Массовые вымирания организмов в истории биосферы

Возраст Земли и ее геохронология. Криптозой, взрывная эволюция в начале кембрия, жизнь в палеозойской эре, мезозойская эра, кайнозой. Фанерозойские события массового вымирания организмов. Великие, малые, современные и потенциальные массовые вымирания.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 18.11.2009
Размер файла 47,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

2.5 Современное массовое вымирание

Усиливающееся антропогенное давление на биосферу вызывает новые катастрофические тенденции, проявляющиеся, как и во всех МВ, в быстром снижении видового разнообразия. Реакцию биоты на антропогенное воздействие можно оценивать шире ? какими средствами живое вещество (независимо от того, какими формами оно представлено) добивается своего постоянного присутствия в биосфере, поддерживая тем самым ее устойчивость. В условиях экологически дестабилизированной среды В.С. Залетаев отмечает смещение биологических ритмов сообществ, постоянную перегруппировку организмов и обновление межвидовых контактов, развитие "короткоживущих" прерывающихся сукцессии, нередко укороченных до субклимаксовых стадий или еще более ранних этапов ? дисклимакса. В основе устойчивости биосферы лежит отнюдь не законсервированность экосистем, а их способность реагировать на экологическую дестабилизацию динамичными сукцессиями. Состояние субклимакса в большей мере отвечает понятию "устойчивое развитие", чем переход сообществ в финальную стадию ? климакс.

Стратегия эволюции на протяжении кайнозоя, когда благодатный теплый и влажный климат сменялся холодным и сухим, шла по пути замены крупных многолетних жизненных форм мелкими однолетними и малолетними. По классификации жизненной стратегии Л.Г. Раменского "львы" уступали место "шакалам". Не отличаясь высокой конкурентоспособностью, они обладали другим ценным качеством ? быстро размножаться и захватывать освобождающиеся территории. В ландшафтах Земли в целом лесная древесная растительность стала уступать место травянистым формациям.

В спектре видов современной биоты резко доминируют бактерии, лишайники, грибы, высшие споровые и покрытосеменные растения, а среди животных ? членистоногие. Именно эти группы организмов обладают высокой потенциальной способностью мутагенного взрыва и формирования видов, способных противостоять экологическому стрессу. Такое нарушение видового разнообразия сопровождается разрушением пищевых цепей, что провоцирует ускорение вымирания специализированных видов. Современное сокращение видового разнообразия по своим масштабам может считаться массовым вымиранием организмов [5].

3. Модель биосферных кризисов

Кризис интерпретируется как обращение тенденций, характеризующих нормальный эволюционный процесс. Сопоставление последовательности событий на геоисторических рубежах, признанных кризисными (пермь-триас, мел-палеоген), позволяет выявить общие закономерности, которые проявляются в смене стабильного геомагнитного поля знакопеременным, обширных регрессиях, трапповом магматизме, климатических изменениях, геохимических аномалиях, смене доминирующих форм биотических сообществ. Модель, предложенная В.А. Красиловым, связывает эти процессы на основе ротационной геодинамики (см. приложение 3).

В первой половине XIX в. периодизация геологической истории была произведена на основе кризисных событий (катастроф). Границы палеозойской, мезозойской и кайнозойской эр были определены по наиболее отчетливо выраженным сокращениям биологического разнообразия. Однако в эпоху безраздельного господства классического дарвинизма сама возможность планетарных кризисов была поставлена под сомнение. Сейчас ситуация изменилась, поскольку мы являемся свидетелями событий, сопоставимых с глобальными кризисами геологического прошлого. В то же время традиционное представление о кризисах как массовых вымираниях биологических видов, по-видимому, не исчерпывает существа дела. Количественные оценки вымираний сильно зависят от методических подходов и расходятся в широких пределах. Ряд исследователей полагает, что по числу вымерших видов рубежи геологических эр несущественно отличаются от других ярусных границ. К тому же сокращение разнообразия может быть в отдельных случаях связано не только и не столько с вымиранием, сколько с «непоявлением» новых таксонов. Тем более трудно ожидать, что вымирание одновременно проявится во всех крупных группах органического мира. Например, граница перми и триаса, признанный рубеж массового вымирания морских и наземных животных, характеризуется в то же время массовым распространением и вспышкой формообразования у сапрофитных грибов. Если говорить о разнообразии биоты в целом, то нельзя не учитывать и подобные кризисные увеличения разнообразия, также требующие объяснения [7].

