6, СЗС-400. Наиболее целесообразны на почвах легкого гранулометрического состава, а также на связных, свободных от многолетних сорняков и завалуненных почвах.

- с активными рабочими органами: Amazone, Rabe, Lemken, Ука-6. Рекомендуется использовать на тяжелых, а также средне- и легкосуглинистых почах.

Удобрения. Одним из важнейших элементов технологии возделывания ярового тритикале является система питания. Доля этого фактора в формировании урожая составляет 35-40%.

В условиях республики под тритикале фосфорные удобрения вносят из расчета 50-60 кг\га д.в., калийные - 80-120 кг/га д.в. При определении доз азотных удобрений под посев необходимо учитывать механический состав почвы, предшественники и биологические особенности сорта. Оптимальная доза азота для ярового тритикале является 60-90 кг\га д.в. Дробное внесение азотных удобрений не эффективно.

7. Определение возможного урожая по бонитету почвы и количеству применяемых удобрений

Программирование урожая по этому методу, разработанному в Белорусском НИИ почвоведения и агрохимии, основано на обеспечении растений питательными веществами за счет почвенных запасов и удобрений. Зная бальную оценку пашни и окупаемость удобрений единицей продукции, можно рассчитать урожай по следующей формуле:

У = (Бп * Цб * К) + (ДNPK * ONPK),

100

У - программируемый урожай, ц/га; ДNPK - доза минеральных удобрений, кг/га; ONPK - окупаемость 1 кг NPK, кг продукции; Бп - бонитет почвы, балл; Цб - цена балла пашни, кг; К - поправочный коэффициент к цене балла на агрохимические свойства почвы; 100 - коэффициент перевода кг в ц.

У = (34 * 55 * 0,94) + (245 * 6,5) = 33,5 ц/га.100

Итак, возможный урожай по бонитету почвы составит 33,5 ц/га.

8. Расчет доз удобрений на запрограммированный урожай по выносу питательных веществ с учетом эффективного плодородия почвы и использования их из удобрения

Таблица 2. Расчет доз минеральных удобрений на программируемый урожай 40 ц/га ярового тритикале.

Показатели

N

Р2О5

К2О

Выносится со 100 кг зерна и соответствующим количеством соломы, кг

2,95

1,31

2,58

Общий вынос на заданный урожай кг/га

118

53

103

Содержится в пахотном слое почвы мг/100гр

кг/га

1,9

57

17

510

19

570

Коэффициент использования NPK из почвы, %

0,3

0,1

0,12

Будет использовано питательных веществ из почвы, кг/га

17,1

51

68,4

Требуется внести питательных веществ с минеральными удобрениями, кг/га

100,9

2,0

34,6

Коэффициент использования питательных веществ из удобрения, %

60

25

65

Необходимо внести питательных веществ на планируемый урожай с учетом использования их из удобрений, кг/га

168

8

120

Содержится питательных элементов в минеральных удобрениях, %

34

19

40

Требуется внести минеральных удобрений, кг/га

494

42

300

Итак, под программируемый урожай 40 ц/га необходимо внести: азота -494; фосфора -42; калия -300кг/га.

9. Расчет доз удобрений на планируемую прибавку урожая.

Для расчета используют формулу:

Дпр. = 100 * Впр.

Ку * С

где Дпр. - доза минеральных удобрения, кг/га; Впр. - вынос питательного элемента с прибавкой урожая, кг/га; Ку - коэффициент использования питательного вещества из удобрения, %; С - содержание действующего вещества в минеральном удобрении, %.

Расчет дозы удобрения для азота:

Дпр. = 100 * 1918 = 94,02 кг/га.

60 * 34

Расчет дозы удобрения для фосфора:

Дпр. = 100 * 851 = 179,2 кг/га.

25 * 19

Расчет дозы удобрения для калия:

Дпр. = 100 * 1677 = 64,5 кг/га.

65* 40

Итак, на планируемую прибавку урожая необходимо внести: азота -94,02; фосфора -179,2; калия -64,5 кг/га

Микроэлементы играют важную роль в получении высокой урожайности зерна ярового тритикале хорошего качества.

Особенно сильно потребность в микроэлементах у тритикале возрастает при внесении повышенных доз фосфора и калия. Это связано с тем, что при внесении высоких доз фосфора уменьшается доступность растениям тритикале цинка, высоких доз калия - бора. Известкование затрудняет доступность большинства микроэлементов для растений овса.

