В помощь учителю астрономии

Предмет астрономии. Источники знаний в астрономии. Телескопы. Созвездия. Звездные карты. Небесные координаты. Работа с картой. Определение координат небесных тел. Кульминация светил. Теорема о высоте полюса мира. Измерение времени.

Рубрика Астрономия и космонавтика
Вид учебное пособие
Язык русский
Дата добавления 10.04.2007
Размер файла 528,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

15. Определить широту шеста , если известно, что светило, имеющее склонение = +20о и прямое восхождение = 30о, стояло в 2hзвездного времени на высоте h = 50o.

Звездное время s = 2h, = 30o = 2h, следовательно, светило было в верхней кульминации; тогда = - z, или = + z = 20o + 90o - 50o = 60o (с. ш.).

16. Определить склонение звезды, если ее прямое восхождение равно 176о15/ и в 11h45m звездного времени высота этой звезды в Астрахани была 58o39/. Найти из таблицы, какая это была звезда?

Прямое восхождение = 176о15/ = 11h45m, следовательно, звезда была в верхней кульминации, поэтому = - z = 46o21/ - 90o + 58o39/ = +15o.

Из таблицы найдем звезду, у которой = 11h45m и = +15o0/; это будет Льва (Денебола).

17. Найти звездное время и азимут Денеба ( Лебедя) в момент, когда он будет в Петербурге на высоте 48о на восточной части горизонта.

Широта Петербурга 60о, поэтому ось мира PP1 будет составлять угол 60o с полуденной линией SN. Склонение Лебедя = +45o. Проведем на расстоянии 45o от EQ параллельную прямую KL и на расстоянии 48o от SN параллельную прямую GN; пересечение их даст нам точку D. На прямой GH и на прямой KL, как на диаметрах, проводим полуокружности. Из точки D проводим прямые DM1 перпендикулярно GH и DM2 перпендикулярно KL до пересечения с соответственными полуокружностями.

Теперь нужно только точки M1 и M2 соединить с соответственными центрами R и F и измерить при помощи транспортира углы: PGRM1 = A = 107o и РKFM2 = t = 287o = 19h8m.

Таким образом, мы определили азимут и часовой угол светила. Прямое восхождение Лебедя известно, и его находим из таблицы = 20h39m; следовательно, искомое звездное время равняется s = t + = 19h8m + 20h39m = 15h47m.

Замечание 1. Подобным же образом можем найти звездное время и азимут, когда светило будет на западной части горизонта.

Замечание 2. Так же находят азимут и момент восхода или захода какого угодно светила: звезды, Солнца, Луны, планеты и кометы. В этом случае задача еще более упрощается, так как альмукантарат светила будет совпадать с горизонтом, и прямая GH с полуденной линией SN. Рефракцией, параллаксом и угловым радиусом светила можно пренебречь, ибо эти поправки в общей сложности меньше 1o, т. е. точности чертежа.

18. Найти азимут и момент восхода Змееносца ( = 17h31m, = +13o) в Петербурге ( = +60о).

Рисунок ясно представляет решение этой задачи. Азимут восхода будет РSCM1 = A = 117o восточный, а часовой угол восхода будет РKFM1 = t = 248o = 16h32m. Отсюда, зная, что у данной звезды = 17h31m, находим, что звездное время в момент восхода будет s = t + = 16h32m + 17h31m = 10h3m.

Замечание. Таким же образом при помощи метода поворота кругов могут быть решены задачи: на продолжительность дня и ночи, на продолжительность пребывания Луны или какой-нибудь звезды над горизонтом, на продолжительность астрономических и гражданских сумерек.

За конец астрономических сумерек принимается момент, когда Солнце опустится под горизонт на 18o, т. е. в этом случае альмукантарат GH нужно провести под горизонтом на 18o.

В случае же гражданских сумерек альмукантарат GH пройдет под горизонтом на 6o, так как за конец гражданских сумерек принимается момент, когда Солнце опустится на 6o под горизонт.

Склонение Солнца, которое в данный день считается величиной известной и может быть взято из таблиц, определит положение небесной параллели KL.

Далее, при помощи таких же построений можно найти высоту и показание часов в момент пересечения светилом плоскости первого вертикала.

19. Найти показание звездных часов и высоту, на какой будет в Петербурге Арктур ( Волопаса, = 14h12m, = +20о) в момент пересечения им восточной части первого вертикала.