Исследуя кризисные ситуации, необходимо прояснить само понятие кризиса. Кризис - это поворотный пункт, изменение направленности процесса, смена тенденций на противоположные. Если нормальный эволюционный процесс характеризуется ростом биомассы и разнообразия, сокращением доминирования и производства мортмассы, то обращение этих тенденций или одной из них свидетельствует о развитии кризиса.

Кризисные явления весьма разнообразны по своим пространственно-временным параметрам и последствиям для биосферы. Можно говорить о кризисе отдельной экосистемы, современным примером которой может быть усыхание еловых лесов. Региональный кризис охватывает различные экосистемы. И, наконец, биосферный кризис охватывает основные экосистемы моря и суши в глобальном масштабе.

Рассматривая кризис как сложную систему взаимодействий, необходимо отметить, что общей схемы которой до сих пор не существует. Схема, предложенная В.А. Красиловым, основана на сопоставлении событий, сопутствующих изменению биоты на геоисторических рубежах, которые широко признаются как кризисные. Это, в первую очередь, границы геологических эр. Рубежи геологических эр действительно имеют много общего в отношении последовательности палеомагнитных, эвстатических и магматических событий, литологических, геохимических и изотопных показателей, а также характера изменения биоты [4, 7].

Магнитное поле. Большая часть пермского периода характеризуется стабильным состоянием магнитного поля в пределах чрезвычайно длительного интервала обратной остаточной намагниченности пород от сакмарского яруса до нижнетатарского подъяруса включительно, относимого к гиперзоне Киама. Лишь верхние горизонты перми, от середины татарского яруса, характеризуются чередованием зон прямой и обратной намагниченности, которых насчитывается, в различной полноты разрезах, от восьми до десяти. Вблизи границы перми и триаса обратная полярность меняется на прямую.

Аналогично, в меловом периоде существовал длительный период геомагнитной устойчивости (зона 34N) от раннего апта, около 114 млн. лет до раннего кампана, около 177 млн. лет. Далее следует чередование зон прямой и обратной полярности (33N-30N, нумерация относится к зонам прямой полярности), которых в сводном разрезе восемь. Граница мела и палеогена приходится на интервал обратной полярности между зонами 30N и 29N. Мы видим, что в обоих случаях периоды неустойчивого состояния поля, последовавшие за чрезвычайно длительными периодами его стабильности, приходятся на заключительную фазу около 10 млн. лет, включающую в перми и мелу примерно одинаковое число чередующихся зон прямой и обратной полярности. Эти совпадения едва ли можно считать случайными. Скорее, они указывают на общие закономерности эволюции геомагнитного поля, общий ритм его колебаний, выраженный в однотипной структуре палеомагнитных зон. Отметим, что кризисный рубеж эоцена и олигоцена также совпадает со знакопеременным геомагнитным полем [7].

Регрессии. Как пермский, так и меловой периоды представляют собой эвстатические циклы первого порядка, начинающиеся и завершающиеся глобальными регрессиями. Каждый из них состоит из двух эвстатических циклов второго порядка, соответствующих эпохам. На фоне многочисленных разномасштабных колебаний уровня моря максимальные трансгрессии (в казанском и туронском веках соответственно) приходятся на периоды длительной устойчивости геомагнитного поля. Заключительные периоды неустойчивого геомагнитного поля характеризуются преобладанием регрессивной тенденции на фоне частых колебаний, с относительно крупным трансгрессивным пиком, приходящимся на северодвинский стратиграфический уровень в перми и позднекампанский ? раннемаастрихтский в мелу. Подобие эвстатических последовательностей обнаруживает несомненную связь с эволюцией геомагнитного поля [7].

