Концепции современного естествознания

Социальные функции естественных наук. Естественнонаучная, гуманитарная культуры. Роль естествознания в научно-техническом прогрессе, классификация его методов, их роль в познании. Формы естественнонаучного познания: факт, проблема, идея, гипотеза, теория.

Рубрика Биология и естествознание
Вид курс лекций
Язык русский
Дата добавления 15.11.2014
Размер файла 279,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

3. Всеобщим свойством времени является необратимое I, означающая однонаправленное изменение от прошлою к будущему. Прошлое порождает настоящее и будущее, переходит в них. К прошлому относятся все те события, которые уже осуществились и превратились в последующие. Будущие события это те, которые возникнут из настоящих и непосредственно предшествующих им событий. Настоящее охватывает все те объекты, системы и процессы, которые реально существуют и способны к взаимодействию между собой. Взаимодействие возможно лишь при одновременном сосуществовании объектов. Объекты, сосуществовавшие в прошлом, но перешедшие в другие последующие состояния материи уже недоступны никакому воздействию.

4. Одномерность времени проявляется в линейной последовательности событий, генетически связанных между собой.

Корпускулярная и континуальная концепции описания природы. Единство корпускулярных и волновых свойств микрообъектов

Представления о строении материи находят свое выражение в борьбе 2 концепций:

-прерывности или дискретности - корпускулярная концепция (неизменность атомов; все явления природы - результат движения частиц образованных из единой материи, все на Земле состоит из корпускул - мини частиц, т.е. прерывность и дискретность материи).

-непрерывности - континуальная концепция (существует 2 вида материи: вещество и поле, различия между которыми фиксируется на уровне явлений микромира, материя состоит из непрерывных волн, т.е. постоянство материи).

Эти две противоположные концепции описания природы пришли к компромиссу в теории корпускулярно-волнового дуализма (свет обладает и свойствами непрерывных электромагнитных волн и свойствами дискретных фотонов) - важнейшее универсальное свойство природы, заключающееся в том, что всем микрообъектам присущи одновременно и корпускулярные и волновые характеристики.

Частицы неотделимы от создаваемых ими полей и каждое поле вносит свой вклад в структуру частиц, обуславливая их свойства; единство корпускулярных и волновых свойств всех частиц и фотонов. В этом проявляется единство прерывности и непрерывности в структуре материи.

Понятие космогонической и космологической концепций

Строение и эволюция Вселенной изучаются космологией. Космология как раздел естествознания, находится на своеобразном стыке науки, религии и философии. У древних народов происхождение Вселенной наделялось мифологической формой, сущность которой сводится к одному - некое божество создало весь окружающий Человека мир. В соответствии с древнеиранской мифопоэтической космогонией Вселенная является результатом деятельности двух равносильных и взаимосвязанных творящих начал - бога Добра - Ахурамазды и бога Зла - Ахримана. Согласно одному из ее текстов, прасуществом, разделение которого привело к образованию частей видимой Вселенной, был изначально существующий Космос. Мифологическая форма происхождения Вселенной присуща всем существующим религиям.

Многие выдающиеся мыслители далеких от нас исторических эпох пытались объяснить происхождение, строение и существование Вселенной. Заслуживают особого уважения их попытки при отсутствии современных технических средств посредством только своего ума и простейших приспособлений осмыслить сущность Вселенной. Если совершить небольшой экскурс в прошлое, то обнаружится, что идея эволюционирующей Вселенной, взятой на вооружение современной научной мыслью, выдвигалась еще древним мыслителем Анаксагором

(500-428 до н.э.). Заслуживает внимания и космология Аристотеля (384-332 до н.э.), и труды выдающегося мыслителя Востока Ибн Сины (Авиценна) (980 - 1037), пытавшегося логически опровергнуть божественное творение мира, и других, дошедших до нашего времени имен.

Человеческая мысль не стоит на месте. Вместе с изменением представления о строении Вселенной, менялось и представление о ее происхождении, хотя в условиях существующей сильной идеологической власти религии это было связано с определенной опасностью. Может этим и объясняется тот факт, что естествознание новоевропейского времени избегало обсуждения вопроса о происхождении Вселенной и сосредоточилось на изучении устройства Ближнего Космоса. Эта научная традиция надолго определила общее направление и саму методику астрономического, а затем и астрофизического исследований. В результате основы научной космогонии были заложены не естествоиспытателями, а философами.

Первым на этот путь ступил Декарт, который попытался теоретически воспроизвести "происхождение светил, Земли и всего прочего видимого мира как бы из некоторых семян" и дать единое механическое объяснение всей совокупности известных ему астрономических, физических и биологических явлений. Однако идеи Декарта были далеки от современной ему науки. Поэтому историю научной космогонии справедливее было бы начать не с Декарта, а с Канта, нарисовавшего картину "механического происхождения всего мироздания". Именно Канту принадлежит первая научно-космогоническая гипотеза о естественном механизме возникновения материального мира. В безграничном пространстве Вселенной, воссозданной творческим воображением Канта, существование бесчисленного количества других солнечных систем и иных млечных путей столь же естественно, как и непрерывное образование новых миров и гибель старых. Именно с Канта начинается сознательное и практическое соединение принципа всеобщей связи и единства материального мира. Вселенная перестала быть совокупностью божественных тел, совершенных и вечных. Теперь перед изумленным человеческим разумом предстала мировая гармония совершенно иного рода - естественная гармония систем взаимодействующих и эволюционирующих астрономических тел, связанных между собой как звенья одной цепи природы. Однако необходимо отметить две характерные особенности дальнейшего развития научной космогонии. Первой из них является то, что послекантовская космогония ограничила себя пределами Солнечной системы и вплоть до середины ХХ века речь шла только о происхождении планет, тогда как звезды и их системы оставались за горизонтом теоретического анализа. Второй особенностью является то, что ограниченность наблюдательных данных, неопределенность доступной астрономической информации, невозможность опытного обоснования космогонических гипотез в конечном счете обусловили превращение научной космогонии в систему абстрактных идей, оторванных не только от остальных отраслей естествознания, но и от родственных разделов астрономии.

В основе космологических моделей Вселенной лежат определенные мировоззренческие предпосылки, а сами эти модели имеют большое мировоззренческое значение.