Способы применения и дозы внесения микроэлементов определяют с учетом обеспеченности ими почв.

При низкой обеспеченности микроэлементы вносят в почву. Чаще всего не хватает меди, которую вносят в дозе 0,5-1,0 кг д.в./га.

На среднеобеспеченных микроэлементами почвах рекомендуется обработка семян и некорневая подкормка, на высокообеспеченных почвах микроэлементы, как правило, не вносят.

Бор и цинк (при необходимости) вносят путем обработки семян микроэлементами одновременно с протравливанием. Для этих целей можно использовать борную кислоту в дозе 250-400 г/т. семян и сульфат цинка в дозе 800-1000г/т семян.

Медь лучше вносить в некорневую подкормку в дозе 25-50г/га д.в. или 100-200г/га медного купороса фазу начало выхода в трубку озимого овса. Предварительно купорос растворяют в небольшом количестве теплой воды и затем смешивают с гектарной нормой воды (200-300 л/га).

Протравливать семена лучше за 1-2 недели до посева. Семена на семенные цели протравливать обязательно. Препараты для протравливания семян: Байтан-универсал, с.п. - 2кг/т, Беномил, 50% с.п. -2-3 кг/т, Витавакс, 200 ФФ, 34 в.с.к., -2,5-3 л/т.

В последние годы в республике все шире применяется предпосевная обработка семян стимуляторами роста и микроудобрениями (Агат-25К, Сейбит-П. Симбионт-1 и др.) для повышения всхожести семян, общей и продуктивной кустистости, устойчивости к неблагоприятным факторам, в том числе и к болезням. Однако следует помнить, что на развитие пыльной головни такие препараты практически никакого угнетающего влияния не оказывают.

Подготовка семян и посев. Тритикале - культура раннего сева. Оптимальные сроки сева - при наступлении физической спелости почвы. Опаздывание с севом на 6 дней снижает урожай на 3 ц\га, а на 12 дней (после оптимального срока) - 9,6-11,3 ц\га.

Норма высева - 5,5-6,0 млн. всхожих зерен\га. Глубина заделки семян: на тяжелых суглинистых почвах 2-3 см, на суглинистых 3-4 см и супесчаных - 4-5 см. способ сева: сплошной рядовой или узкорядный, используя сеялки СЗУ-3,6, СЗ-3,6, СПУ-6.

Семена заблаговременно протравливают против корневой гнили и ржавчины следующими препаратами: витавакс 200 ФФ, 34% в.с.к. - 2,5 л\т; витарос, ВСК - 2,5 л\т; дивиденд стар, КС - 1л\т и другими включенными в каталог пестицидов и удобрений протравителями, разрешенными для применения на тритикале в республике. Одновременно с протравливанием положительный эффект дает обработка микроэлементами. При этом необходимо учитывать, что в растворе должно быть не более двух микроэлементов, общее содержание их на 1 тонну семян не должно превышать 1 кг д.в. Недопустимо совместное использование прилипателя Nа КМЦ и медьсодержащих препаратов для исключения их коагуляции. На 1 тонну семян требуется 10 л воды 0,2 кг Nа КМЦ, микроэлементы, протравитель. Прибавка урожайности зерна от протравливания семян составляет от 3,0 до 6,0 ц\га.

Уход за посевами. Борьба с сорняками: агротехнические методы: довсходовое боронование проводят, когда проросшие сорняки находятся в стадии белых нитей, а проростки тритикале еще не достигли размера семени. Эффективно боронование в фазу 3-4 листьев. Боронуют поперек или по диагонали к направлению рядков боронами БЗСС-1, ЗБП-0.6А со сцепкой. Скорость движения агрегата 5-6 км/час. При наличии в посевах более 33 сорняков\м2 в фазу кущения для борьбы с сорной растительностью применяют гербициды: осот полевой, бодяг полевой и ромашку обрабатывают в фазу 3-4 листьев следующими препаратами: гранстар, 75% с.т.с. - 0,0025; кортес, СП - 0,008; агрон, ВР - 0,16-0,2. В дальнейшем технология возделывания овса предусматривает комплекс приемов химической защиты по вегетирующим растениям. При высокой численности шведской мухи, тли, пьявицы и трипсов в фазах 2-3х листьев и кущения посевы обрабатывают инсектицидами: децис-экстра, КЭ - 0,05; каратэ, КЭ - 0,15; суми-альфа, 5% КЭ - 0,15.