Магматизм. На пермо-триасовом и мел-палеогеновом рубежах происходило формирование крупнейших трапповых формаций ? тунгусской и деканской. В обоих случаях мощнейшие толщи пластовых экструзий, базальтовых покровов и туфов приурочены к рифтовым зонам, рассекающим толстую континентальную кору. На Сибирской платформе основная часть траппов сформировалась в интервале от тутончанского до путоранского горизонтов. К тутончанскому времени приурочены начальные фазы траппового вулканизма, в основном выбросы пеплов. Выше по разрезу появляются лавы базальтов, основные излияния которых приходятся на путоранский уровень, который относят к самым верхам перми или, как полагает Г.Н. Садовников, низам триаса.

Деканские траппы обычно датируют началом палеоцена, хотя основная вспышка магматизма, возможно, была кратковременной и приходилась на границу мела и палеогена. В Южной Индии траппы залегают на морских слоях с датской формой Hercoglossa danica. Большинство радиометрических датировок нижних траппов укладывается в пределы 60-65 млн. лет.

По мнению ряда исследователей, трапповый магматизм характеризуется огромной мощностью излияний, происходящих в относительно короткие промежутки времени. Не приходится сомневаться в том, что магматические события такого масштаба имели глобальные последствия для климата и биоты и привели к возникновению изотопных и геохимических аномалий, широко распространенных на соответствующих стратиграфических уровнях.

Обширные базальтовые провинции формировались и на других кризисных рубежах, в частности, в позднем эоцене, а также в поздней юре ? начале мела (бассейн Параны в Бразилии, азиатская базальтовая провинция, охватывающая Забайкалье, Монголию, Северный Китай) [7].

Пограничные глины. Одной из главных геологических сенсаций последних десятилетий было обнаружение крупной иридиевой аномалии на рубеже мела и палеогена. Большинство исследователей приписывает ей космическое происхождение, считая падение крупного небесного тела не только источником дополнительного иридия, но и причиной вымирания крупных групп морских и наземных организмов. В большинстве изученных разрезов основной иридиевый пик приходится на так называемые пограничные глины. Обычно это резко выделяющиеся в карбонатных толщах прослои пелитов с микросферическими конкрециями, обогащенными иридием. Аномалия впервые установлена в «пограничных глинах» итальянского разреза Губбио, где они представлены сантиметровым прослоем известкового монтмориллонитового пелита, вероятно, туфогенного происхождения в основании нижней палеоценовой зоны Globigerina eugubbina. В других европейских разрезах слои с повышенным содержанием иридия имеют большую мощность и, в ряде случаев, залегают ниже первого появления маркерного вида G. eugubbina. Иридий, сидерофильный элемент из группы платиноидов, имеет крайне низкую концентрацию в земной коре ? около 0,03 нг/г, но весьма распространен в космическом веществе, где его содержание колеблется в пределах 500-5000 нг/г. В пограничной глине концентрация иридия чаще всего составляет от 2 до 80 нг/г, т.е. на два-три порядка выше, чем ниже и выше по разрезу. "Иридиевая аномалия" ныне установлена примерно в 150 разрезах, рассеянных по всему земному шару в океанах и на континентах. Космическая природа данной геохимической аномалии аргументируется также космическими соотношениями сидерофильных; присутствием на М/Д границе ударно-метаморфизованного кварца и полевого шпата, стишовита, стекол ударного плавления (тектитов). Доказательством вероятности ударного события может служить также идентификация крупных импактных структур на поверхности Земли, имеющих возраст близкий к мел-палеогеновому рубежу [7].

В связи с гипотезой космического происхождения иридиевые слои рассматриваются как глобально изохронный уровень. Однако стратиграфические соотношения могут указывать на не вполне одновременное образование подобных слоев в пределах узкого интервала времени, возможно, совпадающего с основной вспышкой деканского траппового вулканизма. В неморских разрезах палинологическая граница, проведенная по вымиранию доминирующих меловых форм, в частности Proteacidites, в ряде случаев совпадает с иридиевой аномалией, которая на западе Северной Америки обнаружена в тонштейне ? гидролизованном туфе с микросферами.