Современные космологические модели Вселенной основываются на общей теории относительности А. Эйнштейна, согласно которой метрика пространства и времени определяется распределением гравитационных масс во Вселенной. Ее свойства как целого обусловлены средней плотностью материи и другими конкретно-физическими факторами.

Уравнение тяготения Эйнштейна имеет не одно, а множество решений, чем и обусловлено наличие многих космологических моделей Вселенной. Первая модель была разработана самим А. Эйнштейном в 1917 г. Он отбросил постулаты ньютоновской космологии об абсолютности и бесконечности пространства и времени. В соответствии с космологической моделью Вселенной А. Эйнштейна мировое пространство однородно и изотропно, материя в среднем распределена в ней равномерно, гравитационное притяжение масс компенсируется универсальным космологическим отталкиванием. Время существования Вселенной бесконечно, т. ё. не имеет ни начала, ни конца, а пространство безгранично, но конечно. Вселенная в космологической модели А. Эйнштейна стационарна, бесконечна во времени и безгранична в пространстве.

В 1922 г. русский математик и геофизик А. А Фридман отбросил постулат классической космологии о стационарности Вселенной и получил решение уравнения Эйнштейна, описывающее Вселенную с "расширяющимся" пространством. Поскольку средняя плотность вещества во Вселенной неизвестна, то сегодня мы не знаем, в каком из этих пространств Вселенной мы живем.

В 1927 г. бельгийский аббат и ученый Ж. Леметр связал "расширение” пространства с данными астрономических наблюдений. Леметр ввел понятие начала Вселенной как сингулярности (т.е. сверхплотного состояния) и рождения Вселенной как Большого взрыва.

В 1929 году американский астроном Э.П. Хаббл обнаружил существование странной зависимости между расстоянием и скоростью галактик: все галактики движутся от нас, причем со скоростью, которая возрастает пропорционально расстоянию, - система галактик расширяется.

Расширение Вселенной считается научно установленным фактом. Согласно теоретическим расчетам Ж. Леметра, радиус Вселенной в первоначальном состоянии был 10-12 см, что близко по размерам к радиусу электрона, а ее плотность составляла 1096 г/см3. В сингулярном состоянии Вселенная представляла собой микрообъект ничтожно малых размеров. От первоначального сингулярного состояния Вселенная перешла к расширению в результате Большого взрыва.

Ретроспективные расчеты определяют возраст Вселенной в 13-20 млрд. лет.

Г.А. Гамов предположил, что температура вещества была велика и падала с расширением Вселенной.

Его расчеты показали, что Вселенная в своей эволюции проходит определенные этапы, в ходе которых происходит образование химических элементов и структур. В современной космологии для наглядности начальную стадию эволюцию Вселенной делят на "эры”

Эра адронов. Тяжелые частицы, вступающие в сильные взаимодействия.

Эра лептонов. Легкие частицы, вступающие в электромагнитное взаимодействие.

Фотонная эра. Продолжительность 1 млн. лет. Основная доля массы - энергии Вселенной - приходится на фотоны.

Звездная эра. Наступает через 1 млн. лет после зарождения Вселенной. В звездную эру начинается процесс образования протозвезд и протогалактик.

Концепции и взгляды на структуру Метагалактики

Вселенной на самых разных уровнях, от условно элементарных частиц и до гигантских сверхскоплений галактик, присуща структурность. Современная структура Вселенной является результатом космической эволюции, в ходе которой из протогалактик образовались галактики, из протозвезд - звезды, из протопланетного облака - планеты.

Метагалактика - представляет собой совокупность звездных систем - галактик, а ее структура определяется их распределением в пространстве, заполненном чрезвычайно разреженным межгалактическим газом и пронизываемом межгалактическими лучами.

Согласно современным представлениям, для метагалактики характерно ячеистая (сетчатая, пористая) структура. Существуют огромные объемы пространства (порядка миллиона кубических мегапарсек), в которых галактик пока не обнаружено.

Возраст Метагалактики близок к возрасту Вселенной, поскольку образование структуры приходится на период, следующий за разъединением вещества и излучение. По современным данным, возраст Метагалактики оценивается в 15 млрд. лет.

Галактика - гигантская система, состоящая из скоплений звезд и туманностей, образующих в пространстве достаточно сложную конфигурацию.

По форме галактики условно распределяются на три типа: эллиптические, спиральные, неправильные.

Эллиптические галактики - обладают пространственной формой эллипсоида с разной степенью сжатия они являются наиболее простыми по структуре: распределение звезд равномерно убывает от центра.

Спиральные галактики - представлены в форме спирали, включая спиральные ветви. Это самый многочисленный вид галактик, к которому относится и наша

Галактика - млечный путь.

Неправильные галактики - не обладают выраженной формой, в них отсутствует центральное ядро.

Некоторые галактики характеризуются исключительно мощным радиоизлучением, превосходящим видимое излучение. Это радиогалактики.

В ядре галактики сосредоточенны самые старые звезды, возраст которых приближается к возрасту галактики. Звезды среднего и молодого возраста расположены в диске галактики.

Звезды и туманности в пределах галактики движутся довольно сложным образом вместе с галактикой они принимают участие в расширении Вселенной, кроме того, они участвуют во вращении галактики вокруг оси.

35. Звездная стадия эволюции галактик, синтез элементов в звездах.

На современном этапе эволюции Вселенной вещество в ней находится преимущественно в звездном состоянии. 97% вещества в нашей Галактике сосредоточено в звездах, представляющих собой гигантские плазменные образования различной величины, температуры, с разной характеристикой движения. У многих других галактик, если не у большинства, "звездная субстанция" составляет более чем 99,9% их массы.

Возраст звезд меняется в достаточно большом диапазоне значений: от 15 млрд. лет, соответствующих возрасту Вселенной, до сотен тысяч - самых молодых. Есть звезды, которые образуются в настоящее время и находятся в протозвездной стадии, т.е. они еще не стали настоящими звездами.

Рождение звезд происходит в газово-пылевых туманностях под действием гравитационных, магнитных и других сил, благодаря которым идет формирование неустойчивых однородностей и диффузная материя распадается на ряд сгущений.

Если такие сгущения сохраняются достаточно долго, то с течением времени они превращаются в звезды. Основная эволюция вещества во Вселенной происходила и происходит в недрах звезд. Именно там находится тот "плавильный тигель", который обусловил химическую эволюцию вещества во Вселенной.