Рисунок ясно представляет решение этого вопроса. Ось мира PP1 проходит под углом 60о к SN, а параллель KL на расстоянии +20о от экватора EQ. Пересечение KL с CZ дает нам точку D. На KL, как на диаметре, проводим окружность и прямую DM1, перпендикулярную KL, до пересечения с этой окружностью MK1L; тогда РKFM1 = t = 262 = 18h48m и будет искомый часовой угол. Для нахождения высоты светила проводим через точку D прямую GH параллельную SN и измеряем транспортиром ИNH или, все равно, PNCH = h = 23o. Зная часовой угол t и прямое восхождение , найдем и звездное время в этот момент, которое будет s = t + = 18h48m + 14h12m = 9h0m. Таким образом, в момент пересечения Арктуром восточной части первого вертикала в Петербурге звездное время будет 9 часов, а высота Арктура - 23о.

14. Система отсчета в астрономии.

Видимое движение светил.

1. Какие выводы теории Птолемея оказались правильными?

Пространственное расположение небесных тел, признание их движения, обращения Луны вокруг Земли, возможность математического расчета видимых положений планет.

2. Какие недостатки имела гелиоцентрическая система мира Н.Коперника?

Мир ограничен сферой неподвижных звезд, сохранено равномерное движение планет, сохранены эпициклы, недостаточная точность предсказания положений планет.

3. Отсутствие какого очевидного наблюдательного факта использовалось как доказательство неправильности теории Н. Коперника?

Не обнаружение параллактического движения звезд в силу его малости и погрешностей наблюдений.

4. Для определения положения тела в пространстве необходимы три координаты. В астрономических каталогах чаще всего дают только две координаты: прямое восхождение и склонение. Почему?

Третьей координатой в сферической системе координат является модуль радиус-вектора - расстояние до объекта r. Эта координата определяется из более сложных наблюдений, чем и . В каталогах ее эквивалентом является годичный параллакс, отсюда (пк). Для задач сферической астрономии достаточно знание только двух координат и или альтернативных пар координат: эклиптических - , или галактических - l, b.

5. Какие важные круги небесной сферы не имеют соответствующих кругов на земном шаре?

Эклиптика, первый вертикал, колюры равноденствий и солнцестояний.

6. В каком месте Земли любой круг склонений может совпасть с горизонтом?

На экваторе.

7. Каким кругам (малым или большим) небесной сферы соответствуют вертикальная и горизонтальная нити поля зрения угломерного инструмента?

Только большие круги небесной сферы проецируются в виде прямых линий.

8. Где на Земле положение небесного меридиана неопределенно?

На полюсах Земли.

9. Чему равны азимут зенита, часовой угол и прямое восхождение полюсов мира?

Значения A, t, в этих случаях неопределенны.

10. В каких точках Земли Северный полюс мира совпадает с зенитом? с точкой севера? с надиром?

На северном полюсе Земли, на экваторе, на южном полюсе Земли.

11. Искусственный спутник пересекает горизонтальную нить угломерного инструмента на расстоянии do вправо от центра поля зрения, координаты которого A = 0o, z = 0o. Определить горизонтальные координаты искусственного спутника в этот момент времени. Как изменятся координаты объекта, если азимут инструмента изменить на 180o?

1) A = 90o, z = do; 2) A = 270o, z = do

12. На какой широте Земли можно увидеть:

а) все звезды небесной полусферы в любой момент ночи;

б) звезды только одной полусферы (северной или южной);

в) все звезды небесной сферы?

а) На любой широте в любой момент видно половину небесной сферы;

б) на полюсах Земли видна, соответственно, северная и южная полусфера;

в) на экваторе Земли за срок меньший года можно увидеть все звезды небесной сферы.

13. На каких широтах суточная параллель звезды совпадает с ее альмукантаратом?

На широтах .

14. Где на земном шаре все звезды восходят и заходят перпендикулярно линии горизонта?

На экваторе.

15. Где на земном шаре все звезды в течение года движутся параллельно математическому горизонту?

На полюсах Земли.

16. Когда при суточном движении звезды на всех широтах движутся параллельно горизонту?

В верхней и нижней кульминациях.

17. Где на Земле азимут одних звезд никогда не равен нулю, а азимут других звезд никогда не равен 180o?

На земном экваторе для звезд с , а для звезд с .

18. Могут ли быть одинаковыми азимуты звезды в верхней и нижней кульминациях? Чему в этом случае он равен?

В северном полушарии для всех звезд со склонением азимуты в верхней и нижней кульминациях одинаковы и равны 180o.

19. В каких двух случаях высота звезды над горизонтом в течение суток не меняется?

Наблюдатель находится в одном из полюсов Земли или звезда находится в одном из полюсов мира.

20. В какой части неба азимуты светил меняются быстрее всего и в какой медленнее всего?

Быстрее всего в меридиане, медленнее всего в первом вертикале.