Иридиевая аномалия на рубеже перми и триаса имеет более локальное распространение и выражена гораздо менее отчетливо, в связи с чем многие исследователи приписывают ей иное (некосмическое) происхождение. Тем не менее сходство содержащих иридий слоев не вызывает сомнений. Вблизи пермо-триасовой границы также имеется характерный прослои «пограничных глин» с микросферами, обогащенными халькофильными и сидерофильными элементами. По данным китайских геологов, этот слой представляет собой бентонит ? гидролизованный туф. Иридиевые аномалии обнаружены на нескольких стратиграфически близких уровнях вблизи границы эоцена и олигоцена [2].

Изотопные аномалии. Кризисные геоисторические рубежи постоянно сопровождаются заметными изотопными аномалиями кислорода и углерода в карбонатных образованиях ? сокращением д13С в связи с прогрессирующим поступлением «облегченного» углерода из биосферного источника. Изотопные аномалии углерода связывают также с черносланцевыми эпизодами, прекращением углеобразования и/или изменением типа фотосинтеза ? переходом от СЗ типа к С4 в кризисные периоды. Следует отметить, что пики угленакопления и черносланцевая седиментация приходятся на смежные стратиграфические уровни. Так, на границе перми и триаса угленакопление почти повсеместно прекращается, тогда как широко распространенные черносланцевые толщи залегают непосредственно выше «пограничных глин». Однако более общая причина этих событий, по-видимому, заключается в характерном для кризисных периодов увеличении производства мортмассы и выноса органического вещества из наземных экосистем в морские бассейны [7].

Климатические изменения. В Волжском бассейне флора верхних горизонтов перми ? начала триаса характеризуется измельчанием широко распространенных пермских пельтаспермовых Tatarina и Phylladoderma. Пограничным флорам типа путоранской свойственны монодоминантность и обедненный видовой состав, что может указывать на похолодание, хотя в целом климатическая ситуация недостаточно изучена. На этом рубеже происходит массовое проникновение ангарских форм в Северную Катазиатскую провинцию, тогда как типичная катазиатская флора сохраняется лишь в Южном Китае. Такого рода смещение основного фито-географического рубежа связано не только с аридизацией (ксероморфизм растений, прекращение углеобразования, распространение красноцветов), но и с похолоданием. С уверенностью можно утверждать, однако, основываясь на повсеместном распространении плевромейевон флоры, что уже в оленекском веке раннего триаса произошло потепление и значительное выравнивание климатических условий.

Избирательное вымирание термофильных форм беспозвоночных и наземных растений на рубеже мела и палеогена указывает на значительное похолодание, начавшееся еще в позднем Маастрихте и сменившееся резким изменением климатических тенденций в сторону глобального потепления уже в позднем палеоцене [7].

Биотические события на уровне пограничных глин. Органические остатки в «пограничных глинах» встречаются крайне редко и представлены конодонтами пермского («чансинского») облика. Выше пограничных глин обычно залегают черносланцевые толщи (нижняя часть зоны Otoceras woodwardi), также обогащенные сидерофильными элементами, в частности, иридием. Комплексы беспозвоночных здесь смешанные, из пермских и триасовых компонентов, тогда как верхняя часть отоцерасовой зоны содержит остатки характерного вида конодонтов Hindeodus рагvus и другие триасовые формы, хотя здесь встречаются и еще довольно многочисленные пермские реликты. Вымирание макробентоса происходит в нескольких метрах ниже «пограничных глин» [4].

Следует отметить, что доминирующие формы пермских растений, в частности, кордаитовые, исчезают из геологической летописи существенно ниже границы перми и триаса. В морских разрезах массовое вымирание пермских беспозвоночных отмечено в нескольких метрах ниже пограничных глин, в которых остаются лишь пермские конодонты. В то же время реликтовые пермские формы, как фауны, так и флоры проходят в основании триаса.