. По мере уплотнения газопылевого облака сначала образуется протозвезда, температура в ее центре неуклонно растет, пока не достигает предела, необходимого для того, чтобы скорость теплового движения частиц превысила порог, после которого протоны способны преодолеть макроскопические силы взаимного электростатического отталкивания и вступить в реакцию термоядерного синтеза.

В результате многоступенчатой реакции термоядерного синтеза из четырех протонов в конечном итоге образуется ядро гелия (2 протона + 2 нейтрона) и выделяется целый фонтан разнообразных элементарных частиц. В конечном состоянии суммарная масса образовавшихся частиц меньше массы четырех исходных протонов, а значит, в процессе реакции выделяется свободная энергия. Из-за этого внутренне ядро новорожденной звезды быстро разогревается до сверхвысоких температур, и его избыточная энергия начинает выплескиваться по направлению к ее менее горячей поверхности - и наружу. "Сжигая" водород в процессе термоядерной реакции, звезда не дает силам гравитационного притяжения сжать себя до сверхплотного состояния, противопоставляя гравитационному коллапсу непрерывно возобновляемое внутреннее термическое давление, в результате чего возникает устойчивое энергетическое равновесие. О звездах на стадии активного сжигания водорода говорят, что они находятся на "основной фазе" своего жизненного цикла или эволюции (см. Диаграмма Герцшпрунга-Рассела). Превращение одних химических элементов в другие внутри звезды называют ядерным синтезом или нуклеосинтезом.

Рано или поздно любая звезда израсходует весь пригодный для сжигания в своей термоядерной топке водород. По мере истощения запасов водорода в недрах звезды силы гравитационного сжатия, терпеливо ожидавшие этого часа с самого момента зарождения светила, начинают одерживать верх - и под их воздействием звезда начинает сжиматься и уплотняться. Этот процесс приводит к двоякому эффекту: Температура в слоях непосредственно вокруг ядра звезды повышается до уровня, при котором содержащийся там водород вступает, наконец, в реакцию термоядерного синтеза с образованием гелия. В то же время температура в самом ядре, состоящем теперь практически из одного гелия, повышается настолько, что уже сам гелий - своего рода "пепел" затухающей первичной реакции нуклеосинтеза - вступает в новую реакцию термоядерного синтеза: из трех ядер гелия образуется одно ядро углерода. Этот процесс вторичной реакции термоядерного синтеза, топливом для которого служат продукты первичной реакции, - один из ключевых моментов жизненного цикла звезд.

При вторичном сгорании гелия в ядре звезды выделяется так много энергии, что звезда начинает буквально раздуваться. Звезда превращается в красный гигант.

Звезды более массивные, нежели Солнце, ждет куда более зрелищный конец. После сгорания гелия их масса при сжатии оказывается достаточной для разогрева ядра и оболочки до температур, необходимых для запуска следующих реакций нуклеосинтеза - углерода, затем кремния, магния - и так далее, по мере роста ядерных масс. При этом при начале каждой новой реакции в ядре звезды предыдущая продолжается в ее оболочке. На самом деле, все химические элементы вплоть до железа, из которых состоит Вселенная, образовались именно в результате нуклеосинтеза в недрах умирающих звезд этого типа. Но железо - это предел; оно не может служить топливом для реакций ядерного синтеза или распада ни при каких температурах и давлениях, поскольку как для его распада, так и для добавления к нему дополнительных нуклонов необходим приток внешней энергии. В результате массивная звезда постепенно накапливает внутри себя железное ядро, не способное послужить топливом ни для каких дальнейших ядерных реакций.

Как только температура и давление внутри ядра достигают определенного уровня, электроны начинают вступать во взаимодействие с протонами ядер железа, в результате чего образуются нейтроны. И за очень короткий отрезок времени - некоторые теоретики полагают, что на это уходят считанные секунды, - свободные на протяжении всей предыдущей эволюции звезды электроны буквально растворяются в протонах ядер железа, всё вещество ядра звезды превращается в сплошной сгусток нейтронов и начинает стремительно сжиматься в гравитационном коллапсе, поскольку противодействовавшее ему давление вырожденного электронного газа падает до нуля. Внешняя оболочка звезды, из под которой оказывается выбита всякая опора, обрушивается к центру. Энергия столкновения обрушившейся внешней оболочки с нейтронным ядром столь высока, что она с огромной скоростью отскакивает и разлетается во все стороны от ядра - и звезда буквально взрывается в ослепительной вспышке сверхновой звезды. За считанные секунды при вспышке сверхновой может выделиться в пространство больше энергии, чем выделяют за это же время все звезды галактики вместе взятые.

После вспышки сверхновой и разлета оболочки у звезд массой порядка 10-30 солнечных масс продолжающийся гравитационный коллапс приводит к образованию нейтронной звезды, вещество которой сжимается до тех пор, пока не начинает давать о себе знать давление вырожденных нейтронов - иными словами, теперь уже нейтроны (подобно тому, как ранее это делали электроны) начинают противиться дальнейшему сжатию, требуя себе жизненного пространства. Это обычно происходит по достижении звездой размеров около 15 км в диаметре. В результате образуется быстро вращающаяся нейтронная звезда, испускающая электромагнитные импульсы с частотой ее вращения; такие звезды называются пульсарами. Наконец, если масса ядра звезды превышает 30 солнечных масс, ничто не в силах остановить ее дальнейший гравитационный коллапс, и в результате вспышки сверхновой образуется черная дыра.