21. При каких условиях азимут звезды не меняется от ее восхода до верхней кульминации или, аналогично, от верхней кульминации до захода?

Для наблюдателя, находящегося на земном экваторе и наблюдающего звезду со склонением = 0.

22. Звезда находится над горизонтом половину суток. Каково ее склонение?

Для всех широт - это звезда с = 0, на экваторе - любая звезда.

23. Может ли светило за сутки пройти через точки востока, зенита, запада и надира?

Такое явление происходит на экваторе Земли со звездами, находящимися на небесном экваторе.

24. Две звезды имеют одно и то же прямое восхождение. На какой географической широте обе звезды восходят и заходят одновременно?

На экваторе Земли.

25. Когда суточная параллель Солнца совпадает с небесным экватором?

В дни равноденствий.

26. На какой широте и когда суточная параллель Солнца совпадает с первым вертикалом?

В дни равноденствий на экваторе.

27. По каким кругам небесной сферы: большим или малым - перемещается Солнце в суточном движении в дни равноденствий и дни солнцестояний?

В дни равноденствий суточная параллель Солнца совпадает с небесным экватором, являющимся большим кругом небесной сферы. В дни солнцестояний суточной параллелью Солнца является малый круг, отстоящий от небесного экватора на 23o.5.

28. Солнце зашло в точке запада. Где оно взошло в этот день? В какие даты года это происходит?

Если пренебречь изменением склонения Солнца в течение дня, то его восход был в точке востока. Это происходит ежегодно в дни равноденствий.

29. Когда граница между освещенным и неосвещенным полушариями Земли совпадает с земными меридианами?

Терминатор совпадает с земными меридианами в дни равноденствий.

30. Известно, что высота Солнца над горизонтом зависит от перемещения наблюдателя вдоль меридиана. Какое толкование этому явлению дал древнегреческий астроном Анаксагор, исходя из представлений о плоской Земле?

Кажущееся перемещение Солнца над горизонтом было истолковано как параллактическое смещение, а поэтому было использовано для попытки определения расстояния до светила.

31. Как должны быть расположены на Земле два места с тем, чтобы в любой день года, в любой час Солнце, хотя бы в одном из них, было над горизонтом или на горизонте? Каковы координаты (, ) такого второго пункта для г. Рязани? Координаты Рязани: = 2h39m = 54o38/.

Искомое место находится на диаметрально противоположной точке земного шара. Для Рязани эта точка - в южной части Тихого океана и имеет координаты западной долготы и = -54o38/.

32. Почему эклиптика оказывается большим кругом небесной сферы?

Солнце находится в плоскости земной орбиты.

33. Сколько раз и когда в течение года Солнце проходит через зенит для наблюдателей, находящихся на экваторе и на тропиках Земли?

Дважды в году во время дней равноденствий; один раз в году в дни солнцестояний.

34. На каких широтах сумерки самые короткие? самые длинные?

На экваторе сумерки самые короткие, так как Солнце поднимается и опускается перпендикулярно линии горизонта. В околополярных районах сумерки самые длинные, так как Солнце движется почти параллельно горизонту.

35. Какое время показывают солнечные часы?

Истинное солнечное время.

36. Можно ли сконструировать солнечные часы, которые бы показывали среднее солнечное время, декретное, летнее и т.д.?

Можно, но только для конкретной даты. Для разных видов времени должны быть свои циферблаты.

37. Почему в повседневной жизни используется солнечное время, а не звездное?

Ритм жизни человека связан с Солнцем, а начало звездных суток попадает на разные часы солнечных суток.

38. Если бы Земля не вращалась, то какие астрономические единицы времени сохранились?

Сохранились бы звездный год и синодический месяц. Используя их, можно было бы ввести более мелкие единицы времени, а также построить календарь.

39. Когда в году бывают самые длинные и самые короткие истинные солнечные сутки?

Самые длинные истинные солнечные сутки бывают в дни солнцестояний, когда скорость изменения прямого восхождения Солнца за счет его движения по эклиптике наибольшая, причем в декабре сутки больше, чем в июне, так как Земля в это время находится в перигелии.

Самые короткие сутки, очевидно, в дни равноденствий. В сентябре сутки короче, чем в марте, поскольку в это время Земля ближе к афелию.

40. Почему долгота дня 1 мая в Рязани будет больше, чем в пункте с той же географической широтой, но расположенном на Дальнем Востоке?

В этот период года склонение Солнца ежедневно увеличивается, и из-за разности в моментах наступления начала суток одной и той же даты для западных и восточных районов России долгота дня в Рязани 1 мая будет больше, чем в более восточных районах.

