Концепции современного естествознания
Цель и предмет курса "Концепции современного естествознания", основные термины и понятия. Специфические черты науки, виды культуры. История становления научных знаний. Естественнонаучная картина мира. Внутреннее строение Земли. Законы химии и биологии.
Рубрика | Биология и естествознание |
Вид | шпаргалка |
Язык | русский |
Дата добавления | 12.02.2011 |
Размер файла | 136,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
1. Естествознание - предмет и характеристика. Особенности курса КСЕ
концепции современного естествознания
Концепции - суть, основные представления
современное - всё, что накопило человечество в области естественных наук за время своего существования;
естествознание - 1) это наука о природе как единой целостности;
2) это совокупность наук о природе, взятой как единое целое.
Задачи курса КСЕ:
1 - Выявить скрытые связи, которые создают органическое единство физических, химических и биологических явлений.
2 - Глубже и точнее понять сами эти явления, в известной степени, по-новому освоить физику, химию и биологию.
Цель курса КСЕ:
Формирование у студентов научного мировоззрения, повышение общего кругозора и культуры мышления.
Предмет естествознания:
- различные формы движения материи в природе;
- лестница последовательных уровней организации материи и их взаимосвязи;
- основные формы всякого бытия - пространство и время;
- закономерная связь явлений природы, как общего, так и специфического характера.
Цели естествознания:
- находить сущность явлений природы, их законы и на этой основе предвидеть или создавать новые явления;
- раскрывать возможности использования на практике познанных законов природы.
Можно сказать, что у естествознания есть ближайшая, или непосредственная, цель - это познание законов природы, а значит, и истины, и конечная цель - содействовать практическому использованию этих законов. Таким образом, цели естествознания совпадают с целями самой человеческой деятельности.
2. Наука - определение. Специфические черты
Наука - сфера человеческой деятельности, функция которой состоит в выработке и систематизации объективных знаний о действительности.
Специфические черты науки:
1. Наука УНИВЕРСАЛЬНА -- в том смысле, что она сообщает знания, истинные для всего универсума при тех условиях, при которых они добыты человеком.
2. Наука ФРАГМЕНТАРНА -- в том смысле, что изучает не бытие в целом, а различные фрагменты реальности или ее параметры, а сама делится на отдельные дисциплины.
3. Наука ОБЩЕЗНАЧИМА -- в том смысле, что получаемые ею знания пригодны для всех людей, и ее язык -- однозначный, поскольку наука стремится как можно более четко фиксировать свои термины, что способствует объединению людей, живущих в самых разных уголках планеты.
4. Наука ОБЕЗЛИЧЕННА -- в том смысле, что ни индивидуальные особенности ученого, ни его национальность или место проживания никак не представлены в конечных результатах научного
познания.
5. Наука СИСТЕМАТИЧНА -- в том смысле, что она имеет определенную структуру, а не является бессвязным набором частей.
6. Наука НЕЗАВЕРШЁННА -- в том смысле, что хотя научное знание безгранично растет, оно все-таки не может достичь абсолютной истины, после которой уже нечего будет исследовать.
7. Наука ПРЕЕМСТВЕННА -- в том смысле, что новые знания
определенным образом и по определенным правилам соотносятся со старыми знаниями.
8. Наука КРИТИЧНА -- в том смысле, что всегда готова поставить под сомнение и пересмотреть свои даже самые основополагающие результаты.
9. Наука ДОСТОВЕРНА -- в том смысле, что ее выводы требуют, допускают и проходят проверку по определенным, сформулированным в ней правилам.
10. Наука ВНЕМОРАЛЬНА -- в том смысле, что научные истины нейтральны в морально-этическом плане, а нравственные оценки могут относиться либо к деятельности по получению знания (этика ученого требует от него интеллектуальной честности и мужества в процессе поиска истины), либо к деятельности по его применению.
11. Наука РАЦИОНАЛЬНА -- в том смысле, что получает знания на основе рациональных процедур и законов логики и доходит до формулирования теорий и их положений, выходящих за рамки эмпирического уровня.
12. Наука ЧУВСТВЕННА -- в том смысле, что ее результаты требуют эмпирической проверки с использованием восприятия, и только после этого признаются достоверными.
Эти свойства науки образуют шесть диалектических пар, соотносящихся друг с другом: универсальность -- фрагментарность, общезначимость -- обезличенность, систематичность -- незавершенность, преемственность -- критичность, достоверность -- внеморальность, рациональность -- чувственность.
3. Культура - определение и специфика. Виды культуры
Культура - это совокупность созданных человеком материальных и духовных ценностей, а также сама человеческая способность эти ценности создавать и использовать.
Любой предмет культуры можно разложить как минимум на 2 составляющие:
1) природная основа;
2) социальное оформление.
Эта двойственность мира культуры является основой существования двух её типов: естественно-научного и гуманитарного.
Критерии различения гуманитарного и естественно-научного знания
Критерии различения |
Естественные науки |
Гуманитарные науки |
|
Объект исследования |
природа |
общество |
|
Ведущая функция |
объяснение (истина доказывается) |
понимание (истина истолковывается) |
|
Характер методологии |
генерализирующий (обобщающий) |
индивидуализирующий |
|
Антропоцентризм |
изгоняется |
неизбежен |
|
Идеологическая нагрузка |
Идеологический нейтралитет |
Идеологическая нагруженность |
|
Количественно- качественные характеристики |
преобладание количественных оценок (математика) |
преобладание качественных оценок |
|
Применение экспериментальных методов |
составляют основу методологии |
затруднено |
|
Характер объекта исследования |
1) материальный; 2) относительно устойчивый |
1) больше идеальный, чем материальный; 2) относительно изменчивый |
Взаимосвязь естественнонаучной и гуманитарной культур заключается в следующем:
§ они имеют единую основу, выраженную в потребностях и интересах человека и человечества, в создании оптимальных условий для самосохранения и самосовершенствования;
§ осуществляют взаимообмен достигнутыми результатами;
§ взаимно координируют в процессе развития человечества;
§ являются самостоятельными ветвями единой системы знаний науки и духовной культуры в целом.