Эволюция звезд (карлики, нейтронные звезды, черные дыры)

Возникновение звезды начинается с уплотнения вещества внутри туманности. Образовавшееся уплотнение постепенно уменьшается в размерах, сжимаясь под воздействием гравитации. Во время этого сжатия, или коллапса, выделяется энергия, разогревающая газ и пыль и вызывающая их свечение. Возникает так называемая протозвезда. В ее центре, или ядре, плотность и температура вещества максимальные. Достигнув температуры около 10 000 000°С, в газе начинают протекать термоядерные реакции. Ядра атомов водорода соединяются, превращаясь в ядра атомов гелия. При таком синтезе выделяется огромное количество энергии. В процессе конвекции эта энергия переносится в поверхностный слой, а затем излучается в космос в виде света и тепла. Таким образом, протозвезда превращается в настоящую звезду

Излучение, исходящее из ядра, разогревает газовую среду, создавая давление, направленное вовне, и, таким образом, препятствуя гравитационному коллапсу звезды. В результате, она обретает равновесие, то есть имеет постоянные размеры, постоянную поверхностную температуру и постоянное количество выделяемой энергии. Звезду на этой стадии развития астрономы называют звездой главной последовательности, указывая, таким образом, на занимаемое ею место на диаграмме Герцшпрунга-Ресселла. Эта диаграмма выражает связь между светимостью и температурой звезды. Протозвезды с небольшой массой никогда не разогреваются до температур, необходимых для начала термоядерных реакций. В результате сжатия эти звезды превращаются в тусклых красных и даже более тусклых коричневых карликов. Первая коричневая звезда-карлик была открыта лишь в 1987 г.

Диаметр Солнца равен приблизительно 1 400 000 км, температура поверхности - около 6000°С. Солнце излучает желтоватый свет. На протяжении 5 млрд. лет оно входит в главную последовательность звезд.

Приблизительно за 10 млрд. лет водородное "топливо" на такой звезде исчерпывается, и в ее ядре остается главным образом гелий. Когда "гореть" больше нечему, интенсивность направленного от ядра излучения уже недостаточна для уравновешивания гравитационного коллапса ядра. Но выделяемой при этом энергии достаточно для того, чтобы разогреть окружающее вещество. В этой оболочке начинается синтез ядер водорода, выделяется больше энергии. Звезда светится ярче, но теперь уже красноватым светом. Одновременно она расширяется, увеличиваясь в десятки раз. Теперь она называется красным гигантом.

Ядро красного гиганта сжимается, а его температура возрастает до 100 000 000°С и более. Здесь происходят реакции синтеза ядер гелия, превращая его в углерод. Благодаря выделяемой при этом энергии звезда светится еще каких-нибудь 100 млн. лет. Когда гелий заканчивается, и реакции затухают, вся звезда под влиянием гравитации постепенно сжимается почти до размеров Земли. Выделяемой при этом энергии достаточно, чтобы звезда (теперь уже белый карлик) продолжала ярко светиться некоторое время. Степень сжатия вещества в белом карлике очень высока и, следовательно, плотность его очень большая - вес одной столовой ложки может достигать тысячи тонн.

Жизненный цикл звезды с массой, в пять раз превышающей массу Солнца, значительно короче, и эволюционирует она несколько иначе. Такая звезда намного ярче, температура ее поверхности 25 000°С и более, период пребывания в главной последовательности звезд всего лишь около 100 млн. лет. На стадии красного гиганта температура в ядре превышает 600 000 000°С. В нем происходят реакции синтеза ядер углерода, который превращается в более тяжелые элементы, включая железо. Под воздействием выделяемой энергии звезда расширяется до размеров, в сотни раз превышающих первоначальные. На этой стадии ее называют уже сверхгигантом. для начинающих

Процесс производства энергии в ядре внезапно прекращается, и оно сжимается в течение считанных секунд. При этом выделяется огромное количество энергии, образуя катастрофическую ударную волну. Она проходит через всю звезду и силой взрыва выбрасывает значительную ее часть в космическое пространство, вызывая явление, известное как вспышка сверхновой звезды. Подобная вспышка наблюдалась в феврале 1987 г. в соседней галактике - Большом Магеллановом облаке. В течение короткого времени эта сверхновая звезда светилась ярче целого триллиона солнц.

Ядро сверхгиганта сжимается, образуя небесное тело диаметром всего 10-20 км и настолько плотное, что чайная ложка его вещества может весить 100 миллионов тонн! Это небесное тело состоит из нейтронов и называется нейтронной звездой. Вновь образовавшаяся нейтронная звезда отличается очень сильным магнетизмом и большой скоростью вращения. В результате создается мощное электромагнитное поле, испускающее радиоволны и другие виды излучения. Они распространяются из магнитных полюсов звезды в форме лучей. Когда они проносятся мимо наших радиотелескопов, мы воспринимаем их как короткие вспышки, или импульсы (англ. pulse). Поэтому мы называем такие звезды пульсарами.

Первый световой пульсар был обнаружен в Крабовидной туманности. Его импульсы повторяются с периодичностью 30 раз в секунду. Импульсы других пульсаров повторяются гораздо чаще: ПИР (пульсирующий источник радиоизлучения) 1937 + 21 вспыхивает 642 раза в секунду. Звезды с наибольшей массой, в десятки раз превышающей массу Солнца, тоже вспыхивают, как сверхновые. Но благодаря огромной массе их коллапс имеет гораздо более катастрофический характер. Разрушительное сжатие не прекращается даже на стадии образования нейтронной звезды, создавая область, в которой обычное вещество прекращает свое существование. Остается лишь одна гравитация - настолько сильная, что ничто, даже свет, не может избежать ее воздействия. Эта область называется черной дырой.

Планетарные системы

Центральное тело нашей планетной системы - Солнце. Солнце (желтый карлик) - сосредоточило в себе 99,866 % всей массы Солнечной системы. Оставшиеся 0,134 % вещества представлены девятью большими планетами (Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон) и несколькими десятками спутников планет (в настоящее время их открыто более 60), малыми планетами - астероидами (~100 тысяч), кометами (~1011 объектов), огромным количеством мелких фрагментов - метеороидов, а также космической пылью. Механически эти объекты объединены в общую систему силой притяжения Солнца. Средняя плотность тел Солнечной системы изменяется в пределах от 0,5 г/см3 для ядер комет до 7,7 г/см3 для металлических астероидов и метеоритов.

Самая крупная из планет - Юпитер - меньше Солнца по размерам на порядок и по массе на три порядка. Средняя плотность Юпитера составляет 1,32 г/см3, что очень близко к средней плотности солнечного вещества (1,41 г/см3). Сатурн по размерам почти не отличается от Юпитера, но меньшая плотность вещества планеты (0,686 г/см3) определяет и несколько меньшее значение массы. Следующие два гиганта - Уран и Нептун (с массой около 1029 г) - мало отличаются по средней плотности (1,28 и 1,64 г/см3 соответственно) и химическому составу. Все четыре планеты традиционно выделяются в группу планет-гигантов, отличительной особенностью которых являются не только значительные размеры и масса, но также и низкая средняя плотность, характерная для газового состава.

