Кометы: общее описание

Характеристика комет: история развития, происхождение, структура и основные элементы, причина свечения и химический состав. Точность определения кометных орбит, методы оценки их блеска, современные методы исследования. Защита Земли от кометной опасности.

Рубрика Астрономия и космонавтика
Вид контрольная работа
Язык русский
Дата добавления 30.10.2013
Размер файла 54,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Введение

Кометы являются одними из самых эффектных тел в Солнечной системе. Это своеобразные космические айсберги, состоящие из замороженных газов сложного химического состава, водяного льда и тугоплавкого минерального вещества в виде пыли и более крупных фрагментов. Ежегодно открывают 5-7 новых комет и, довольно часто, один раз в 2-3 года вблизи Земли и Солнца проходит яркая комета с большим хвостом. Кометы интересуют не только астрономов, но и многих других учёных: физиков, химиков, биологов, историков… Постоянно проводятся достаточно сложные и дорогостоящие исследования. Чем же вызван такой живой интерес к этому явлению? Его можно объяснить тем, что кометы - ёмкий и ещё далеко не полностью исследованный источник полезной науке информации. Например, кометы «подсказали» учёным о существовании солнечного ветра, имеется гипотеза о том, что кометы являются причиной возникновения жизни на земле, они могут дать ценную информацию о возникновении галактик.

1. Характеристика комет

1.1 История развития комет

За обозримое прошлое человечества было открыто много комет. На первых порах серьезного изучения комет никому не приходила в голову мысль, что они принадлежат Солнечной системе. Раньше предполагалось, что таинственные небесные странницы приходят к нам из далеких безвестных глубин межзвездного пространств, совершая удивительное «паломничество». Они подходят к Солнцу на расстояние в несколько десятков или сотен миллионов километров, «приветствуют» его и затем пускаются в обратный путь. При этом, чем дальше кометы уходили от Солнца, тем сильнее ослабевал их блеск, пока совсем не пропадал. Так заканчивался каждый вояж. Куда направлялись таинственные визитеры: искать ли другие солнца, или возвращались в какой-то давно обжитый «дом», скрытый от нашего взора далекими километрами космических расстояний? Долгое время это оставалось загадкой. Большинство астрономов предполагали, что каждая комета приходит к Солнцу лишь один раз и затем навсегда покидает его окрестности.

Первое письменное упоминание о появлении кометы датируется 2296 годом до нашей эры. Движение кометы по созвездиям тщательно наблюдалось китайскими астрономами. Древним китайцам небо представлялось огромной страной, где яркие планеты были правителями, а звезды - органами власти. Поэтому постоянно перемещающуюся комету древние астрономы считали гонцом, курьером, доставляющим депеши. Считалось, что любое событие на звёздном небе предварялось указом небесного императора, доставляемым кометой-гонцом. Древние люди панически боялись комет, предписывая им многие земные катаклизмы и несчастья: мор, голод, стихийные бедствия. Комет боялись потому, что не могли найти достаточно понятного и логичного объяснения этому явлению. Отсюда появляются многочисленные мифы о кометах. Древним грекам головой с распущенными волосами представлялась любая достаточно яркая и видимая невооружённым взглядом комета. Отсюда образовалось и название: слово «комета» происходит от древнегреческого «кометис», что в переводе означает «волосатый».
Научно обосновать явление первым попытался Аристотель. Не замечая никакой закономерности в появлении и движении комет, он предложил считать их воспламеняющимися атмосферными испарениями. Мнение Аристотеля стало общепризнанным. Однако римский учёный Сенека попытался опровергнуть учение Аристотеля. Он писал, что «комета имеет собственное место между небесными телами…, она описывает свой путь и не гаснет, а только удаляется». Но его проницательные предположения сочли безрассудными, так как слишком был высок авторитет Аристотеля. Но в силу неопределённости, отсутствия единого мнения и объяснения феномену «хвостатых звёзд» люди ещё долго продолжали считать их чем-то сверхъестественным. В кометах видели огненные мечи, кровавые кресты, горящие кинжалы, драконов, отрубленные головы. Впечатления от появления ярких комет были настолько сильны, что предрассудкам поддавались даже просвещённые люди, учёные: например, известный математик Бернулли говорил, что хвост кометы является знамением гнева Божия.

В эпоху Средневековья вновь появился научный интерес к явлению. Один из выдающихся астрономов той эпохи Региомонтан отнёсся к кометам, как к объектам научного исследования. Регулярно наблюдая все появлявшиеся светила, он первым описал траекторию движения и направления хвоста. В XVI веке астроном Апиан, проводя похожие наблюдения, пришёл к выводу, что хвост кометы всегда направлен в противоположную Солнцу сторону. Чуть позже стал наблюдать движение комет с наивысшей для того времени точностью датский астроном Тихо Браге. В результате своих исследований он доказал, что кометы - небесные тела, более далёкие, чем Луна, и тем самым опроверг учение Аристотеля об атмосферных испарениях. 
Но, несмотря на исследования, избавление от предрассудков шло очень медленно: например, Людовик XIV очень опасался кометы 1680 года, так как считал её предвестницей своей гибели.

Наибольший вклад в изучение истинной природы комет был сделан Эдмондом Галлеем. Главным его открытием было установление периодичности появления одной и той же кометы: в 1531 г., в 1607 г., в 1682 г. Увлечённый астрономическими исследованиями, Галлей заинтересовался движением кометы 1682 г. и занялся вычислением её орбиты. Его интересовал путь её движения, а так как Ньютон уже проводил подобные вычисления, Галлей обратился к нему. Учёный сразу дал ответ: комета будет двигаться по эллиптической орбите. По просьбе Галлея Ньютон изложил свои вычисления и теоремы в трактате «De Motu», то есть «О движении». Получив помощь Ньютона, он занялся вычислением кометных орбит по астрономическим наблюдениям. Ему удалось собрать сведения о 24 кометах. Таким образом, появился первый каталог кометных орбит. В своём каталоге Галлей обнаружил, что три кометы очень похожи по своим характеристикам, из чего он сделал вывод, что это не три разные кометы, а периодические появления одной и той же кометы. Период её появления оказался равным 75,5 лет. Впоследствии она была названа кометой Галлея.