Мы являемся свидетелями того, как социологи, юристы, экономисты, менеджеры и другие специалисты -- гуманитарии начинают применять в своей работе системный подход, идеи и методы кибернетики и теории информации, знание фундаментальных законов естествознания и в частности физики. Поясним вышесказанное примерами из практики. Юрист разбирает дело о столкновении судов. Конечно, ему нужно знать законы, приняты в мировой практике судовождения. Но, с другой стороны, если он не знает, что такое масса, радиус поворота, скорость, ускорение и т. д., он не сможет реально применить свои профессиональные знания.
Английский историк и писатель Ч. Сноу написал книгу о «двух культурах», которые существуют в современном индустриальном и постиндустриальном обществе, -- естественно-научной и гуманитарно-художественной. Он сокрушается по поводу огромной пропасти, которая наблюдается между ними и с каждым годом все возрастает. Ученые, посвятившие себя изучению гуманитарных и точных отраслей знания, все более и более не понимают друг друга. По мнению Сноу, это очень опасная тенденция, которая грозит гибелью всей человеческой культуре. Несмотря на излишнюю категоричность и спорность некоторых суждений Сноу, в целом нельзя не согласиться с наличием проблемы и оценкой ее важности. Действительно, существуют немалые различия между естественно-научным и гуманитарным познанием. Естествознание ориентировано на повторяющееся, общее и универсальное, абстрактное; гуманитарное познание -- на специальное, конкретное и уникальное, неповторимое. Цель естествознания -- описать и объяснить свой объект, ограничить свою зависимость от общественно-исторических факторов и выразить знание с позиций вневременных принципов бытия, выразить не только качественные, но и количественные характеристики объекта. Цель гуманитарных наук -- прежде всего, понять свой объект, найти способы конкретно-исторического, личностного переживания, толкования и содержания объекта познания и своего отношения к нему и т.д.
4. Характеристика знаний в древнем мире (Вавилон, Египет, Китай)
От ранних цивилизаций, возникших на берегах Тигра, Евфрата и Нила (Вавилон, Ассирия, Египет), не осталось никаких свидетельств о достижениях в области физических знаний, за исключением знания овеществленного в архитектурных сооружениях и бытовых изделиях. Возводя различного рода сооружения, изготавливая предметы быта и оружие, люди использовали определенные результаты многочисленных физических наблюдений, технических опытов, их обобщений. Можно сказать, что существовали определенные эмпирические физические знания, но не было системы физических знаний.
Физические представления в Древнем Китае появились на основе различных форм технической деятельности, в процессе которых вырабатывались разнообразные технологические рецепты. Естественно, что, прежде всего, развивались механические знания. Так, китайцы имели представления о силе (то, что заставляет двигаться), противодействии (то, что останавливает движение), рычаге, блоке, сравнении весов (сопоставлении с эталоном). В области оптики китайцы имели представление об образовании обратного изображения в «camera obscura». Уже в VI веке до н. э. они знали явления магнетизма - притяжения железа магнитом, на основе чего был создан компас. В области акустики им были известны законы гармонии, явления резонанса. Но это были еще эмпирические представления, не имевшие теоретического объяснения.
В Древней Индии основу натурфилософских представлений составляло учение о пяти элементах - земле, воде, огне, воздухе и эфире. Существовала также догадка об атомном строении вещества. Были разработаны своеобразные представления о таких свойствах материи, как тяжесть, текучесть, вязкость, упругость, о движении и вызывающих его причинах. К VI в. до н. э. физические представления обнаруживают тенденцию перехода в своеобразные теоретические построения (в оптике, акустике). Главным фактором эволюции науки, как системы знаний, которые необходимо было сохранять, накапливать и передавать, явилось изобретение письменности. Пиктографическое (рисуночное) письмо шумеров появилось около 3200 лет до нашей эры. Около 3000 лет до нашей эры в Египте возникла система письменности, которую называют иероглифической. В ней для обозначения букв, звуков и слов используют символы. Около 2800 до нашей эры соседи шумеров вавилоняне, ассирийцы и персы преобразовали пиктографическое письмо в клинопись. И, наконец, около 1300 лет до нашей эры в Сирии был создан первый алфавит. Он состоял из 32 букв, каждая из которых соответствовала отдельному звуку. Древние греки заимствовали эту систему, и она стала предшественницей латинского алфавита.
В древнем мире недостаточность знаний приводила к обожествлению сил природы, и люди, изучающие их, становились одновременно жрецами богов. Египетские жрецы - астрономы считали небо огромными часами и по расположению луны и звезд узнавали время разлива Нила и сроки празднования тех или иных праздников. Первый календарь, состоящий из 365 дней, ввел египетский жрец по имени Имхотеп.
Шумеры (около 4000-3200 лет до н. э.) изобрели десятичную систему счета и были искусными математиками и астрономами.
Вавилоняне (1900 - 600 лет до н. э.) умели предсказывать движения планет и звезд, пользуясь таблицами с описаниями перемещений планет, составленных на основе многолетних наблюдений. Они хотели уточнить календарь и предсказать будущее. Вавилоняне давали созвездиям имена своих богов. Эти знания легли в основу древнегреческой астрологии.