Другая группа - планеты земного типа - состоит из четырех планет, в нее входят Земля и Венера, которые почти не отличаются друг от друга по размерам, массе и средней плотности (5,52 и 5,24 г/см3 соответственно), а также меньшие по размерам и массе Марс и Меркурий.

Перечень больших планет Солнечной системы дополняет необычный объект - Плутон, который в момент своего открытия в 1930 году занимал наиболее удаленное от Солнца положение, соответствующее месту девятой планеты Солнечной системы. Но орбита Плутона обладает значительным эксцентриситетом, в 1969 году он пересек орбиту Нептуна, превратившись в восьмую по удаленности от Солнца планету. В этом статусе Плутон будет пребывать до 2009 года. А первый после своего открытия полный оборот вокруг Солнца Плутон завершит лишь в 2178 году.

Планеты земной группы составляют внутреннюю часть Солнечной системы. Планеты-гиганты образуют ее внешнюю часть. Промежуточное положение занимает пояс астероидов, в котором сосредоточена большая часть малых планет. На окраинах Солнечной системы, по-видимому, сосредоточены облака гигантских по размерам и массам комет, которые могли посещать окрестности Солнца задолго до появления жизни на Земле. Об этом свидетельствуют следы на поверхности таких безатмосферных тел, как Луна или Меркурий, способных сохранять отпечатки самых древних событий в истории планет.

За последние несколько лет было обнаружено свыше 30 объектов, имеющих сходство с ядрами комет, названных транснептуновыми. Их размеры превосходят 100 км. Согласно оценкам, на расстоянии между 30 и 50 а. е. от Солнца сосредоточено около 70 000 тел размерами от 100 до 400 км.

Соотношение расстояний и периодов обращения планет вокруг Солнца определяется известным законом Кеплера, согласно которому квадраты периодов пропорциональны кубам больших полуосей относительных орбит. Все планеты обращаются вокруг Солнца в одном направлении, совпадающем с направлением осевого вращения Солнца, и в том же направлении они обращаются вокруг своей оси. Исключение составляют Венера, Уран и Плутон, осевое вращение которых противоположно солнечному.

Концепции происхождения и эволюции Солнечной системы, Земли

Солнечная система представляет собой группу небесных тел, весьма различных по размерам и физическому строению. В эту группу входят: Солнце, девять больших планет, десятки спутников планет, тысячи малых планет (астероидов), сотни комет и бесчисленное множество метеоритных тел, движущихся как роями, так и в виде отдельных частиц. К 1979 г. было известно 34 спутника и 2000 астероидов. Все эти тела объединены в одну систему благодаря силе притяжения центрального тела - Солнца. Солнечная система является упорядоченной системой, имеющей свои закономерности строения. Единый характер Солнечной системы проявляется в том, что все планеты вращаются вокруг Солнца в одном и том же направлении и почти в одной и той же плоскости. Большинство спутников планет (их лун) вращается в том же направлении и в большинстве случаев в экваториальной плоскости своей планеты. Солнце, планеты, спутники планет вращаются вокруг своих осей в том же направлении, в котором они совершают движение по своим траекториям.

Закономерно и строение Солнечной системы: каждая следующая планета удалена от Солнца примерно в два раза дальше, чем предыдущая.

Солнечная система образовалась примерно 5 млрд. лет назад, причем Солнце звезда второго (или еще более позднего) поколения. Таким образом, Солнечная система возникла на продуктах жизнедеятельности звезд предыдущих поколений, скапливавшихся в газово-пылевых облаках. Это обстоятельство дает основание назвать Солнечную систему малой частью звездной пыли. О происхождении Солнечной системы и ее исторической эволюции наука знает меньше, чем необходимо для построения теории планетообразования.

Первые теории происхождения Солнечной системы были выдвинуты немецким философом И. Кантом и французским математиком П.С. Лапласом. Согласно этой гипотезе система планет вокруг Солнца образовалась в результате действия сил притяжения и отталкивания между частицами рассеянной материи (туманности), находящейся во вращательном движении вокруг Солнца.

Началом следующего этапа в развитии взглядов на образование Солнечной системы послужила гипотеза английского физика и астрофизика Дж. X. Джинса.

Он предположил, что когда-то Солнце столкнулось с другой звездой, в результате чего из него была вырвана струя газа, которая, сгущаясь, преобразовалась в планеты.

Современные концепции происхождения планет Солнечной системы основываются на том, что нужно учитывать не только механические силы, но и другие, в частности электромагнитные. Эта идея была выдвинута шведским физиком и астрофизиком X. Альфвеном и английским астрофизиком Ф. Хойлом. В соответствии с современными представлениями, первоначальное газовое облако, из которого образовались и Солнце и планеты, состояло из ионизированного газа, подверженного влиянию электромагнитных сил. После того как из огромного газового облака посредством концентрации образовалось Солнце, на очень большом расстоянии от него остались небольшие части этого облака.

Гравитационная сила стала притягивать остатки газа к образовавшейся звезде - Солнцу, но его магнитное поле остановило падающий газ на различных расстояниях - как раз там, где находятся планеты. Гравитационная и магнитные силы повлияли на концентрацию и сгущение падающего газа, и в результате образовались планеты. Когда возникли самые крупные планеты, тот же процесс повторился в меньших масштабах, создав, таким образом, системы спутников.

Теории происхождения Солнечной системы носят гипотетический характер, и однозначно решить вопрос об их достоверности на современном этапе развития науки невозможно. Во всех существующих теориях имеются противоречия и неясные места.

Взаимосвязь и взаимообусловленность явлений природы, типы взаимодействий

Всеобщая связь, взаимозависимость и взаимная обусловленность различных предметов и явлений, взаимодействие их - это первое, что выступает перед нами, когда мы рассматриваем природу в целом с позиций современного естествознания. Формы взаимозависимости явлений многообразны.

Любое движение отдельного тела, любое явление как в природе, так и в общественной жизни, - каким бы обособленным и изолированным оно ни представлялось на первый взгляд, - можно понять, объяснить и обосновать научно, если рассматривать его не только в его единичности и обособленности, но и как часть единого целого, как обусловленное другими явлениями и само обусловливающее другие явления.