После каталога Галлея появилось ещё несколько каталогов, куда заносятся все появившиеся как в далёком прошлом, так и в настоящее время кометы. Из них наиболее известны: каталог Бальде и Обальдия, а также, впервые изданный в 1972 году, каталог Б. Марсдена, считающийся наиболее точным и надёжным

1.2 Происхождение комет

комета земля орбита

Откуда же приходят к нам «хвостатые звёзды»? До сих пор об источниках комет ведутся оживлённые дискуссии, но единое решение ещё не выработано. Ещё в XVIII веке Гершель, наблюдая туманности, предположил, что кометы - небольшие туманности, движущиеся в межзвёздном пространстве. В 1796 году Лаплас в своей книге «Изложение системы мира» высказал первую научную гипотезу о происхождении комет. Лаплас считал их обрывками межзвёздных туманностей, что неверно из-за различий в химическом составе тех и других. Однако его предположение о том, что эти объекты имеют межзвёздное происхождение, подтверждалось наличием комет с почти параболическими орбитами. Короткопериодические кометы Лаплас считал также пришедшими из межзвёздного пространства, но некогда захваченными притяжением Юпитера и переведёнными им на короткопериодические орбиты. Теория Лапласа имеет сторонников и в настоящее время.

В 50-е годы голландский астроном Я. Оорт предложил гипотезу о существовании кометного облака на расстоянии 150 000 а. е. от Солнца, образовавшегося в результате взрыва 10-й планеты Солнечной системы - Фаэтона, некогда существовавшей между орбитами Марса и Юпитера. По мнению академика В.Г. Фесенкова взрыв произошёл в результате слишком сильного сближения Фаэтона и Юпитера, так как при таком сближении, вследствие действия колоссальных приливных сил, возник сильный внутренний перегрев Фаэтона. Сила взрыва была огромна. В доказательство теории можно привести расчёты Ван Фландерна, изучившего распределение элементов 60 долгопериодических комет и пришедшего к выводу, что 5 миллионов лет назад между орбитами Юпитера и Марса взорвалась планета массой в 90 земных масс (сравнимая по массе с Сатурном). В результате такого взрыва большая часть вещества в виде ядер комет (обломков ледяной коры), астероидов и метеоритов покинула пределы Солнечной системы, часть задержалась на её периферии в виде облака Оорта, часть вещества осталась на прежней орбите Фаэтона, где она и сейчас циркулирует в виде астероидов, кометных ядер и метеоритов. 

Некоторые кометные ядра сохранили реликтовый лёд под рыхлым теплоизоляционным слоем тугоплавкой компоненты, и ещё до сих пор в поясе астероидов иногда открывают короткопериодические кометы, движущиеся по почти круговым орбитам. Примером такой кометы может быть комета Смирновой - Чёрных, открытая в 1975 году.

В настоящее время общепринятой считается гипотеза гравитационной конденсации всех тел Солнечной системы из первичного газово-пылевого облака, имевшего сходный с солнечным химический состав. В холодной зоне облака сконденсировались планеты-гиганты: Юпитер, Сатурн, Уран, Нептун. Они вобрали в себя наиболее обильные элементы протопланетного облака, в результате чего их массы возросли настолько, что они стали захватывать не только твёрдые частицы, но и газы. В этой же холодной зоне образовались и ледяные ядра комет, которые частично пошли на формирование планет-гигантов, а частично, по мере роста масс этих планет, стали отбрасываться ими на периферию Солнечной системы, где и образовали «резервуар» комет - облако Оорта. В результате изучения элементов почти параболических кометных орбит, а также применения методов небесной механики было доказано, что облако Оорта реально существует и является достаточно устойчивым: период его полураспада составляет около одного миллиарда лет. При этом облако постоянно пополняется из разных источников, поэтому оно не перестаёт существовать.

Ф. Уипл полагает, что в Солнечной системе помимо облака Оорта существует и более близкая область, густо населённая кометами. Она располагается за орбитой Нептуна, содержит около 10 комет и именно она вызывает те заметные возмущения в движении Нептуна, которые раньше приписывались Плутону, так как имеет массу на два порядка большую, чем масса Плутона. Этот пояс мог образоваться в результате так называемой «диффузии кометных орбит», теория которой была наиболее полно разработана рижским астрономом К. Штейнсом. Она заключается в очень медленном накоплении малых планетных возмущений, результатом которого становится постепенное сокращение большой полуоси эллиптической орбиты кометы. 

Таким образом, за миллионы лет многие кометы, ранее принадлежавшие облаку Оорта, изменяют свои орбиты так, что их перигелии (ближайшее расстояние от Солнца) начинают концентрироваться вблизи наиболее удалённой от Солнца планеты-гиганта Нептуна, имеющего большую массу и протяжённую сферу действия. Поэтому, вполне возможно существование предсказываемого Уиплом кометного пояса за Нептуном. В дальнейшем эволюция кометной орбиты из пояса Уипла протекает намного стремительнее, в зависимости от сближения с Нептуном. При сближении происходит сильная трансформация орбиты: Нептун своим магнитным полем действует так, что после выхода из сферы его действия, комета начинает двигаться по резко гиперболической орбите, что приводит либо к её выбросу из Солнечной системы, либо она продолжает двигаться внутрь планетной системы, где может снова подвергнуться воздействию планет-гигантов, либо будет двигаться к Солнцу по устойчивой эллиптической орбите, своим афелием (точкой наибольшего удаления от Солнца) показывая принадлежность к семейству Нептуна. По мнению Е.И. Казимирчак-Полонской, диффузия приводит к накоплению круговых кометных орбит также между Ураном и Нептуном, Сатурном и Ураном, Юпитером и Сатурном, которые также являются источниками кометных ядер.

Ряд трудностей, имевших место в гипотезе захвата, особенно во времена Лапласа, при объяснении происхождения комет, побудил учёных искать другие источники комет. Так, например, французский учёный Лагранж, основываясь на отсутствии резких первоначальных гипербол, наличии только прямых движений в системе короткопериодических комет в семействе Юпитера, высказал гипотезу об эруптивном, то есть вулканическом, происхождении комет из различных планет. Лагранжа поддержал Проктор, который объяснял существование комет в Солнечной системе сильнейшей вулканической деятельностью на Юпитере. Но для того, чтобы фрагмент поверхности Юпитера мог преодолеть поле тяготения планеты, ему нужно было бы сообщить начальную скорость порядка 60 км/с. Появление таких скоростей при вулканических извержениях является нереальным, поэтому гипотеза эруптивного происхождения комет считается физически несостоятельной. Но в наше время её поддерживает ряд учёных, разрабатывая дополнения и уточнения к ней. Существуют также и другие гипотезы о происхождении комет, не получившие столь широкого распространения, как гипотезы о межзвёздном происхождении комет, об облаке Оорта и эруптивном образовании комет.