Общепринято мнение, что первоистоки современной науки - из древнегреческой культуры, чему способствуют ссылки основоположников современной науки Н.Коперника, И.Кеплера, Г.Галилея на работы мыслителей Древней Греции. Древние греки, пытаясь глубоко понять и изучить окружающий мир, ставили много вопросов, проделывали различные вычисления, наблюдали и классифицировали окружающий мир. Они впервые поняли необходимость естественнонаучного, а не божественного, объяснения причин и следствий наблюдаемых явлений и предметов. Но самым главным достижением древних греков было не отрицание божественного происхождения мира, а создание учения об атомном строении веществ и первых академий и лицеев как учебных заведений. Идеи атомистики оказали существенное влияние на творчество Бойля, Ньютона, Ломоносова, Дальтона, Авогадро, Лавуазье, Менделеева и других выдающихся естествоиспытателей. Благодаря их усилиям, на базе идей атомистического учения, еще до экспериментального подтверждения существования атомов, была разработана физико-химическая теория строения вещества. На ее основе в XIX в. были достигнуты поразительные успехи в области химии.
Идеи греков стали известны Европе через арабов. Все нынешние произведения древних греков мы знаем в переводах с арабского на латынь. Арабские ученые сохранили и передали средневековой Европе идеи античности. Арабское средневековье не только впитало знания и философию древних греков, но и имело значительные научные достижения. В арабском мире, особенно в эпоху между 900 и 1200 гг., процветали науки и искусства. Арабские мыслители создали алгебру. У них даже поэты были вначале математиками и уже потом поэтами. Развитие крупных городов послужило источником развития медицины. Произведение Абу Али ибн Сины (Авиценны), выходца с территории нынешнего Узбекистана, "Канон медицины" практически до 17 века был каноном для всех врачей.
Арабские мыслители подарили науке не только методологические установки, но и множество терминов - аль хебри - алгебра, аль хемия - алхимия, аль хогол - алкоголь и др. В науке, как правило, многие явления обозначаются латинскими и греческими словами, и эти слова воспринимаются как термины. Они и являются терминами. Но арабские ученые создали именно сами термины, которые уже потом были переведены на латынь. Каждая наука имеет свой язык, выраженный совокупностью понятий и терминов. Многие слова греческого языка наряду с латынью используются в виде научных терминов. Однако сами термины были изобретены арабами.
5. Естествознание средневековья (мусульманский Восток, христианский Запад)
Эпоха средних веков характеризовалась в Европе закатом классической греко-римской культуры и резким усилением влияния церкви на всю духовную жизнь общества. В эту эпоху философия тесно сближается с теологией (богословием), фактически становится ее «служанкой». Возникает непреодолимое противоречие между наукой, делающей свои выводы из результатов наблюдение опытов, включая и обобщение этих результатов, и схоластическим богословием, для которого истина заключается в религиозных догмах. Пока европейская христианская наука переживала длительный период упадка (вплоть до ХII-ХШ вв.), на Востоке, наоборот, наблюдался прогресс науки. Со второй половины VIII в. научное лидерство явно переместилось из Европы на Ближний Восток. В IX веке, наряду с главным трудом Птолемея («Альмагест»), на арабский язык были переведены «Начала» Евклида и сочинения Аристотеля. Таким образом, древнегреческая научная мысль получила известность в мусульманском мире, способствуя развитию астрономии и математики. В истории науки этого периода известны такие имена арабских ученых, как Мухаммед аль-Баттани(850--929 гг.), астроном, составивший новые астрономические таблицы, Ибн-Юнас (950-1009 гг.), достигший заметных успехов в тригонометрии и сделавший немало ценных наблюдений лунных и солнечных затмений, Ибн аль-Хайсам (965-1020 гг.), получивший известность своими работами в области оптики, Ибн-Рушд (1126-1198 гг.), виднейший философ и естествоиспытатель своего времени, считавший Аристотеля своим учителем. Средневековой арабской науке принадлежат и наибольшие успехи в химии. Опираясь на материалы александрийских алхимиков I века и некоторых персидских школ, арабские химики достигли значительного прогресса в своей области. В их работах алхимия постепенно превращалась в химию. А уже отсюда (благодаря, главным образом, испанским маврам) в позднее средневековье возникла европейская химия. В XI веке страны Европы пришли в соприкосновение с богатствами арабской цивилизации, а переводы арабских текстов стимулировали восприятие знаний Востока европейскими народами. Большую роль в подъеме западной христианской науки сыграли университеты (Парижский, Болонский, Оксфордский, Кембриджский и др.), которые стали образовываться, начиная с XII века. И хотя эти университеты первоначально предназначались для подготовки духовенства, но в них уже тогда начинали изучаться предметы математического и естественнонаучного направления, а само обучение носило, более чем когда-либо раньше, систематический характер. XIII век характерен для европейской науки началом эксперимента и дальнейшей разработкой статики Архимеда. Здесь наиболее существенный прогресс был достигнут группой ученых Парижского университета во главе с Иорданом Неморарием (вторая половина XIII в.). Они развили античное учение о равновесии простых механических устройств, решив задачу, с которой античная механика справиться не могла, -- задачу о равновесии тела на наклонной плоскости. В XIV веке в полемике с античными учеными рождаются новые идеи, начинают использоваться математические методы, т. е. идет прогресс подготовки будущего точного естествознания. Лидерство переходит к группе ученых Оксфордского университета, среди которых наиболее значительная фигура -- Томас Брадвардин (1290-1349 гг.). Ему принадлежит трактат «О пропорциях» (1328 г.), который в истории науки оценивается как первая попытка написать «Математические начала натуральной философии» (именно так почти триста шестьдесят лет спустя назовет свой знаменитый труд Исаак Ньютон). Научные знания эпохи средневековья ограничивались в основном познанием отдельных явлений и легко укладывались в умозрительные натурфилософские схемы мироздания, выдвинутые еще в период античности (главным образом в учении Аристотеля). В таких условиях наука еще не могла подняться до раскрытия объективных законов природы. Естествознание -- в его нынешнем понимании -- еще не сформировалось. Оно находилось в стадии своеобразной «преднауки».