Таким образом, можно выделить следующие события, характерные для пермо-триасового и мел-палеогенового рубежей.

1. Смена стабильного в течение длительного (около 40 млн. лет) времени геомагнитного поля знакопеременным, в том и другом случае примерно за 8 -10 млн. лет до пограничных событий.

2. Проявление, начиная с тех же уровней, тенденции к регрессии эпиконтинентальных морей, кульминирующей на границах эр.

3. Трапповый магматизм на границах эр и, возможно, связанное с ним отложение «пограничных глин» (бентонитов, тонштейнов) с тяжелыми металлами.

4. Резкое сокращение карбонатонакопления в связи с поднятием уровня карбонатной компенсации.

5. Широкое распространение черносланцевых фаций, образующихся в условиях кислородного дефицита, на уровне или выше «пограничных глин».

6. Тенденция уменьшения д13С, с резким спадом на границах эр.

7. Похолодание, отчетливо выраженное на границе мела и палеогена и, предположительно, также вблизи пермо-триасовой границы, сменяющееся в обоих случаях быстро прогрессирующим потеплением.

8. Замещение доминирующих форм морских и наземных экосистем пионерными формами - относительно низким уровнем альфа-, бета- и гамма-разнообразия.

9. Аналогичная последовательность фаунистических и флористических смен, в которых основные события совершаются в относительно узких границах переходных слоев со смешанными комплексами, причем в обоих случаях крупные организмы вымирают раньше мелких (макрофауна беспозвоночных раньше микропланктона) [7].

Выводы

Исходя из выше сказанного, можно предположить общие закономерности развития геологических и биологических процессов, для которых в принципе может быть разработана объяснительная модель. По ротационной модели, изменение угловой скорости вращения приводит к сдвигам на всех плотностных разделах (поскольку тела различной плотности получают различное ускорение). В частности, смещение мантии относительно ядра сопровождается плавлением мантийного вещества и образованием мощной переходной зоны, экранирующей распространение магнитных волн.

Колебания уровня Мирового океана также связаны с ротационным ускорением - его центробежным компонентом. Как угловое, так и центробежное ускорение зависят от плотностной дифференциации геологических тел. Континенты воздымаются (регрессия) или опускаются (трансгрессия) относительно океанических впадин. Границы перми и триаса, мела и палеогена представляют собой наиболее ярко выраженные регрессивные эпизоды в истории Земли - кульминацию процессов, развивавшихся в течение 10 млн. лет и завершившихся максимальным поднятием континентов [7].

Поскольку поднятие означает расширение, то именно в этот момент следует ожидать раскалывания континентов по планетарным разломам. Трапповый магматизм с образованием таких расколов. Тунгусские траппы конца перми -начала триаса и деканские рубежа мела и палеоцена связаны с одной и той же системой разломов, протягивающихся от Таймыра до грабена Камбей на юге Индии. Мощнейший трапповый вулканизм сопровождался массивными выбросами пепла и аэрозолей. Соответствующие атмосферные явления, кислотные дожди, поступление в почву тяжелых металлов и других поллютантов безусловно оказывали ощутимое воздействие на биосферу и могли привести к возникновению геохимических аномалий. Наши построения вполне согласуются со стратиграфическими данными, указывающими на хронологическую связь траппового вулканизма с наиболее радикальной перестройкой морских и наземных экосистем, приуроченной к небольшой мощности «пограничным глинам». Однако траппы - лишь кульминация взаимосвязанных процессов, каждый из которых вносил свой вклад в биосферный кризис. При этом первостепенное значение имели сопутствующие климатические события, перестройка океанической циркуляции и соответствующие гидрохимические изменения, отразившиеся на среде обитания морских организмов и условиях осадконакопления.