1.3 Строение и состав комет

«Основа» любой кометы - ее ядро. Маленькое ядро кометы является единственной её твёрдой частью, в нём сосредоточена почти вся её масса. Поэтому ядро - первопричина всего остального комплекса кометных явлений. Ядра комет до сих пор всё ещё недоступны телескопическим наблюдениям, так как они вуалируются окружающей их светящейся материей, непрерывно истекающей из ядер. Применяя большие увеличения, можно заглянуть в более глубокие слои светящейся газопылевой оболочки, но и то, что останется, будет по своим размерам всё ещё значительно превышать истинные размеры ядра. Центральное сгущение, видимое в атмосфере кометы визуально и на фотографиях, называется фотометрическим ядром. Считается, что в центре его находится собственно ядро кометы, то есть располагается центр масс. Однако, как показал советский астроном Д.О. Мохнач, центр масс может не совпадать с наиболее яркой областью фотометрического ядра. Это явление носит название эффекта Мохнача. Туманная атмосфера, окружающая фотометрическое ядро, называется комой. Кома вместе с ядром составляют голову кометы - газовую оболочку, которая образуется в результате прогревания ядра при приближении к Солнцу. Вдали от Солнца голова выглядит симметричной, но с приближением к нему она постепенно становится овальной, затем удлиняется ещё сильнее и в противоположной от Солнца стороне из неё развивается хвост, состоящий из газа и пыли, входящих в состав головы.

Ещё во времена Лапласа существовало мнение, что ядро кометы - твёрдое тело, состоящее из легко испаряющихся веществ типа льда или снега, быстро превращающихся в газ под воздействием солнечного тепла. Эта классическая ледяная модель кометного ядра была существенно дополнена в последнее время. Наибольшим признанием пользуется разработанная Уиплом модель ядра - конгломерата из тугоплавких каменистых частиц и замороженной летучей компоненты (метана, углекислого газа, воды и др.). В таком ядре ледяные слои из замороженных газов чередуются с пылевыми слоями. По мере прогревания газы, испаряясь, увлекают за собой облака пыли. Это позволяет объяснить образование газовых и пылевых хвостов у комет, а также способность небольших ядер к газовыделению. Согласно Уиплу механизм истечения вещества из ядра объясняется следующим образом. У комет, совершивших небольшое число прохождений через перигелий, - так называемых «молодых» комет - поверхностная защитная корка ещё не успела образоваться, и поверхность ядра покрыта льдами, поэтому газовыделение протекает интенсивно путём прямого испарения. В спектре такой кометы преобладает отражённый солнечный свет, что позволяет спектрально отличать «старые» кометы от «молодых». Обычно «молодыми» называются кометы, имеющие большие полуоси орбит, так как предполагается, что они впервые проникают во внутренние области Солнечной системы. 

«Старые» кометы - это кометы с коротким периодом обращения вокруг Солнца, многократно проходившие свой перигелий. У «старых» комет на поверхности образуется тугоплавкий экран, так как при повторных возвращениях к Солнцу поверхностный лед, подтаивая, «загрязняется». Этот экран хорошо защищает находящийся под ним лёд от воздействия солнечного света. Модель Уипла объясняет многие кометные явления: обильное газовыделение из маленьких ядер, причину негравитационных сил, отклоняющих комету от расчётного пути. Потоки, истекающие из ядра, создают реактивные силы, которые и приводят к вековым ускорениям или замедлениям в движении короткопериодических комет.

Существуют также другие модели, отрицающие наличие монолитного ядра: одна представляет ядро как рой снежинок, другая - как скопление каменно-ледяных глыб, третья говорит о том, что ядро периодически конденсируется из частиц метеорного роя под действием гравитации планет. Всё же наиболее правдоподобной считается модель Уипла. Массы ядер комет в настоящее время определяются крайне неуверенно, поэтому можно говорить о вероятном диапазоне масс: от нескольких тонн (микрокометы) до нескольких сотен, а возможно, и тысяч миллиардов тонн (от 10 до 10 - 10 тонн). 
Кома кометы окружает ядро в виде туманной атмосферы. У большинства комет кома состоит из трёх основных частей, заметно отличающихся своими физическими параметрами: 1) наиболее близкая, прилегающая к ядру область - внутренняя, молекулярная, химическая и фотохимическая кома, 2) видимая кома, или кома радикалов, 3) ультрафиолетовая, или атомная кома. На расстоянии в 1 а. е. от Солнца средний диаметр внутренней комы D = 10 км, видимой D = 10 - 10 км и ультрафиолетовой D = 10 км. Во внутренней коме происходят наиболее интенсивные физико-химические процессы: химические реакции, диссоциация и ионизация нейтральных молекул. В видимой коме, состоящей в основном из радикалов (химически активных молекул) (CN, OH, NH и др.), процесс диссоциации и возбуждения этих молекул под действием солнечной радиации продолжается, но уже менее интенсивно, чем во внутренней коме. Л.М. Шульман на основании динамических свойств вещества предложил делить кометную атмосферу на следующие зоны: 1) пристеночный слой (область испарения и конденсации частиц на ледяной поверхности), 2) околоядерную область (область газодинамического движения вещества), 3) переходную область, 4) область свободно - молекулярного разлёта кометных частиц в межпланетное пространство. Но не для всякой кометы должно быть обязательным наличие всех перечисленных атмосферных областей. По мере приближения кометы к Солнцу диаметр видимой головы день ото дня растёт, после прохождения перигелия её орбиты голова снова увеличивается и достигает максимальных размеров между орбитами Земли и Марса. В целом для всей совокупности комет диаметры голов заключены в широких пределах: от 6000 км до 1 млн. км. Головы комет при движении кометы по орбите принимают разнообразные формы. Вдали от Солнца они круглые, но по мере приближения к Солнцу, под воздействием солнечного давления, голова принимает вид параболы или цепной линии.

Плотность и комы, и особенно хвоста, чрезвычайно мала. Хвост у кометы бывает прямой или изогнутый и направлен от ядра в сторону, противоположную Солнцу. Поэтому когда комета из межпланетного пространства приближается к нашему светилу, то движется она головой вперед. А вот когда, обогнув Солнце, комета удаляется от него, то хвост движется впереди головы. Голова и хвост кометы светятся: пылевые частицы просто отражают свет Солнца, а атомы молекул и газов переизлучают поглощенные ими кванты солнечного света. Кометное ядро «превращается» в доступную для наблюдений комету.