6. Наука Нового времени (Н. Коперник, Дж. Бруно, Г. Галилей, И. Ньютон и другие)
Период конца XV-XVI веков, получивший название эпохи Возрождения, ознаменовал переход от средневековья к Новому времени. Наука Нового времени отличалась существенным прогрессом и радикальным изменением миропонимания, которое явилось следствием появления гелиоцентрического учения великого польского астронома Николая Коперника (1473-1543). Также он является создателем теории о вращении Земли вокруг Солнца, о суточном вращении Земли вокруг своей оси. Эта теория вступала в противоречие с существовавшими представлениями о Земле как избраннице Божией, стоящей, согласно схеме Птолемея, в центре мира. Коперник высказал очень важную мысль о движении как естественном свойстве небесных и земных объектов, подчиненном некоторым общим закономерностям единой механики. Тем самым было разрушено догматизированное представление Аристотеля о неподвижном «перводвигателе», якобы приводящем в движение Вселенную.
Одним из активных сторонников учения Н. Коперника был знаменитый итальянский мыслитель Джордано Бруно (1548-1600). Он пошел дальше Коперника, отрицая наличие центра Вселенной вообще и отстаивая тезис о бесконечности Вселенной. Ряд новых положений, которыми Дж. Бруно дополнил систему Н. Коперника:
§ о существовании бесконечного количества миров;
§ о том, что Солнце не является неподвижным, а меняет свое положение по отношению к звездам;
§ о том, что атмосфера Земли вращается вместе с нею.
Главная идея Дж. Бруно - идея о материальном единстве Вселенной как совокупности бесчисленных миров, таких же планетных систем, как наша. 17 февраля 1600 г., как нераскаявшийся еретик, Дж. Бруно был сожжен на костре, на Площади цветов в Риме инквизицией.
Трагическая гибель Джордано Бруно произошла на рубеже двух эпох: эпохи Возрождения и эпохи Нового времени. Последняя охватывает три столетия - XVII, XVIII, XIX века. В этом трехсотлетнем периоде особую роль сыграл XVII век, ознаменовавшийся рождением современной науки, у истоков которой стояли такие выдающиеся ученые, как Галилей, Кеплер, Ньютон.
Галилео Галилей (1564-1642) - великий итальянский астроном и физик, создатель основ механики, борец за передовое мировоззрение. Он сформулировал принцип инерции:
тело либо находится в состоянии покоя, либо движется, не изменяя направления и скорости своего движения, если на него не производится какого-либо внешнего воздействия.
Также он установил, что скорость свободного падения тел не зависит от их массы (как думал Аристотель), а пройденный падающим телом путь пропорционален квадрату времени падения. Именно Г. Галилей открыл, что траектория брошенного тела, движущегося под воздействием начального толчка и земного притяжения, является параболой. Ему принадлежит экспериментальное обнаружение весомости воздуха, открытие законов колебания маятника, немалый вклад в разработку учения о сопротивлении материалов. Велики его заслуги в области астрономии:
§ открыл 4 спутника Юпитера;
§ открыл пятна на Солнце и кольца Сатурна;
§ увидел, что поверхность Луны гористого строения, и что Луна имеет либрацию (видимые периодические колебания маятникового характера вокруг центра);
§ убедился, что кажущийся туманностью Млечный Путь состоит из множества отдельных звезд;
§ принял теории Коперника о строении Вселенной;
§ считался «отцом» экспериментальной физики, так как верным считал то, что может быть доказано опытным путем;
§ единственным критерием истины считал чувственный опыт, практику.
Галилею пришлось предстать перед судом инквизиции. После длительных допросов он был вынужден отречься от учения Коперника и принести публичное покаяние.
Однако прервать преемственность научной мысли было уже невозможно, и с астрономическими наблюдениями Галилея ознакомился и высоко оценил Иоган Кеплер (1571-1630) - один из крупнейших математиков и астрономов конца XVI - первой трети XVII века. На основе обобщения данных астрономических наблюдений он установил три закона движения планет относительно Солнца.
1-й закон:
каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.
2-й закон:
радиус-вектор, проведенный от Солнца к планете, в равные промежутки времени описывает равные площади.
3-й закон:
квадраты времен обращения планет вокруг Солнца относятся как кубы их средних расстояний от него.
Также Кеплер разработал теорию солнечных и лунных затмений, предложил способы их предсказания, уточнил величину расстояния между Землей и Солнцем, составил Рудольфовы таблицы (с помощью этих таблиц можно было определять положение планет в любой момент времени с высокой степенью точности). Кеплеру принадлежит решение ряда важных для практики стереометрических задач. Он был сторонником гелиоцентрической космологии Коперника.
Творчеством одного из величайших ученых человечества, каковым был Исаак Ньютон (1643-1727), завершалась вторая научная революция. Его научное наследие чрезвычайно разнообразно. Самое главное научное достижение И. Ньютона было продолжение и завершение дела Галилея по созданию классической механики. Ньютон сформулировал три основных закона движения, которые легли в основу механики как науки.