При наличии корончатой ржавчины, красно-бурой пятнистости в период появления флаг - листа - выметывания - цветения растения опрыскивают фунгицидами: байлетон, СП - 0,5; бампер, 25% к.э. - 0,5; фоликур, КЭ - 1.

Уборка. Резервом увеличения валовых сборов тритикале, наряду с повышением ее урожайности, является снижение потерь при уборке. При уборке должны быть решены задачи:

1.своевременная уборка в сжатые сроки во избежание потерь зерна и снижения его качества;

2.быстрая уборка соломы и половы с полей или равномерное ее распределение после измельчения на поле, чтобы создать условия для обработки почвы;

3.незамедлительная доработка поступающего на ток зерна, его очистка, сушка, сортировка.

Прямое комбайнирование семеноводческих посевов можно начинать при влажности зерна 16-18%. В этом случае сформирован максимальный урожай зерна. Перестой спелого хлеба на корню снижает урожайность на 5-6 ц/га за счет осыпания и резко ухудшает качество зерна.

Необходимо помнить, что при хранении зерна в насыпи влажное зерно начинает согреваться уже через несколько часов.

Предварительно подработанный ворох влажностью 18-20% в насыпи может храниться не более 3-4 суток, влажностью 22-25% - не более суток. Это обусловлено тем, что при хранении семенной фракции влажностью 22-24% насыпью уже на второй день происходит снижение всхожести, а влажностью 25% и более - в первые сутки.

В последние годы участились случаи выпадения повышенного количества осадков в период уборочных работ, что приводит к полеганию посевов. Поэтому для того, чтобы сохранить выращенный урожай, важно знать особенности уборки полегших посевов:

1. Все комбайны должны быть оборудованы стеблеподъемниками, поскольку количество полегших и поникших стеблей резко возрастает, что приводит к увеличению потерь колосьев за жаткой.

2. В первую очередь следует обмолачивать те участки, где качество хлебостоя хорошее, но угроза прорастания на корню велика.

3. Поскольку полегший хлебостой подсыхает медленно, то для повышения дневной выработки - утром (с 9 до 11 часов) и вечером (после 17 часов) следует убирать не полеглые хлеба, а в «сухое время» дня - полеглые участки.

4. Убирать сильно полеглые хлеба нужно против или перпендикулярно направлению полегания, с обязательным использованием стеблеподъемника, что позволит сократить потери зерна на 8-10%. Если хлеба покручены и поросли травой, то такие участки следует убирать вкруговую.

5. На полеглых и засоренных посевах через каждый час работы необходимо осматривать и очищать подбарабанье, соломотряс, скатную доску грохота.

6. В особо критических случаях проводить предуборочное подсушивание гербицидами глифосатной группы. На обработанных участках уборка полегших хлебов будет проводиться с меньшими потерями, а время возможного обмолота продлится на два часа. В итоге, как правило, дополнительные затраты на химическую обработку компенсируются прибавкой зерном. Если зерно в дальнейшем будет использоваться на фуражные цели, то доза гербицида, например раундапа может достигать до 4 л/га, если же на семенные цели - 1 л/га, поскольку снижается всхожесть и энергия прорастания.

Сорта. В Государственный реестр сортов РБ включены следующие сорта ярового тритикале:

ИНЕССА. Включен в Государственный реестр по Гомельской области с 1997 г. Вегетационный период 102-127 дней. Зернофуражного использования. Устойчив к полеганию. Содержание сырого протеина 14,2-15,5%. Пригоден для использования в качестве поддерживающей культуры для возделывания в смеси с полегающими зернобобовыми культурами.

ЛАНА. В Государственном реестре находится с 1998 г. и допущен на территории всей республики. Вегетационный период 90-109 дней. Устойчив к полеганию. Средняя урожайность за годы испытания составила 47,2 ц/га, максимальная - 71,1 ц/га. Содержание белка в зерне 13,6-16,5%, крахмала - 59,1-61,8%. Зернофуражного использования. Пригоден для использования в спиртовой промышленности.

КАРГО. Включен в Госреестр с 2001 г. по республике, за исключением Гомельской области. За годы испытания средняя урожайность составила 47,4 ц/га. Максимальная урожайность 82,2 ц/га получена на Щучинском ГСУ в 1997 году. Вегетационный период на 3-5 дней короче, чем у стандарта Лана. Растения средней высоты, достаточно устойчивы к полеганию. Содержание белка 12,1-16,7%. Сорт зернофуражного использования.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.