Наиболее очевидным следствием регрессии была радикальная перестройка циркуляционных процессов в океане. Скорость продвижения водных масс и соответственно продолжительность циркуляционного цикла СО2 зависели от климатических параметров - в первую очередь от широтного температурного градиента и относительного притока пресных вод в высоких и низких широтах. Эти климатические параметры в свою очередь связаны с тепловым эффектом СО2 и других оранжерейных газов, образуя систему с обратной связью. Общая тенденция изменения климата в сторону похолодания причинно связана как с нарастанием вулканической активности, так и с увеличением стока СО2 в Мировой океан и наземную биоту (расширение площади суши сопровождалось ростом наземной биомассы и соответствующим увеличением наземного биотического резервуара СО2). Охлаждение поверхности океана увеличивает растворимость СО2, обеспечивая позитивную обратную связь, которая всегда способствует быстрому развитию процесса [7]. Схема взаимодействия указанных факторов приведена в приложении 3.

Реакция биотических сообществ была аналогичной, но разновременной в пределах переходных интервалов. В частности, понижение среднеглобальной температуры приводило к практически одновременному выпадению наиболее термофильных групп как в морских, так и наземных сообществах. Вымирание термофильных групп ? общий феномен пермо-триасового и мел-палеогенового рубежей. Далеко идущие последствия имела кардинальная перестройка экосистем, связанная с нарушением их базового трофического уровня. Так, вымирание пермских парейазавровых и меловых гадрозавровых фаун находится в прямой связи с сокращением высокопродуктивных сообществ открытой кустарниковой растительности и папоротниково-хвощовых маршей, которые замещались древесными сообществами, неспособными, в силу относительно низкой продуктивности и скорости восстановления, поддерживать крупные популяции растительноядных животных. Смена доминирующих форм, направленная в нормальных условиях от неспециализированных пионерных форм к высокоспециализированным климаксным, в условиях биосферного кризиса приобретала противоположную направленность: доминирующие климаксные формы сменялись выходящими на передний план по численности и распространению пионерными.

Подводя итоги, можно сказать, что кризис имеет скрытую фазу, начинающуюся за миллионы лет до проявления на уровне биосферы. При этом предвестники кризисных тенденций, такие как увеличение частоты геомагнитных инверсий, связаны с глубинными процессами на рубеже ядра и мантии Земли. Следующая фаза проявляется в дифференцированных движениях литосферных плит и связанным с ними магматизмом. Наконец, кризис «всплывает» на уровне биосферы, вызывая прерывание нормальных сукцессионных рядов и замещение климаксных доминирующих форм пионерными с вытекающими последствиями для биологического разнообразия и других экосистемных параметров.

В течение длительного времени развитие кризисных процессов носит колебательный характер. Это указывает на действие стабилизирующих механизмов негативной обратной связи. Например, увеличение содержания СО2 в атмосфере вызывает рост продуктивности наземных растительных сообществ. Возрастает сток СО2 в биоту, сдерживающий ее накопление в атмосфере. Однако дальнейшее повышение уровня СО2 не приводит к адекватному увеличению продуктивности, происходит быстрая эскалация процесса, а это и есть кульминация кризиса. Эти соображения открывают принципиальный подход к регуляции и сдерживанию кризисных тенденций, принимающих необратимый характер лишь в результате сбоя стабилизирующих механизмов негативной обратной связи.

Список использованной литературы

1. Алексеев А.С. Типизация фанерозойских событий массового вымирания организмов 11 вестник МГУ, сер.4 «Геология», №5, 2000.

2. Веймарн А.Б., Найдин Д.П., Копаевич Л.Ф., Алексеев А.С., Назаров М.А. Глобальные катастрофические события и их роль при стратиграфических корреляциях осадочных бассейнов разного типа. - Министерство природных ресурсов РФ, 1998.

3. Горшкова Г.П., Якушова А.Ф Общая геология. - Изд-во МГУ, 1973

4. Давиташвили А.Ш. Причины вымирания организмов. - М., 1980

5. Иорданский Н.Н. Макроэволюция: Системная теория. - М., 1994.

6. Иорданский Н.Н. Эволюция жизни. - М. «Академия», 2001.

7. Красилов В.А. Модель биосферных кризисов. \\ Экосистемные перестройки и эволюция биосферы. Вып. 4. М.: Издание Палеонтологического института, 2001. С. 9-16.