Форма и протяженность хвостов различны. Текущий рекорд длины хвоста кометы - это хвост Великой кометы 1843. Её хвост имел длину не менее 300 млн. км. (диаметр головы ее несколько превышал диаметр Солнца). Это значит, что если мысленно поместить саму комету в центр Солнца, то хвост пересек бы орбиту Марса.

Классификацию кометных хвостов предложил в XIX в. Замечательный русский астроном Ф.А. Бредихин:

I тип хвостов - прямые, направленные от Солнца. Они образованы ионизированными молекулами кометной атмосферы, которые солнечным ветром уносятся прочь от ядра;

II тип - это изогнутые хвосты и по отношению к орбите кометы отклоняются назад. Образуются они непрерывно истекающими из ядра частичками пыли;

III тип - это короткие хвосты, почти прямые, заметно отклоняющиеся от линии «Солнце - ядро кометы». Такие хвосты образуются при единовременных «извержениях» из ядра целого облака пылинок различных размеров, растягивающихся поэтому в полоску под действием светового давления.

Интерес ученых к кометам связан главным образом с желанием изучить их состав. Многие полагают, что это - своеобразный «строительный мусор», оставшийся после образования планет Солнечной системы из первоначального газопылевого облака. Наблюдение комет может дать представление о первичной материи, из которой сформировались их тела, причем эта материя дошла до нас в «законсервированном» виде, сохраняется без изменений, возможно, около 10 миллиардов лет! Благодаря космическому эксперименту ученые впервые увидели кометное ядро, которое оказалось очень похожим на спутники Марса Фобос и Деймос, а также на малые спутники Сатурна и Урана. А это свидетельствует о том, что на заре формирования Солнечной системы кометные ядра могли образовываться в сравнительной близости от Солнца приблизительно в районе между орбитами планет-гигантов Юпитера и Нептуна.

Советская астрофизическая станция «Астрон» вела космические наблюдения кометы Галлея (комета названа по имени английского астронома, дипломата и переводчика Эдмунда Галлея) почти восемь месяцев с декабря 1985 года по июль 1986 года. Был исследован газовый состав головы кометы, сфотографировано несколько спектров, был получен ответ на вопрос, как быстро теряет свою массу кометное ядро в зависимости от расстояния до Солнца. Оказалось, что каждый раз, когда комета сближается с Солнцем (через каждые 75 лет), ядро кометы теряет 370 миллионов тонн своей массы. Это не так уж много, если учесть, что по современным оценкам масса ядра кометы Галлея составляет примерно 10 миллиардов тонн.

Однако через несколько десятков сближений кометы с Солнцем ее ядро полностью потеряет запас льда и превратится в «высохшую комету», похожую на астероид. Тогда ядро уже не будет иметь светящейся головы и хвоста, а будет выглядеть как очень слабенькая звездочка, найти которую на небе можно будет в очень мощный телескоп.

2. Причина свечения комет и их химический состав

Во времена Ломоносова еще ничего не было известно о законе изменения блеска комет и тем более об их спектрах. Однако, Михаил Ломоносов со свойственной ему научной проницательностью охарактеризовал свечение комет с точки зрения, близкой к современной. Он писал: «Комет бледного сияния и хвостов причина недовольно еще изведана, которую я без сомнения в электрической силе полагаю…»

Светись комета только отраженным светом, ее блеск, с приближением к Солнцу (после учета изменения ее расстояния от Земли), менялся бы обратно пропорционально квадрату расстояния ее от Солнца. Примерно так и ведет себя блеск ее звездообразного ядра, что согласуется с тем, что оно состоит в основном из твердых кусков, попросту отражающих свет Солнца. Это подтверждается также и характером спектра ядра. Обычно он является копией солнечного спектра, как и полагается спектру отраженного света. Но когда ядро кометы приближается к Солнцу, то в его спектре появляются яркие линии излучения натрия. В спектре ядра кометы 1882 г., подошедшей чрезвычайно близко к Солнцу, были обнаружены даже яркие линии железа и никеля, пропавшие, когда комета от него удалилась. Потом исчезли и линии натрия. Все это нужно объяснить тем, что твердое ядро кометы, когда оно подходит очень близко к Солнцу, нагревается настолько, что начинает испаряться, превращаясь в раскаленный, светящийся пар. Натрий превращается в пар и светится при меньшей температуре, чем железо, т.е. на большем расстоянии от Солнца; ближе к нему не выдерживает и железо.

Распределение яркости в голове кометы вследствие таких процессов подробно исследовал теоретически Д.О. Мохнач (в Ленинграде). Блеск головы кометы меняется с приближением к Солнцу значительно быстрее, чем обратно пропорционально квадрату расстояния, чаще всего примерно как его 3-я или 4-я степень. Это показывает, что свечение (блеск) головы кометы зависит от Солнца, но не является просто отраженным. Очевидно, Солнце возбуждает свечение кометы, но свечение холодное; это свечение возникает не вследствие обращения кометы в раскаленный пар, так как комета светится даже будучи далеко от Солнца, где ее температура должна быть много ниже нуля. Пыль не может дать подобного свечения, - его могут дать только газы.

Поведение блеска комет все же очень прихотливо, и описанная выше зависимость от расстояния до Солнца меняется не только от кометы к комете, но и у одной кометы на ее пути вокруг Солнца. Это говорит безусловно о неустойчивости кометного ядра, о возможности быстрых изменений на его поверхности.

Ярким примером этого является история кометы, открытой чешским астрономом Когоутеком ранней весной 1973 г. В это время она была еще очень далеко от Солнца и поэтому была очень слаба (16-й звездной величины). Но вычисленная вскоре ее орбита оказалась имеющей перигелий очень близко к Солнцу, всего 0,14 а. е. Это очень вдохновило наблюдателей, так как, предполагая, что для нее оправдается закон повышения блеска как четвертая или даже более высокая степень расстояния от Солнца, они ожидали, что комета в декабре и январе станет почти столь же яркой, как Венера, и надеялись изучить ее очень подробно. Однако комета увеличивала блеск очень медленно и в декабре была лишь едва видима глазом, тем более, что наблюдать ее мешал свет зари. Лишь в январе 1974 г. она стала более яркой и ее удалось изучить инструментами средней силы. Шумиха, поднятая журналистами по поводу этой «кометы века», как они ее назвали, оказалась преждевременной. Некоторые молекулы кометного газа поглощают солнечный свет, и затем снова его же излучают в той же длине волны. Такое излучение физики называют резонансным. Другие молекулы поглощают энергию Солнца в виде ультрафиолетовых лучей, но излучают их в виде лучей с другой длиной волны, видимых глазу. Такое свечение физики называют флуоресценцией. Пример флуоресценции представляют некоторые вещества на Земле, например, сернистый цинк; «освещенные» невидимыми глазу рентгеновскими лучами в темноте, они от этого светятся видимым светом, часто зеленым или голубым.