1-й закон:
всякое тело сохраняет состояние покоя или равномерного и прямолинейного движения до тех пор, пока оно не будет вынуждено изменить его под действием каких-то сил.
2-й закон:
приобретаемое телом под действием какой-то силы ускорение прямо пропорционально этой действующей силе и обратно пропорционально массе тела.
3-й закон:
действия двух тел друг на друга равны по величине и направлены в противоположные стороны.
Данная система законов движения была дополнена открытым Ньютоном законом всемирного тяготения, согласно которому все тела, независимо от их свойств и от свойств среды, в которой они находятся, испытывают взаимное притяжение, прямо пропорциональное их массам и обратно пропорциональное квадрату расстояния между ними. Ньютон создал дифференциальное и интегральное исчисления. Он сделал важные астрономические наблюдения, внес большой вклад в развитие оптики (опыты в области дисперсии света). В 1687 году вышел в свет главный труд Ньютона «Математические начала натуральной философии», заложивший основы современной теоретической физики.
7. Классическое естествознание - характеристика
В XVII веке родилось классическое естествознание, у истоков которого стояли такие выдающиеся ученые как Н. Коперник, Г. Галилей, И. Кеплер, Р. Декарт, И. Ньютон, Ф. Бэкон.
Классическое естествознание заговорило языком математики. Античная наука тоже ценила математику, однако ограничивала сферу ее применения «идеальными» небесными сферами, полагая, что описание земных явлений возможно только качественное, т.е. нематематическое. Новое естествознание сумело выделить строго объективные количественные характеристики земных тел (форма, величина, масса, движение) и выразить их в строгих математических закономерностях.
Новоевропейская наука нашла также мощную опору в методах экспериментального исследования явлений со строго контролируемыми условиями. Это подразумевало активное, наступательное отношение к изучаемой природе, а не просто ее созерцание и умозрительное воспроизведение.
Классическое естествознание безжалостно разрушило античные представления о космосе как вполне завершенном и гармоничном мире, который обладает совершенством, целесообразностью и т.д. На смену им пришла скучная концепция бесконечной, без цели и смысла существующей Вселенной, объединяемой лишь идентичностью законов.
Доминантой классического естествознания, да и всей науки Нового времени стала механика. Возникла мощная тенденция сведения (редукции) всех знаний о природе к фундаментальным принципам и представлениям механики. При этом все соображения, основанные на понятиях ценности, совершенства, целеполагания были грубо изгнаны из царства научной мысли. Утвердилась чисто механическая картина природы.
Сформировался также четкий идеал научного знания: раз и навсегда установленная абсолютно истинная картина природы, которую можно подправлять в деталях, но радикально переделывать уже нельзя. При этом в познавательной деятельности подразумевалась жесткая оппозиция субъекта и объекта познания, их строгая разделенность. Объект познания существует сам по себе, а субъект (тот, кто познает) как бы со стороны наблюдает и исследует внешнюю по отношению к нему вещь (объект), будучи при этом ничем не связанным и не обусловленным в своих выводах, которые в идеале воспроизводят характеристики объекта так, как есть «на самом деле».
8. Неклассическое естествознание - характеристика
Подрыву классических представлений в естествознании способствовали некоторые идеи, которые зародились еще в середине XIX века, когда классическая наука находилась в зените славы. Среди этих первых неклассических идей, в первую очередь, следует отметить эволюционную теорию Ч. Дарвина. Как известно, в соответствии с этой теорией биологические процессы в природе протекают сложным, необратимым, зигзагообразным путем, который на индивидуальном уровне совершенно непредсказуем. Явно не вписывались в рамки классического детерминизма и первые попытки Дж. Максвелла и Л. Больцмана применить вероятностно-статистические методы к исследованию тепловых явлений. Г. Лоренц, А. Пуанкаре и Г. Минковский еще в конце XIX века начали развивать идеи релятивизма, подвергая критике устоявшиеся представления об абсолютном характере пространства и времени. Эти и другие революционные с точки зрения классической науки идеи привели в самом начале XX века к кризису естествознания, коренной переоценке ценностей, доставшихся от классического наследия.Научная революция, ознаменовавшая переход к неклассическому этапу в истории естествознания, в первую очередь, связана с именами двух великих ученых XX века - М. Планком и А. Эйнштейном. Первый ввел в науку представление о квантах электромагнитного поля, второй навсегда останется в истории человечества как автор специальной и общей теории относительности. Буквально в течение первой четверти века был полностью перестроен весь фундамент естествознания, который в целом остается достаточно прочным и в настоящее время. Что же принципиально нового в понимании природы принесло с собой неклассическое естествознание?
1. Прежде всего, следует иметь в виду, что решающие шаги в становлении новых представлений были сделаны в области атомной и субатомной физики, где человек попал в совершенно новую познавательную ситуацию. Те понятия (положение в пространстве, скорость, сила, траектория движения и т.п.), которые с успехом работали при объяснении поведения макроскопических природных тел, оказались неадекватными и, следовательно, непригодными для отображения явлений микромира. И причина этого заключалась в том, что исследователь непосредственно имел дело не с микрообъектами самими по себе, как он к этому привык в рамках представлений классической науки, а лишь с "проекциями" микрообъектов на макроскопические "приборы". В связи с этим в теоретический аппарат естествознания были введены понятия, которые не являются наблюдаемыми в эксперименте величинами, а лишь позволяют определить вероятность того, что соответствующие наблюдаемые величины будут иметь те или иные значения в тех или иных ситуациях. Более того, эти ненаблюдаемые теоретические объекты (например, y - функция Шредингера в квантовой механике или кварки в современной теории адронов) становятся ядром естественнонаучных представлений, именно для них записываются базовые соотношения теории.