Диалектический взгляд на природу, как на связное, единое целое, представляет собой теоретическое обобщение накопленных наукой знаний об объективном мире и проверен практической деятельностью людей. Все области знания подтверждают положение марксистской диалектики о том, что в реальной действительности нет предметов и явлений, изолированных друг от друга, не зависящих друг от друга.

Природа - связанное, единое целое. Земля, на которой мы живём, не является изолированным, одиноким небесным телом. Вместе с обращающейся вокруг неё Луной она образует взаимосвязанную систему. Движение Луны определяется воздействием на неё Земли и Солнца. Ряд процессов на Земле (например, приливы и отливы в морях и океанах) непосредственно связан с влиянием на нее Луны. Земля вместе с Луной движется вокруг Солнца. Вокруг Солнца движутся и другие планеты - Меркурий, Венера, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон. Вместе с Солнцем они образуют целостную солнечную систему небесных тел, объединённых между собой сложной цепью взаимосвязей.

Планеты не только порознь притягиваются к Солнцу, но и воздействуют друг на друга. Эта взаимосвязь планет с Солнцем и друг с другом обусловливает строго определённый порядок их движения.

В свою очередь Солнце - не просто одна из громадного множества изолированных, обособленных звёзд, хаотически рассеянных по бесконечному пространству Вселенной, а часть единой звёздной системы, называемой Галактикой. Известно много галактических звёздных систем. Все они также не оторваны друг от друга, а входят в ещё более грандиозную систему взаимосвязанных звёздных образований.

Взаимосвязь существует между живой и неживой природой. Для доказательства единства природы большое значение имеют работы великого русского учёного К.А. Тимирязева по фотосинтезу. Тимирязев вскрыл самую тесную связь между такими явлениями, как солнечный свет, воздух, почва, растение, животное. Животные питаются растениями, а растения могут развиваться, лишь поглощая энергию Солнца, разлагая при этом углекислоту в хлорофилле листа. Изучив хлорофилловую функцию зелёного растения и установив, что в этой функции проявляется неразрывная, жизненно важная связь между растительным миром и Солнцем, Тимирязев доказал тем самым, что взаимная связь, взаимозависимость и взаимодействие между живой и неживой природой простирается далеко за пределы земного шара и носит космический характер. Чтобы подчеркнуть это, Тимирязев дал одной из самых важных и интереснейших своих работ название "Космическая роль растения”.

Не только мир в целом, но и каждое его отдельно взятое явление есть нечто единое, представляет собой связное целое, все стороны которого находятся в определённой взаимосвязи и взаимообусловленности.

Это положение марксистской диалектики также находит своё подтверждение в данных современной науки. Возьмём неорганическую природу. Ряд тел обнаруживает ту особенность, что их физические свойства различны по разным направлениям. Например, их упругость при сжатии в одном направлении сильно отличается от таковой при сжатии в другом направлении. Такая зависимость физических свойств от направления называется анизотропией. Установлено, что анизотропия не есть некое изолированное свойство тел, а тесно связано с другими их свойствами и в первую очередь с их внутренней атомной структурой. Анизотропия наблюдается у тел, атомы которых расположены в пространстве в том или ином определённом порядке. А это в свою очередь связано с тем, что такое тело кристаллизуется в определённых формах. Все кристаллы анизотропны.

Металлы характеризуются значительной электропроводностью и в связи с этим обладают большой теплопроводностью.

Все тела обладают инерцией. Они в различной степени податливы к внешним воздействиям: одна и та же сила в различной мере изменяет скорость разных тел за одно и то же время. Но тело, обладающее большей инерцией, обладает и большим весом. Инерция и вес - свойства вещества, связанные друг с другом.

Тесно связаны между собой также поглощательная и отражательная способности вещества: тело, в наибольшей мере поглощающее электромагнитное излучение, в то же время в максимальной мере испускает его.

Пример глубокой взаимосвязи внутренних сторон явления даёт один из важнейших законов современной электродинамики. Согласно этому закону, изменение напряжённости электрического поля неизбежно порождает магнитное поле, и, наоборот, изменение напряжённости магнитного поля в свою очередь обусловливает возникновение электрического поля. Этот закон лежит в основе всей современной электротехники.

Организм не есть простая сумма обособленных и независимых клеток, некое "клеточное государство”, как утверждал Вирхов. Организм, как учит мичуринская биология и павловская физиология, - это целостная система органов, объединённая нервной и гуморальной связью (соками организма - кровью, лимфой) и находящаяся в определённой взаимосвязи с внешней средой. Ведущую роль в животном организме играет нервная система и в особенности кора головного мозга. Функции и роль отдельных частей, систем организма (соединительная ткань, железы внутренней секреции и т.д.) нельзя рассматривать оторвано от координирующей и регулирующей функции коры головного мозга и всей нервной системы. Нервная система направляет всю жизнедеятельность организма, обеспечивает взаимную связь организма и среды.

Существуют 4 типа физических взаимодействий: гравитационное, электромагнитное, слабое и сильное. Силы гравитации - это силы притяжения, она действует на очень больших расстояниях, ее интенсивность с увеличением расстояния убывает, но не исчезает полностью. Электромагнитное взаимодействие. Переносчиками этого типа взаимодействия являются фотоны. В результате слабых взаимодействий нейтроны, входящие в состав атомного ядра, распадаются на три типа частиц: положительно заряженные протоны, отрицательно заряженные электроны и нейтральные нейтрино. Переносчиками слабого взаимодействия являются бозоны. Сильное взаимодействие удерживает протоны в ядре атома, не позволяя им разлететься под действием электромагнитных сил отталкивания. Сильное взаимодействие ответственно за образование атомных ядер, в нем участвуют только тяжелые частицы: протоны и нейтроны

Порядок и хаос в материальном мире, роль синергетики в осмыслении этих явлений

Порядок, как следствие структуры пространства, определяет закономерность размещения частей материального микро - и макромира, микрокосма и макрокосма.