Таким образом, теория происхождения таким путем кометных спектров, разработанная в Бельгии Свингсом, подтверждается новейшими детальными наблюдениями.

Спектр головы кометы показывает, что она состоит из молекул, т.е. химических соединений, излучающих не узкие яркие линии, а широкие полосы. Химический состав этих газов удалось выяснить подробнее лишь за последние годы. Оказалось, что голова кометы состоит из молекул углерода (С), циана (СК), углеводорода (СН).

В 1970 г. было произведено первое наблюдение кометы с борта искусственного спутника Земли ОАО-2. С него в ультрафиолетовом свете (не доходящем до Земли вследствие его поглощения в ее атмосфере) было обнаружено, что ядро кометы было окружено водородным облаком, которое по размерам было больше, чем Солнце. Огромность этого облака сама по себе не удивила уже астрономов, потому что еще тридцатью годами ранее автор этих строк доказал, что у кометы 1943 г. пары циана составляли оболочку, большую чем само Солнце.

Яркость разных полос в спектре у разных комет бывает различна, и в одной и той же комете она меняется с изменением ее расстояния от Солнца, по-видимому, как вследствие изменения пропорции газов, составляющих голову кометы, так и вследствие изменений условий их свечения. Главную роль все же играют всегда углерод и циан, который является, как известно, крайне ядовитым газом и главной составной частью сильного яда - синильной кислоты. В спектре головы кометы, кроме ярких полос, присутствует и непрерывный спектр, который, возможно, также принадлежит молекулам газа и не является спектром света, отраженного от Солнца.

Однако большинство ученых полагает, что пыль в голове кометы все же должна быть и что из нее же состоят изогнутые хвосты (II типа по классификации Бредихина), так как у них тоже наблюдается непрерывный спектр. Если бы в этом спектре удалось обнаружить и темные линии, имеющиеся в спектре Солнца, наличие пыли в хвостах комет было бы доказанным. Хвост кометы, когда он широкий и яркий, иногда обнаруживает непрерывный спектр, свидетельствующий о наличии в нем пыли. По большей части, однако, спектр хвоста кометы газовый, обнаруживающий наличие ионизованных углекислоты СО2, окиси углерода СО, молекул азота N2. Как известно, окись углерода СО образуется в печах при неполном сгорании топлива и тоже ядовита, хотя и не так, как циан. Ее называют угарным газом. Вы видите, что на вопрос о химическом составе комет ответить кратко нельзя, так же как, например, на вопрос о содержании большой цирковой программы: состав комет разнообразен, он сложен и в разных частях комет (в ядре, голове и хвосте) различен.

3. Методы исследования комет

3.1 Точность определение кометных орбит

Для вычисления точного положения кометы в пространстве кроме параметров, описывающих форму орбиты и ее расположение, необходим еще момент времени прохождения кометы через перигелий. Элементы орбиты можно определить, если есть не менее трех наблюдений кометы. И без учета возмущающего действия на комету притяжения со стороны других тел Солнечной системы, задача нахождения этих элементов, в общем, кажется не столь сложной.

Если же, на практике по нескольким наблюдениям определить орбиту кометы и предвычислить ее эфемериду (положение ее на небе на период видимости), в следующее возвращение кометы к Солнцу, ее можно либо вообще не найти, либо, случайно «переоткрыв» ее, увидеть, что элементы орбиты значительно изменились под влиянием гравитационных возмущений со стороны больших планет Солнечной системы. Дело в том, что вычисленная по нескольким наблюдениям комета без учета возмущений со стороны планет эллиптическая, параболическая или гиперболическая орбита - это так называемая оскулирующая орбита кометы, подчас значительно отличающаяся от реальной, по которой комета движется среди планет Солнечной системы. На практике оскулирующая орбита кометы пересчитывается на все более отдаленные в прошлое моменты времени с постоянным учетом гравитационных возмущений. Процедура пересчета элементов кометной орбиты производится до того момента, когда орбита окажется не подверженной влиянию со стороны больших планет. Такая орбита называется первичной.

Первичная орбита кометы, будучи одной из кривых конического сечения (окружность, эллипс, парабола или гипербола), позволяет судить о принадлежности кометы к Солнечной системе. Большинство первичных кометных орбит - эллиптические, т.е. большинство комет - члены нашей Солнечной системы. Но стали ли они членами Солнечной системы, придя из межзвездных пространств, или всегда принадлежали к семейству планет Солнца? В каждом конкретном случае нужно специальное исследование.

Согласно теории движения комет, и среди комет, имеющих гиперболические
первичные орбиты, лишь незначительное количество может оказаться «небесными гостьями» из межзвездных глубин: большая часть таких орбит возникла в результате гравитационных. При небольшом количестве наблюдений степень достоверности установления формы орбиты может оказаться невысокой, хотя вычисленная орбита и является наилучшим образом соответствующей наблюдениям среди всех других возможных орбит кометы. В 1976 году польский ученый К. Рудницкий открыл новую комету. Орбита ее, вычисленная американскими специалистами по наблюдениям с 15 по 22 октября 1976 года, была определена как параболическая. По 14 наблюдениям кометы Рудницкого в период с 15 октября по 26 октября того же года польские ученые определили ее орбиту как эллиптическую с периодом обращения, равным 15 годам. Позже по мере присоединения новых наблюдений кометы ее орбита принята опять параболической с новыми значениями элементов, затем - гиперболической, а потом - еще раз параболической. Наконец, по 42 наблюдениям за период с 15 октября по 5 декабря 1976 года орбита кометы Рудницкого окончательно была определена как гиперболическая.

Этот пример может служить иллюстрацией трудностей, с которыми ученые сталкиваются при определении кометной орбиты по малому количеству наблюдений.

3.2 Методы оценки блеска комет

Точность оценки должна быть не ниже +/-0.2 звездной величины. Для того чтобы добиться подобной точности наблюдатель в процессе работы в течение 5 мин должен производить несколько оценок блеска желательно по различным звездам сравнения, находя среднее значение звездной величины кометы. Именно таким образом, полученное значение можно считать достаточно точным, но никак не то, которое получено в результате лишь одной оценки! В подобном случае, когда точность не превышает +/-0.3, после значения звездной величины кометы ставится двоеточие (:). Если наблюдателю не удалось найти комету, то он оценивает предельную звездную величину для своего инструмента в данную ночь, при которой он еще смог бы наблюдать комету. В этом случае перед оценкой ставится левая квадратная скобка ((). В литературе приводится несколько методов оценок звездной величины кометы. Но наиболее применимыми остаются метод Бобровникова, Морриса и Сидгвика.