8. Кэролл Р. Палеонтология и эволюция позвоночных. М., 1992.

9. Основы палеонтологии: земноводные, пресмыкающиеся и птицы /Под ред. А.К.Рождественского, Л.П.Татаринова. М., 1964.

10. Сенников А.Г. Глобальный биотический кризис на границе перми и триаса: его характер и последствия // Доклады Всероссийского совещания "Структура и статус Восточно-Европейской стратиграфической шкалы пермской системы". Казань: Казанский государственный университет, 2004. С. 60-63.

11. Современная палеонтология: методы, направления, проблемы, практическое приложение. М., 1988. Т. 1,2.

12. Татаринов Л.П. Очерки по теории эволюции: Сер. «Академические чтения». М., 1987.

Якушова А.Ф., Хаин В.Е., Славин В.И. Общая геология - Изд-во МГУ, 1973.


Подобные документы

  • Массовое пермское вымирание. Причины вымирания динозавров и множества других живых организмов на рубеже мела и палеогена. Начало, середина и конец Мезозоя. Животный мир мезозойской эры. Динозавр, птерозавр, рамфоринх, птеродактиль, тираннозавр, дейноних.

    презентация [6,5 M], добавлен 11.05.2014

  • Основные космические факторы, определяющие климатические условия на планетах солнечной системы. Атмосфера Земли в древности. Углекислотная теория похолодания на Земле. Второй ледниковый период, причины вымирания динозавров. Основные прогнозы на будущее.

    статья [21,4 K], добавлен 18.11.2011

  • Масштабы Геологического Времени. Основные Подразделения Геологической Истории Земли. Развитие жизни в криптозое. Жизнь в палеозойской эре. Превосходство Позвоночных Рыб над Членистоногими. Мезозойская эра – век рептилий. Кайнозой – век млекопитающих.

    реферат [19,2 K], добавлен 06.04.2004

  • Биосфера как область обитания живых организмов. Оболочка Земли: состав, структура и энергетика которой определяется совокупной деятельностью живых организмов. Абиотические компоненты биосферы. Связь биосферы с космосом и взаимодействие с человеком.

    реферат [27,7 K], добавлен 13.05.2009

  • Исследование атмосферы Земли в древности, углекислотной теории похолодания. Характеристика космических и внутренних факторов, влияющих на климатообразование: вулканической деятельности, морских течений. Изучение основных причин вымирания динозавров.

    статья [28,6 K], добавлен 28.11.2011

  • Основа организации и устойчивости биосферы, распределение и классификация живого вещества. Миграция живых организмов, постоянство их биомассы. Фотосинтез - основное звено биохимического круговорота в природе. Функции живого вещества в биосфере Земли.

    реферат [23,7 K], добавлен 25.11.2010

  • История открытия динозавров, выдвижение нескольких теорий их вымирания. Предположения о развитии жизни на нашей планете. Современные животные, которых можно считать потомками динозавров. Строение скелета и особенности различных разновидностей динозавров.

    реферат [9,4 K], добавлен 28.01.2010

  • Вопрос о происхождение жизни на Земле принадлежит к числу наиболее сложных вопросов науки. Вокруг этого вопроса на протяжение многих веков развертывалась борьба религии и науки, идеализма и материализма. Причины вымирания гигантских млекопитающих в пал

    контрольная работа [21,1 K], добавлен 24.11.2004

  • Становление эволюционной теории, закономерности индивидуального развития организма. Эволюция живых организмов. Теория Ч.Дарвина - наследственность, изменчивость и естественный отбор. Видообразование. Роль генетики в современном эволюционном учении.

    реферат [24,8 K], добавлен 09.10.2008

  • Мезозойская эра - участок времени в геологической истории Земли: характеристика триасового, юрского и мелового периода. Опускание суши и наступление моря. Тектоника, климат, флора и фауна мезозоя. Появление новых видов динозавров и первых млекопитающих.

    реферат [36,1 K], добавлен 29.09.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.