41. Почему насчитывается так много видов солнечного времени?

Основная причина - связь общественной жизни со световым днем. Неодинаковость истинных солнечных суток ведет к появлению среднего солнечного времени. Зависимость среднего солнечного времени от долготы места обусловила изобретение поясного времени. Необходимость экономии электроэнергии привела к декретному и летнему времени.

42. Как изменилась бы продолжительность солнечных суток, если бы Земля стала вращаться в направлении, противоположном действительному?

Солнечные сутки стали бы короче звездных на четыре минуты.

43. Почему в январе продолжительность дня после полудня больше первой половины дня?

Это происходит из-за заметного возрастания склонения Солнца в течение дня. Солнце после полудня описывает большую дугу на небосводе, чем до полудня.

44. Почему непрерывный полярный день больше непрерывной полярной ночи?

За счет рефракции. Солнце раньше восходит и позже заходит. Кроме того, в северном полушарии Земля летом проходит афелий и, следовательно, движется медленнее, чем зимой.

45. Почему на земном экваторе день всегда продолжительнее ночи на 7 минут?

Вследствие рефракции и наличия диска у Солнца день оказывается длиннее ночи.

46. Почему промежуток времени от весеннего равноденствия до осеннего больше промежутка времени между осенним равноденствием и весенним?

Это явление - следствие эллиптичности земной орбиты. Летом Земля находится в афелии и ее скорость по орбите меньше, чем скорость в зимние месяцы, когда Земля в перигелии.

47. Разность долгот двух мест равна разности каких времен - солнечных или звездных?

Безразлично. .

48. Сколько дат одновременно может быть на Земле?


Подобные документы

  • Предмет и задачи астрономии. Особенности астрономических наблюдений. Принцип действия телескопа. Видимое суточное движение звезд. Что такое созвездие, его виды. Эклиптика и "блуждающие" светила-планеты. Звездные карты, небесные координаты и время.

    реферат [40,5 K], добавлен 13.12.2009

  • История звездной карты. Созвездия каталога Птолемея. Новая Уранометрия Аргеландера. Современные границы созвездий. Горизонтальная, экваториальная, эклиптическая и галактическая системы небесных координат. Изменения координат при вращении небесной сферы.

    реферат [3,4 M], добавлен 01.10.2009

  • Древнее представление о Вселенной. Объекты астрономического исследования. Расчеты небесных явлений по теории Птолемея. Особенности влияния астрономии и астрологии. Гелиоцентрическая система мира с Солнцем в центре. Исследование Дж. Бруно в астрономии.

    реферат [22,7 K], добавлен 25.01.2010

  • Основные понятия, необходимые для успешного изучения космической геодезии. Описание систем координат, наиболее часто используемых в астрономии для описания положения светил на небе. Общие сведения о задачах космической геодезии как науки, их решение.

    контрольная работа [1,2 M], добавлен 11.01.2010

  • Горизонтальная система небесных координат. Экваториальная система небесных координат. Эклиптическая система небесных координат. Галактическая система небесных координат. Изменение координат при вращении небесной сферы. Использование различных систем коорд

    реферат [46,9 K], добавлен 25.03.2005

  • Небесная сфера и система координат на ней. Анализ положения небесных светил в пространстве. Геоцентрические координаты светил. Изменение координат во времени. Характеристика связи между координатами точки места наблюдения и координатами светил на сфере.

    контрольная работа [1,0 M], добавлен 25.03.2016

  • Наука - особый вид интеллектуальной деятельности, целью которой является выработка достоверного знания об окружающей действительности. Структурность системы знаний. Научная картина мира. Развитие астрономии, ее связь с религией и социальной идеологией.

    курсовая работа [28,4 K], добавлен 29.08.2012

  • Астрономия каменного века и древних цивилизаций. Особенности развития астрономии как науки от Средневековья до ХХ века. Разделы современной астрономии. Экспертная оценка будущего астрономии. Современная популярность и востребованность данной профессии.

    реферат [56,6 K], добавлен 03.03.2012

  • История возникновения астрономии, первые записи астрономических наблюдений. Создание греческими астрономами геометрической теории эпициклов, которая легла в основу геоцентрической системы мира Птолемея (II в. н.э.). Гелиоцентрическая система мира Коперник

    презентация [794,1 K], добавлен 28.05.2012

  • Астрономия - наиболее древняя среди естественных наук, история ее развития. Изучение видимых движений Солнца и Луны в Древнем Китае за 2 тысячи лет до н.э. Система мира Птолемея. Возникновение науки астрофизики. Современные достижения астрономии.

    презентация [9,1 M], добавлен 05.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.