1) Метод Бобровникова.

Этот метод применяется только для комет, степень конденсации которых находится в пределах 7-9. Его принцип заключается в выведении окуляра телескопа из фокуса до тех пор, пока внефокальные изображения кометы и звезд сравнения не окажутся приблизительно одинакового диаметра. Полного равенства достичь невозможно, так как диаметр изображения кометы всегда больше диаметра изображения звезды. Следует учитывать, что у внефокального изображения звезды яркость примерно одинакова, а комета выглядит пятном неравномерной яркости. Наблюдатель должен научиться усреднять яркость кометы по всему ее внефокальному изображению и эту среднюю яркость сравнивать со звездами сравнения. Сравнение яркости внефокальных изображений кометы и звезд сравнения можно производить по методу Нейланда-Блажко.

2) Метод Сидгвика.

Этот метод применяется только для комет, степень конденсации которых находится в пределах 0-3. Его принцип заключается в сравнении фокального изображения кометы с внефокальным изображениями звезд сравнения, имеющими при расфокусировке такие же диаметры, что и фокальная комета. Наблюдатель сначала внимательно изучает изображение кометы, «записывая» ее яркость в памяти. Затем расфокусирывает звезды сравнения и оценивает записанный в памяти блеск кометы. Здесь необходим определенный навык, чтобы научиться оценивать блеск кометы, записанный в памяти.

3) Метод Морриса

Метод комбинирует особенности методов Бобровникова и Сидгвика, его можно применять для комет с любым значением степени конденсации. Принцип сводится к следующей последовательности приемов: получают такое внефокальное изображение кометы, которое имеет приблизительно однородную поверхностную яркость; запоминают размеры и поверхностную яркость внефокального изображения кометы; расфокусировывают изображения звезд сравнения таким образом, чтобы их размеры были равны размерам запомнившегося изображения кометы; оценивают блеск кометы, сравнивая поверхностные яркости внефокальных изображений кометы и звезд сравнения.

При оценках блеска комет, в случае, когда комета и звезды сравнения находятся на разной высоте над горизонтом, обязательно должна вводиться поправка на атмосферное поглощение. Особенно это существенно, когда комета находится ниже 45 градусов над горизонтом. Для оценок блеска комет используются специальные звездные стандарты. Далеко не все атласы и каталоги можно использовать для этой цели. Из наиболее доступных и распространенных в настоящее время следует выделить каталоги Тихо2 и Дрепера.

3.3 Современные исследования комет

Проект «Вега» («Венера - комета Галлея») был одним из самых сложных в истории космических исследований. Он состоял из трёх частей: изучение атмосферы и поверхности Венеры при помощи посадочных аппаратов, изучение динамики атмосферы Венеры при помощи аэростатных зондов, пролёт через кому и плазменную оболочку кометы Галлея.

Автоматическая станция «Вега-1» стартовала с космодрома Байконур 15 декабря 1984 года, через 6 дней за ней последовала «Вега-2». В июне 1985 года они друг за другом прошли вблизи Венеры, успешно проведя исследования, связанные с этой частью проекта.

Но самой интересной была третья часть проекта - исследования кометы Галлея. Космическим аппаратам впервые предстояло «увидеть» ядро кометы, неуловимое для наземных телескопов. Встреча «Веги-1» с кометой произошла 6 марта, а «Веги-2» - 9 марта 1986 года. Они прошли на расстоянии 8900 и 8000 километров от её ядра.

Самой важной задачей в проекте было исследование физических характеристик ядра кометы. Впервые ядро рассматривалось как пространственно разрешённый объект, были определены его строение, размеры, инфракрасная температура, получены оценки его состава и характеристик поверхностного слоя.

В то время ещё не представлялось технической возможности совершить посадку на ядро кометы, так как слишком велика была скорость встречи - в случае с кометой Галлея это 78 км/с. Опасно было даже пролетать на слишком близком расстоянии, так как кометная пыль могла разрушить космический аппарат. Расстояние пролёта было выбрано с учётом количественных характеристик кометы. Использовалось два подхода: дистанционные измерения с помощью оптических приборов и прямые измерения вещества (газа и пыли), покидающего ядро и пересекающего траекторию движения аппарата.

Оптические приборы были размещены на специальной платформе, разработанной и изготовленной совместно с чехословацкими специалистами, которая поворачивалась во время полёта и отслеживала траекторию движения кометы. С ёе помощью проводились три научных эксперимента: телевизионная съёмка ядра, измерение потока инфракрасного излучения от ядра (тем самым определялась температура его поверхности) и спектра инфракрасного излучения внутренних «околоядерных» частей комы на длинах волн от 2,5 до 12 микрометров с целью определения его состава. Исследования ИК излучения проводились при помощи инфракрасного спектрометра ИКС.

Итоги оптических исследований можно сформулировать следующим образом: ядро - вытянутое монолитное тело неправильной формы, размеры большой оси - 14 километров, в поперечнике - около 7 километров. Каждые сутки его покидают несколько миллионов тонн водяного пара. Расчёты показывают, что такое испарение может идти от ледяного тела. Но вместе с тем приборы установили, что поверхность ядра чёрная (отражательная способность менее 5%) и горячая (примерно 100 тысяч градусов Цельсия).

Измерения химического состава пыли, газа и плазмы вдоль траектории полёта показали наличие водяного пара, атомных (водород, кислород, углерод) и молекулярных (угарный газ, диоксид углерода, гидроксил, циан и др.) компонентов, а также металлов с примесью силикатов.

Проект был осуществлён при широкой международной кооперации и с участием научных организаций многих стран. В результате экспедиции «Вега» учёные впервые увидели кометное ядро, получили большой объём данных о его составе и физических характеристиках. Грубая схема была заменена картиной реального природного объекта, ранее никогда не наблюдавшегося.

NASA готовило три больших экспедиции. Первая из них называется «Stardust» («Звёздная пыль»). Она предполагала запуск в 1999 году космического аппарата, который прошел в 150 километрах от ядра кометы Wild 2 в январе 2004 года. Основная его задача была: собрать для дальнейших исследований кометную пыль с помощью уникальной субстанции, называемой «аэрогель».