2. Второй особенностью неклассического естествознания является преобладание же упомянутого вероятностно-статистического подхода к природным явлениям и объектам, что фактически означает отказ от концепции детерминизма. Переход к статистическому описанию движения индивидуальных микрообъектов было, наверное, самым драматичным моментом в истории науки, ибо даже основоположники новой физики так и не смогли смириться с онтологической природой такого описания ("Бог не играет в кости", - говорил А. Эйнштейн), считая его лишь временным, промежуточным этапом естествознания.
3. Далеко за рамки естествознания вышла сформулированная Н. Бором и ставшая основой в неклассической физике идея дополнительности. В соответствии с этим принципом, получение экспериментальной информации об одних физических величинах, описывающих микрообъект, неизбежно связано с потерей информации о некоторых других величинах, дополнительных к первым. Такими взаимно дополнительными величинами являются, например, координаты и импульсы, кинетическая и потенциальная энергия, напряженность электромагнитного поля и число фотонов и т.п. Таким образом, с точки зрения неклассического естествознания невозможно не только однозначное, но и всеобъемлющее предсказание поведения всех физических параметров, характеризующих динамику микрообъектов.
4. Для неклассического естествознания характерно объединение противоположных классических понятий и категорий. Например, в современной науке идеи непрерывности и дискретности уже не являются взаимоисключающими, а могут быть применены к одному и тому же объекту, в частности, к физическому полю или к микрочастице (корпускулярно-волновой дуализм). Другим примером может служить относительность одновременности: события, одновременные в одной системе отсчета, оказываются неодновременными в другой системе отсчета, движущейся относительно первой.
5. Произошла в неклассической науке и переоценка роли опыта и теоретического мышления в движении к новым результатам. Прежде всего, была зафиксирована и осознана парадоксальность новых решений с точки зрения "здравого смысла". В классической науке такого резкого расхождения науки со здравым смыслом не было. Основным средством движения к новому знанию стало не его построение снизу, отталкиваясь от фактической, эмпирической стороны дела, а сверху. Явное предпочтение методу математической гипотезы, усложнение математической символики все чаще стали выступать средствами создания новых теоретических конструкций, связь которых с опытом оказывается не прямой и не тривиальной.
9. Стадии развития естествознания (синкретическая, аналитическая, синтетическая, интегрально-дифференциальная)
1. Синкретическая стадия.
На этой стадии сформировались общие, нерасчленённые, недетализированные представления об окружающем мире как о чём-то целом, появилась так называемая натурфилософия (философия Природы), превратившаяся во всеобщее вместилище идей и догадок, ставших к XIII-XV столетиям начатками естественных наук.
2. Аналитическая стадия.
Она последовала с XV-XVI веков - мысленное расчленение и выделение частностей, приведшее к возникновению и развитию физики, химии и биологии, а также целого ряда других, более частных, естественных наук (наряду с издавна существовавшей астрономией).
3. Синтетическая стадия.
Наступила позднее, уже ближе к нашему времени, когда постепенно стало происходить воссоздание целостной картины Природы на основе ранее познанных частностей.
4. Интегрально-дифференциальная стадия.
Наконец, в настоящее время пришла пора не только обосновать принципиальную целостность (интегральность) всего естествознания, но и ответить на вопрос: почему именно физика, химия и биология (а также психология) стали основными и как бы самостоятельными разделами науки о Природе, т.е. начинает осуществляться необходимая заключительная интегрально-дифференциальная стадия. Поэтому естествознание как действительно единая наука о Природе рождается фактически только теперь. Лишь на данной заключительной стадии можно на самом деле рассматривать Природу (Вселенную, Жизнь и Разум) как единый многогранный объект естествознания.
Однако все эти четыре стадии исследования Природы, по существу, представляют собой звенья одной цепи.
10. Древнегреческая натурфилософия (Аристотель, Демокрит, Пифагор и др.)
Первой в истории человечества формой существования естествознания была так называемая натурфилософия (от лат. - natura -- природа), или философия природы. Древнегреческая натурфилософия подразделяется на 3 периода.
1. Ионийский период (VI-V века до н.э.).
Господствует учение о первоначалах мира (огонь, вода, воздух, земля). Фалес Милетский (640-564 до н.э.) - древнегреческий философ, считал, что первоначалом всех вещей является вода, и всё произошедшее от неё наделено свойствами жизни, одушевлено. Анаксимандр (640-547 до н.э.) - ученик Фалеса, представлял себе первовещество более абстрактным, более неопределенным, бесконечным, или «апейроном», породившим и воздух и воду, в которой возникла жизнь.
Первая научная программа древности - математическая программа Пифагора (580-500 до н.э.). Помимо известной «теоремы Пифагора» на счету этого античного ученого имеется и ряд других научных достижений. К их числу относится, например, введение понятия иррациональности. Превыше всего ставил Число. Считая, что мир состоит из пяти элементов (земли, огня, воздуха, воды и эфира), Пифагор увязал их с пятью видами правильных многогранников с тем или иным числом граней. Пифагор заложил основы развития естествознания, опираясь на числовые закономерности, на законы бытия.
2. Афинский период (V-IV века до н.э.).