Порядок, как выражение структурно-энергетического состояния системы, характеризуется минимальной энтропией, хаос - максимальной. (Энтропия - (мера рассеивания энергии) - это функция состояния системы, характеризующая направление протекания процесса теплообмена между системой и внешней средой, а также направление протекания самопроизвольных процессов в замкнутой системе.) Чем больше хаос, тем больше энтропия. На уровне минералов порядок обеспечивается структурой вхождения атомов, ионов элементов в определенный тип элементарной решетки (ячейки), которая, повторяя себя множество раз по кристаллографическим направлениям, образует устойчивую структуру, генетически обусловленную для каждого минерального вида. На уровне живого вещества порядок обеспечивается уже структурой органических молекул, состоящих из структурированного в молекулу определенного набора атомов, формирующих аминокислоты, белки и т.д., клетки.

Упорядоченность структур макрокосма (планетарных, звездных систем, Галактики, Метагалактики) определяется законом всемирного тяготения, законами существования движения, масс, полевых форм материи.

Процесс разрушения структуры (порядка) ведет к понижению упорядоченности и в конце концов к хаосу.

Хаос - бесструктурная, неупорядоченная форма существования вырожденной материи с максимальной энтропийностью системы.

Существует два механизма, которые могут производить упорядоченные явления - статистический механизм, создающий порядок из беспорядка, на котором базируется поведение живого вещества. Живой организм противится переходу к атомарному беспорядку. На протяжении своей непродолжительной жизни он проявляет способность поддерживать себя и производить упорядоченные явления.

В математизированном подходе преобладают рассуждения, обосновывающие исчисления всех прошлых и будущих состояний Вселенной на основании того, что относительно какого-то момента известны все силы и положения частей.

В организмическом подходе будущее становится неизвестным не в силу изначальной определенности всех начальных положений объектов, начальных скоростей материальных частиц, действующих сил и результирующих уравнений.

Пространственная модель соотношения порядка и хаоса существует в 2-х вариантах.

В первом варианте хаосу отводится периферия, т.е. все, что ниже упорядоченного мира. Хаос понимается как движение вниз, в недра. Но он не только пугает буйством преисподней, но и привлекает скрытыми там несметными богатствами.

Второй вариант этой концепции представляет хаос как физическое место, необходимое для существования тел. Это бездна, пустота, т.е. хаос противопоставляется пространственной оформленности вообще. Этот вариант близок к концепции, рассматривающей n-мерную длительность, которая несет в своем потоке и позволяет чередоваться хаотическим и упорядоченным фазам становления.

Структура пространства дает возможность обсудить истоки полного хаоса и высшей упорядоченности. Они находятся в диалектическом единстве 0-мерной точки. Расходящиеся во все стороны направления олицетворяют полную неупорядоченность (хаос). Сходящиеся в одну точку направления являются воплощением полной упорядоченности. 0-мерных точек бесконечное множество. Поэтому возможности хаоса неограниченны. Отсюда следует возможность образования центров сходящихся направлений, т.е. хаос направлений содержит в себе возможность упорядоченности. Разнозначность точек и направлений говорит о равновесном состоянии пространства и является основой его существования. Однако структура пространства не допускает ни полного хаоса, ни полного порядка. Но и положение 50/50 в природе также не наблюдается. У природы есть некий набор средств противостоять нарастанию хаоса.

Синергетика - теория самоорганизации. Эта наука занимается улучшением процессов взаимопревращения различных видов энергии. Общий смысл идей:

процессы разрушения и созидания, деградации и эволюции во Вселенной равноправны.

Процессы создания (нарастание сложности и упорядоченности) имеют единый алгоритм независимо от природы систем, в которых они осуществляются. Объектом синергетики могут быть системы, которые отвечают условиям: открытые, т.е. обмениваются веществом или энергией с внешней средой; существенно неравновесными, или находиться в состоянии, далеком от термодинамического равновесия.

Синергетика утверждает, что развитие открытых и сильно неравносильных систем протекает путем нарастающей сложности и упорядоченности. В цикле такой системы наблюдается две фазы:

период плавного эволюционного развития с линейными изменениями, подводящими в итоге систему к некоторому неустойчивому критическому состоянию.

выход из критического состояния одномоментно, скачком и переход в новое устойчивое состояние с большей степенью сложности и упорядоченности.

Самоорганизация и эволюция материального мира

Сегодня наука считает все известные системы открытыми, обменивающимися энергией и (или) веществом с окружающей средой и находящимися в состоянии, далеком от термодинамического равновесия. А развитие таких систем протекает путем образования нарастающей упорядоченности. На такой основе возникло представление о самоорганизации вещественных систем.

Понятие самоорганизации отражает фундаментальный принцип Природы, лежащий в основе наблюдаемого развития от менее сложных к более сложным и упорядоченным формам организации вещества.

Условия возникновения самоорганизации:

1) Система должна быть открытой, потому что закрытая система в конечном итоге должна прийти в состояние беспорядка и дезорганизации.

2) Открытая система должна находиться достаточно далеко от точки термодинамического равновесия.

3) Фундаментальным принципом самоорганизации служит возникновение и усиление порядка через флуктуации (случайные отклонения системы от среднего положения).

4) Возникновение самоорганизации опирается на положительную обратную связь.

5) Процессы самоорганизации сопровождаются нарушением симметрии.

6) Самоорганизация может начаться лишь в системах, обладающих достаточным количеством взаимодействующих между собой элементов.

Самоорганизация выступает как источник эволюции систем, так как она служит началом процесса возникновения качественно новых и более сложных структур в развитии системы.

Эволюция - это вечная самоорганизация, поиск структурных своих оптимумов в меняющихся условиях.

В последние десятилетия предпринималось немало попыток описания эволюции в терминах современных научных теорий. Наиболее из них являются, во-первых, кибернетический подход (Россо Эшби), при котором система постепенно адаптируется к своему окружению, пока не достигнет равновесия. Во-вторых, для изучения эволюции нередко обращаются к математической теории катастроф (Рене Том), которая рассматривает развитие от данного равновесного состояния системы к другому как "катастрофу".

В критической точке открывается, по крайней мере, два возможных пути эволюции системы. Какой путь при этом "выберет" система, зависит в значительной степени от случайных факторов. Но когда такой путь выбран, то дальнейшее движение системы подчиняется уже детерминистским законам. Таким образом, динамику развития системы или ее эволюцию стоит рассматривать как единство двух взаимодействующих сторон единого процесса развития, а именно случайности и необходимости.