Второй проект носит название «Contour» («COmet Nucleus TOUR»). Аппарат был запущен в июле 2002 года. В ноябре 2003 года он встретился с кометой Энке, в январе 2006 года - с кометой Швассмана-Вахмана-3, и, наконец, в августе 2008 года - с кометой d'Arrest. Он был оснащён совершенным техническим оборудованием, которое позволило получить высококачественные фотографии ядра в различных спектрах, а также собрать кометные газ и пыль. Проект также интересен тем, что космический аппарат при помощи гравитационного поля Земли был переориентирован в 2004-2008 году на новую комету.

Третий проект - самый интересный и сложный. Он называется «Deep Space 4» и входит в программу исследований под названием «NASA New Millennium Program». В его ходе предполагалась посадка на ядро кометы Tempel 1 в декабре 2005 года и возвращение на Землю в 2010 году. Космический аппарат исследовал ядро кометы, собрал и доставил на Землю образцы грунта.

Наиболее интересными событиями за последние несколько лет стали: появление кометы Хейла-Боппа и падение кометы Шумахера-Леви 9 на Юпитер.
Комета Хейла-Боппа появилась на небе весной 1997 года. Её период составляет 5900 лет. С этой кометой связаны некоторые интересные факты. Осенью 1996 года американский астроном-любитель Чак Шрамек передал во всемирную сеть Интернет фотографию кометы, на которой отчётливо был виден яркий белый объект неизвестного происхождения, слегка сплюснутый по горизонтали. Шрамек назвал его «Saturn-like object» (сатурнообразный объект, сокращённо - «SLO»). Размеры объекта в несколько раз превосходили размеры Земли. Реакция официальных научных представителей была странной. Снимок Шрамека был объявлен подделкой, а сам астроном - мистификатором, но вразумительного объяснения характера SLO не было предложено. Снимок, опубликованный в Интернет, вызвал взрыв оккультизма, распространялось огромное количество рассказов о грядущем конце света, «мёртвой планете древней цивилизации», злобных пришельцах, готовящихся к захвату Земли с помощью кометы, даже выражение: «What the hell is going on?» («Что за чертовщина происходит?») перефразировали в «What the Hale is going on?»… До сих пор не ясно, что это был за объект, какова его природа.

23 июля появилось сообщение о том, что ядро кометы разделилось пополам. 

Предварительный анализ показал, что второе «ядро» - звезда на заднем плане, но последующие снимки опровергли это предположение. С течением времени «глаза» опять соединились, и комета приняла первоначальный вид. Этот феномен также не был объяснён ни одним учёным.

Таким образом, комета Хейла-Боппа была не стандартным явлением, она дала учёным новый повод для размышлений.

Другим нашумевшим событием стало падение в июле 1994 года короткопериодической кометы Шумахера-Леви 9 на Юпитер. Ядро кометы в июле 1992 года в результате сближения с Юпитером разделилось на фрагменты, которые впоследствии столкнулись с планетой-гигантом. В связи с тем, что столкновения происходили на ночной стороне Юпитера, земные исследователи могли наблюдать лишь вспышки, отражённые спутниками планеты. Анализ показал, что диаметр фрагментов от одного до нескольких километров. На Юпитер упали 20 кометных осколков.

Учёные утверждают, что распад кометы на части - редкое событие, захват кометы Юпитером - ещё более редкое происшествие, а столкновение большой кометы с планетой - экстраординарное космическое событие.

Недавно в американской лаборатории на одном из самых мощных компьютеров Intel Teraflop с производительностью 1 триллион операций в секунду была просчитана модель падения кометы радиусом 1 километр на Землю. Вычисления заняли 48 часов. Они показали, что такой катаклизм станет смертельным для человечества: в воздух поднимутся сотни тонн пыли, закрыв доступ солнечному свету и теплу, при падении в океан образуется гигантское цунами, произойдут разрушительные землетрясения. По одной из гипотез, динозавры вымерли в результате падения большой кометы или астероида. В штате Аризона существует кратер диаметром 1219 метров, образовавшийся после падения метеорита 60 метров в диаметре. Взрыв был эквивалентен взрыву 15 миллионов тонн тринитротолуола. Предполагается, что знаменитый Тунгусский метеорит 1908 года имел диаметр около 100 метров. Поэтому учёные работают сейчас над созданием системы раннего обнаружения, уничтожения или отклонения крупных космических тел, пролетающих недалеко от нашей планеты.

Наиболее интересным исследованием обещает стать миссия Европейского космического агентства к комете Чурюмова-Герасименко, открытой в 1969 году Климом Чурюмовым и Светланой Герасименко. Автоматическая станция «Розетта» была запущена в 2004 году и ожидается, что аппарат подойдёт к комете в ноябре 2014 года в период, когда она ещё будет далека от Солнца и соответственно не будет ещё активна, с тем, чтобы проследить, как происходит развитие кометной активности. Станция будет обращаться около кометы 2 года. Впервые в истории исследования комет планируется опустить на ядро посадочный модуль, который возьмёт образцы грунта и исследует прямо на борту, а также передаст на Землю многочисленные фотографии газовых струй, вырывающихся из ядра кометы.

4. Защита Земли от кометной опасности

Проблема кометной опасности детально проанализирована во множестве публикаций. Следует отметить, что наибольшую опасность представляют собой массивные долгопериодические кометы, их появление чаще всего бывает неожиданным из-за произвольной ориентации плоскостей орбит и больших или очень больших периодов обращения. Более того, многие из этих комет - апериодические, то есть движутся по незамкнутым траекториям (параболическим или гиперболическим) и поэтому действительно являются новыми. У этих комет возможна более высокая скорость столкновения с Землей - до 72 км/с (на встречных траекториях), что может привести к глобальным катастрофическим последствиям. Возможность подобных катастрофических событий подтверждается многими фактами. Во-первых, к настоящему времени на поверхности Земли обнаружено свыше 230 больших ударных кратеров.