Автором второй научной программы древности - физической программы был Демокрит (ок. 460-370 до н.э.). Его атомистическое учение объясняло целое как сумму отдельно составляющих его идей. Основные принципы атомизма Демокрита:
§ вся Вселенная состоит из мельчайших материальных частиц -- атомов и незаполненного пространства -- пустоты. Наличие последней является обязательным условием для осуществления перемещения атомов в пространстве;
§ атомы неуничтожимы, вечны, а потому и вся Вселенная, из них состоящая, существует вечно;
§ атомы представляют собой мельчайшие, неизменные, непроницаемые и абсолютно неделимые частицы -- последние, образно говоря, «кирпичики мироздания»;
§ атомы находятся в постоянном движении, изменяют свое положение в пространстве;
§ различаются атомы по форме и величине;
§ все предметы материального мира образуются из атомов различных форм и различного порядка их сочетаний.
Третьей научной программой древности было учение Аристотеля (384-322 до н.э.). Он представил мир как целое, естественно возникшее образование, имеющее причины развития в себе самом. В истории науки Аристотель известен также как автор космологического учения, которое оказало огромное влияние на миропонимание многих последующих столетий. Космология Аристотеля -- геоцентристическое воззрение. Аристотель рассматривает Бога как разум мирового масштаба, дающий энергию «перводвигатель».
3. Эллинистский период (330 г. до н.э. - 30 г. н.э.).
Одним из крупнейших ученых-математиков этого периода был Евклид (III век до н.э.). В своём труде «Начала» систематизировал все математические достижения того времени. В «Началах» были заложены основы античной математики. Созданный Евклидом метод аксиом позволил ему построить здание геометрии, носящей по сей день его имя. В этот период были также немалые достижения в области механики. Архимед (287-212 до н.э.) - первоклассный ученый, математик и механик эллинистского периода, решил ряд задач по вычислению площадей поверхностей и объемов, определил значение числа р (пи), ввёл понятие центра тяжести и разработал методы его определения для различных тел, дал математический вывод законов рычага. Широчайшую известность получил закон Архимеда, касающийся плавучести тел. Согласно этому закону, на всякое тело, погруженное в жидкость, действует поддерживающая сила, равная весу вытесненной телом жидкости, направленная вверх и приложенная к центру тяжести вытесненного объема.
В этот период получили своё развитие идеи атомистики в учении Эпикура (341-270 до н.э.). Он внёс в описание атомов, сделанное Демокритом, некоторые поправки:
§ атомы не могут превышать известной величины;
§ число форм атомов ограничено;
§ атомы обладают тяжестью и т. д.
Но самое главное в атомистическом учении Эпикура - это попытка найти какие-то внутренние источники жизни атомов. Он высказал мысль, что изменение направления их движения может быть обусловлено причинами, содержащимися внутри самих атомов.
11. Научные методы. Эмпирический уровень (наблюдение, измерение, эксперимент) и теоретический уровень (абстрагирование, формализация, идеализация, индукция, дедукция)
Методос - путь к достижению цели.
Научный метод - это совокупность приёмов и операций практического и теоретического освоения действительности.
Научный метод как таковой подразделяется на методы, используемые на каждом уровне исследований. Выделяются, таким образом, эмпирические и теоретические методы.
К методам эмпирического уровня исследований относятся:
1) наблюдение - целенаправленное восприятие явлений объективной действительности;
2) описание - фиксация средствами естественного или искусственного языка сведений об объектах;
3) измерение - сравнение объектов по каким-либо сходным свойствам или сторонам;
4) эксперимент - наблюдение в специально создаваемых и контролируемых условиях, что позволяет восстановить ход явления при повторении условий.
К методам теоретического уровня исследований относятся:
1) абстрагирование - отвлечение от ряда несущественных для данного исследования свойств и отношений изучаемого явления с одновременным выделением интересующих нас свойств и отношений;
2) формализация - построение абстрактно-математических моделей, раскрывающих сущность изучаемых процессов действительности;
3) идеализация - это мыслительное образование абстрактных объектов, не существующих и не осуществимых в действительности, но для которых имеются прообразы в реальном мире.
4) индукция - метод исследования и способ рассуждения, в котором общий вывод строится на основе частных посылок;
5) дедукция - способ рассуждения, посредством которого из общих посылок с необходимостью следует заключение частного характера.
12. Пространство и время (классическая механика И. Ньютона и теория относительности А. Эйнштейна)
Пространство и время в классической механике И. Ньютона
В 1687 г. вышел основополагающий труд Ньютона «Математические начала натуральной философии». Этот труд более чем на два столетия определил развитие всей естественно-научной картины мира. В нем были сформулированы основные законы движения и дано определение понятий пространства, времени, места и движения.
Раскрывая сущность времени и пространства, Ньютон характеризует их как «вместилища самих себя и всего существующего. Во времени все располагается в смысле порядка последовательности, в пространстве -- в смысле порядка положения». Он предлагает различать два типа понятий пространства и времени: абсолютные (истинные, математические) и относительные (кажущиеся, обыденные) и дает им следующую типологическую характеристику.
§ Абсолютное, истинное, математическое время само по себе и по своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно и иначе называется длительностью.
§ Относительное, кажущееся, или обыденное, время есть или точная, или изменчивая, постигаемая чувствами, внешняя мера продолжительности, употребляемая в обыденной жизни вместо истинного математического времени, как-то: час, день, месяц, год.
§ Абсолютное пространство по своей сущности, безотносительно к чему бы то ни было внешнему, остается всегда одинаковым и неподвижным.
§ Относительное пространство есть мера или какая-либо ограниченная подвижная часть, которая определяется нашими чувствами по положению его относительно некоторых тел и которое в обыденной жизни принимается за пространство неподвижное.