Появление принципа глобального эволюционизма означает, что в современном естествознании утвердилось убеждение о том, что материя, Вселенная в целом и во всех ее элементах не могут существовать вне развития. Радикальное обновление представлений об устройстве мироздания заключается в следующем: Вселенная нестационарна, она имела начало во времени.

В 20 веке эволюционное учение развивалось в биологии. Наиболее выдающиеся успехи достигнуты на молекулярно-генетическом уровне: расшифрован генетический механизм передачи информации, выяснены роль и структура ДНК, РНК.

Синергетика - теория самоорганизации. Эта наука занимается улучшением процессов взаимопревращения различных видов энергии. Общий смысл идей:

процессы разрушения и созидания, деградации и эволюции во Вселенной равноправны.

Процессы создания (нарастание сложности и упорядоченности) имеют единый алгоритм независимо от природы систем, в которых они осуществляются. Объектом синергетики могут быть системы, которые отвечают условиям: открытые, т.е. обмениваются веществом или энергией с внешней средой; существенно неравновесными, или находиться в состоянии, далеком от термодинамического равновесия.

Синергетика утверждает, что развитие открытых и сильно неравносильных систем протекает путем нарастающей сложности и упорядоченности. В цикле такой системы наблюдается две фазы:

Период плавного эволюционного развития с линейными изменениями, подводящими в итоге систему к некоторому неустойчивому критическому состоянию.

Выход из критического состояния одномоментно, скачком и переход в новое устойчивое состояние с большей степенью сложности и упорядоченности.

С позиции самоорганизации становится ясно, что весь окружающий нас мир - мир самоорганизующихся процессов, которые служат основой любой эволюции. Чем выше мы поднимаемся по эволюционной лестнице, тем более сложными и многочисленными оказываются факторы, которые играют роль в самоорганизации.

Понятие и специфика законов природы, закон и принцип, за коны объективные и законы науки

ЗАКОНЫ ПРИРОДЫ - объективно существующие, общие, устойчивые связи вещей, явлений природы, к-рые существенно влияют на изменения вещей, явлений. В живой и в неживой природе действуют многообразные законы, различающиеся по сфере действия, степени общности. Существуют законы, охватывающие сравнительно узкий круг вещей или явлений (напр., взаимосвязи давления и объема газа при постоянной температуре, плавания тел, численности популяций определенного вида организмов), законы, действие к-рых обнаруживается в обширных сферах природы (механики, электромагнетизма, естественного отбора и др.), и, наконец, законы, действующие во всех областях природы (сохранения и превращения энергии, массы, всемирного тяготения, передачи и преобразования информации). Открытие 3. п. и путей использования их в человеч. деятельности стало важнейшей задачей естеств. наук с момента их появления. Религия усматривает в существовании законов. природы сверхъестественный смысл. Подчиненность вещей, явлений действию законов, согласно богословного утверждениям, говорит об исполнении природой божеств, предначертаний, предустановленной богом цели. Однако ход научного познания опровергает богословное понимание источника и смысла 3. п. Если в период своего открытия 3. п. выступает как нечто таинственное, то последующее изучение природы раскрывает те естественные стороны ее, к-рые полностью обусловливают существование и характер этого закона. Содержание любого 3. п., как свидетельствует естествознание, исчерпывается только естественными моментами, связанными со структурой, взаимодействием и изменением вещей. И в наст. вр. имеются природные явления, к-рые еще не могут быть объяснены до конца. Но объяснение неясного сегодня будет достигнуто на новом этапе развития естествознания.


Подобные документы

  • Объект и предмет изучения естествознания как научного направления. Три основных уровня организации материи, подходы в познании. Естественнонаучная и гуманитарная культуры, их соотношение. Роль субъективного фактора в социально-гуманитарном познании.

    контрольная работа [35,4 K], добавлен 09.04.2015

  • Естественнонаучная и гуманитарная культуры. Предмет и метод естествознания. Динамика естествознания и тенденции его развития. История естествознания. Структурные уровни организации материи. Макромир. Открытые системы и неклассическая термодинамика.

    книга [353,5 K], добавлен 21.03.2009

  • Цель и предмет курса "Концепции современного естествознания", основные термины и понятия. Специфические черты науки, виды культуры. История становления научных знаний. Естественнонаучная картина мира. Внутреннее строение Земли. Законы химии и биологии.

    шпаргалка [136,9 K], добавлен 12.02.2011

  • Естественнонаучная и гуманитарная культуры и история естествознания. Корпускулярная и континуальная концепции описания природы. Порядок и беспорядок в природе, хаос. Пространство и время, принципы относительности, симметрии, универсального эволюционизма.

    курс лекций [545,5 K], добавлен 05.10.2009

  • Сущность процесса естественнонаучного познания. Особые формы (стороны) научного познания: эмпирическая, теоретическая и производственно–техническая. Роль научного эксперимента и математического аппарата исследования в системе современного естествознания.

    доклад [21,7 K], добавлен 11.02.2011

  • Предмет изучения и задачи естествознания. Иерархическая последовательность наук по степени возрастания их сложности (лестница Кекуле). Методы естественнонаучного познания. Мифы, религии и искусство как формы отражения окружающей действительности.

    презентация [268,4 K], добавлен 20.06.2013

  • Способы построения естественнонаучной теории: зарождение эмпирического научного знания, развитие естествознания в эпоху античности и средневековья. Взаимодействие естественных наук. Вклад естественнонаучной и гуманитарной культур в развитие цивилизации.

    контрольная работа [34,6 K], добавлен 26.04.2009

  • Цели и задачи курса "Концепции современного естествознания", место данной дисциплины в системе других наук. Классификация наук, предложенная Ф. Энгельсом. Взаимосвязь физических, химических и биологических знаний. Виды атмосферных процессов в природе.

    контрольная работа [28,8 K], добавлен 13.06.2013

  • Рассмотрение стадий исторического развития естествознания. Отказ от созерцательности и наивной реалистичности установок классического естествознания. Усиление математизации современного естествознания, сращивание фундаментальных и прикладных исследований.

    реферат [30,2 K], добавлен 11.02.2011

  • Общие, частные и особенные методы естественнонаучного познания и их классификация. Особенности абсолютной и относительной истины. Особые формы (стороны) научного познания: эмпирическая и теоретическая. Типы научного моделирования. Новости научного мира.

    контрольная работа [45,9 K], добавлен 23.10.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.