Конечно, большинство этих кратеров, скорее всего, были образованы при падении на земную поверхность каменистых тел, которые могут пронизывать земную атмосферу практически не разрушаясь. Вполне вероятно, что какая-то часть кратеров была образована и крупными кометными ядрами или телами промежуточного состава. Но столкновения с кометами могут приводить не только к катастрофическим последствиям. Ряд ученых считает, что сразу после своего формирования при высоких температурах и охлаждения земная поверхность была очень сухая (например, как сейчас лунная), и что практически вся вода и другие летучие соединения были доставлены потоком комет, обрушившимся в то время на Землю. Кстати, кометы могли доставить не только воду, но и сложные органические соединения, возникновение которых в земных условиях, как некоторые полагают, было маловероятным, и таким образом создали основу для зарождения простейших организмов. Хотя это пока и гипотезы, но кроме Тунгусского явления, есть и другие факты, подтверждающие падения ядер комет в прошлом на Землю. Например, одно из наиболее массовых вымираний флоры и фауны за последние 230 млн. лет произошло 65 млн. лет назад (между мезозойской и кайнозойской биологическими эрами или на рубеже мелового и третичного геологических периодов), когда исчезло около 2/3 всех живых организмов, включая динозавров. С этим же моментом в геологических отложениях земной поверхности связан слой с повышенным содержанием чрезвычайно редкого на Земле элемента иридия.

Ученые Л. Альварес и С. Ванденберг показали, что содержание этого элемента в тот период на земной поверхности могло резко увеличиться в результате падения крупного кометного ядра (с поперечником около 10 км), имевшего повышенное содержание иридия. Был даже найден кратер с подходящим возрастом и соответствующими морфологическими особенностями, который мог возникнуть при таком событии. Этот кратер, по имени Чиксулуб, имеет диаметр 180 км и находится на полуострове Юкатан в Мексике. Но причиной вымирания живых организмов тогда могла быть не повышенная концентрация иридия, а сильнейший взрыв, вызванный столкновением кометного ядра с земной поверхностью, который привел к выбросу в атмосферу (в том числе в ее верхние слои) огромного количества пыли. Глобальное запыление атмосферы неизбежно приводит к резкому падению температуры ее нижних слоев (на 10 и более градусов), так как пыль экранирует поток солнечного излучения. Такое изменение средней температуры может сохраняться до 1 года - так называемый эффект «ядерной зимы» (он также неизбежен при массовом применении ядерного оружия, откуда и появилось соответствующее название). Вполне вероятно, что такой эффект, вызванный падением крупного кометного ядра (но это мог быть и астероид) на земную поверхность 65 млн. лет назад, и привел к катастрофической гибели живых организмов.

Еще одно подтверждение реальности столкновений кометных ядер с планетами - уникальное событие, которое произошло «на глазах» у всего современного человечества. Имеется ввиду падение фрагментов кометы Шумейкера-Леви 9 на Юпитер в июле 1994 г. Эта комета была обнаружена в окрестностях Юпитера в начале 1993 г. уже после того, как распалась на 20 фрагментов, которые распределились вдоль ее орбиты в виде светящегося «небесного ожерелья». Как показало моделирование движения этой кометы «назад», она была либо сорванным «с места» удаленным ледяным спутником Юпитера, либо ранее захваченной планетой-гигантом обычной кометой. Скорее всего, кометное ядро было разорвано на части приливными силами при близком прохождении к Юпитеру. Падение обломков ядра кометы с размерами от 1 до 10 км со скоростью около 60 км/с происходило с 16 по 22 июля 1994 г. на обратную сторону южного полушария Юпитера. Это не позволило непосредственно наблюдать эффекты столкновений. Но последствия падений становились наблюдаемыми на видимом полушарии Юпитера уже через 40-50 мин. по причине его быстрого вращения. Они были грандиозными. Следы взрывов в виде огромных темных пятен и расходящихся от них кольцевых ударных волн (по диаметру сравнимых с Землей) на фоне юпитерианской атмосферы наблюдались во всех обсерваториях мира. Но лучшие по качеству снимки были получены с помощью орбитального телескопа «Хаббл» работающего за пределами земной атмосферы


Подобные документы

  • Наука астрономия. Открытие кометы Галлея. Параболические кометы. Периодические кометы. Подразделение комет по периодам обращения. Возмущения со стороны планет. Структура комет. Формы кометных хвостов. Обнаружение комет, их названия. Происхождение комет.

    реферат [46,2 K], добавлен 21.09.2008

  • Природа и происхождение комет, история их исследования, строение и космический состав, характеристика типов кометных хвостов. Анатомия кометы: ядро, кома и хвост. Галосообразование в кометах, суть явлений сжимающихся оболочек и плазменных образований.

    реферат [19,4 K], добавлен 17.11.2009

  • Фотографии появления кометы Галлея. Комета Хейла-Боппа над Индейской пещерой. Комета Хиакутаке, появившаяся в 1996 году. Типы орбит, по которым движутся кометы. Схематическое изображение основных частей кометы. Главные газовые составляющие комет.

    презентация [960,9 K], добавлен 05.04.2012

  • Строение комет. Классификация кометных хвостов по предложению Бредихина. Облако Оорта как источник всех долгопериодических комет. Пояс Койпера и внешние планеты Солнечной системы. Классификация и типы астероидов. Пояс астероидов и протопланетарный диск.

    презентация [1,4 M], добавлен 27.02.2012

  • Строение и состав ядра и хвоста кометы. Метеорит как тело космического происхождения, упавшее на поверхность крупного небесного объекта. Изучение химического состава каменных хондритов, железных и железо-каменных ахондритов, палласитов и мезосидеритов.

    презентация [6,5 M], добавлен 11.09.2014

  • Описание кометы как тела Солнечной системы, особенности ее строения. Траектория и характер движения этого космического объекта. История наблюдения астрономами движения кометы Галлея. Наиболее известные периодические кометы и специфика их орбиты.

    презентация [3,8 M], добавлен 20.05.2015

  • Луна - космический спутник Земли, строение: кора, мантии (астеносферы), ядро. Минералогический состав лунных пород; атмосфера, гравитационное поле. Характеристика поверхности Луны, особенности и происхождение грунта; сейсмические методы исследования.

    презентация [665,8 K], добавлен 25.09.2011

  • История изучения комет, их строение, состав и природа. Общая теория об элементах орбиты. Комета Lulin - необычный объект, который движется по своей орбите в противоположную всем планетам сторону. Угол наклона орбиты кометы к плоскости эклиптики.

    реферат [1,6 M], добавлен 30.11.2010

  • Классификация астероидов, сосредоточение большинства из них в пределах пояса астероидов, расположенного между орбитами Марса и Юпитера. Основные известные астероиды. Состав комет (ядро и светлая туманная оболочка), их различия в длине и форме хвоста.

    презентация [6,5 M], добавлен 13.10.2014

  • Форма, размеры и движение Земли. Поверхность Земли. Внутреннее строение Земли. Атмосфера Земли. Поля Земли. История исследований. Научный этап исследования Земли. Общие сведения о Земле. Движение полюсов. Затмение.

    реферат [991,6 K], добавлен 28.03.2007

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.