Из определений Ньютона следовало, что разграничение им понятий абсолютного и относительного пространства и времени связано со спецификой теоретического и эмпирического уровней их познания. На теоретическом уровне классической механики абсолютное пространство и время играли существенную роль во всей причинной структуре описания мира. Они выступали в качестве универсальной инерциальной системы отсчета, так как законы движения классической механики справедливы в инерциальных системах отсчета. На уровне эмпирического познания материального мира понятия «пространство» и «время» ограничены чувствами и свойствами познающей личности, а не объективными признаками реальности как таковой. Поэтому они выступают в качестве относительного времени и пространства.
Пространство и время в теории относительности А. Эйнштейна
А. Эйнштейн отказался от представлений классической механики. Согласно представлению Эйнштейна, каждое движение тела происходит относительно определённого тела отсчёта, поэтому все физические процессы и законы должны формулироваться по отношению к точной системе отсчёта, следовательно, не существует никакого абсолютного пространства и времени. Он впервые связывает обособленные в классической механике понятия пространства и времени в понятие пространственно-временной непрерывности (континуум).
Теория относительности рассматривает наш мир как четырёхмерный, где тремя координатами x, y, z описывают пространство, а четвёртой - t - время.
До 1915 г. пространство и время воспринимались как некая жесткая арена для событий, на которую все происходящее на ней никак не влияет. Так обстояло дело даже в специальной теории относительности. Тела двигались, силы притягивали и отталкивали, но время и пространство просто оставались самими собой, их это не касалось. И было естественно думать, что пространство и время бесконечны и вечны.
В общей же теории относительности А. Эйнштейна ситуация совершенно иная. Пространство и время теперь динамические величины: когда движется тело или действует сила, это изменяет кривизну пространства и времени, а структура пространства-времени в свою очередь влияет на то, как движутся тела и действуют силы. Пространство и время не только влияют на все, что происходит во Вселенной, но и сами изменяются под влиянием всего в ней происходящего. Как без представлений о пространстве и времени нельзя говорить о событиях во Вселенной, так в общей теории относительности стало бессмысленным говорить о пространстве и времени за пределами Вселенной.
В последующие десятилетия новому пониманию пространства и времени предстояло произвести переворот в наших взглядах на Вселенную. Старое представление о почти не меняющейся Вселенной, которая, может быть, всегда существовала и будет существовать вечно, сменилось картиной динамической, расширяющейся Вселенной, которая, по-видимому, возникла когда-то в прошлом и, возможно, закончит свое существование когда-то в будущем.
Пространство - форма бытия материи, характеризующая её протяжённость, структурность, сосуществование и взаимодействие во всех материальных системах.
Время характеризует последовательность смены состояний и длительность бытия любых объектов и процессов, внутреннюю связь сменяющихся и сохраняющихся состояний.
Общие свойства пространства и времени:
§ объективность - т.е. существуют независимо от сознания людей и познания ими этой объективной реальности;
§ абсолютность - вытекает из признания тезиса о том, что бытие вне времени есть такая же бессмыслица, как и бытие вне пространства;
§ относительность - человеческие представления о пространстве и времени относительны; из этих относительных представлений складывается абсолютная истина;
§ бесконечность.
Общие свойства пространства:
§ протяженность;
§ связанность и непрерывность - между двумя различными точками в пространстве, как близко бы они не находились, всегда есть третья;
§ трёхмерность - каждая точка пространства однозначно определяется набором трёх действительных чисел - координат;
§ единство метрических и топологических характеристик.
Общие свойства времени:
§ длительность;
§ единство прерывного и непрерывного - между двумя моментами времени как близко бы они не располагались всегда можно выделить третий;
§ необратимость - следствие второго Начала термодинамики или Закона сохранения энтропии;
§ одномерность - любые явления, происходящие в одних и тех же условиях, но в разное время, будут протекать одинаково.
13. Естественнонаучная картина мира: физическая картина мира (механическая, электромагнитная, современная - квантово-релятивистская)
Естественнонаучная картина мира (ЕНКМ) - это система важнейших принципов и законов, лежащих в основе окружающего нас мира.
Механическая картина мира (МКМ).
Формирование МКМ происходило в течение нескольких столетий до середины XIX века под сильным влиянием взглядов выдающихся мыслителей древности: Демокрита, Эпикура, Аристотеля, Лукреция и др. Она явилась необходимым и очень важным шагом на пути познания природы.
Имена учёных, внесших основной вклад в создание МКМ: Н.Коперник, Г.Галилей, Р.Декарт, И.Ньютон, П.Лаплас и др.
Основные черты механической картины мира:
§ все материальные тела состоят из молекул, находящихся в непрерывном и хаотическом механическом движении. Материя - вещество, состоящее из неделимых частиц;
§ взаимодействие тел осуществляется согласно принципа дальнодействия, мгновенно на любые расстояния (закон всемирного тяготения, закон Кулона), или при непосредственном контакте (силы упругости, силы трения);
§ пространство - пустое вместилище тел. Всё пространство заполняет невидимая невесомая «жидкость» - эфир;
§ время - простая длительность процессов. Время абсолютно;
§ всё движение происходит на основе законов механики Ньютона, все наблюдаемые явления и превращения сводятся к механическим перемещениям и столкновениям атомов и молекул;
§ мир выглядит как колоссальная машина с множеством деталей, рычагов, колёсиков.
Достоинство МКМ состоит в том, что это первая научная картина мира.
Электромагнитная картина мира (ЭМКМ).
В XIX веке естественные науки накопили огромный эмпирический материал, нуждающийся в переосмыслении и обобщении. Многие полученные в результате исследований научные факты не совсем вписывались в устоявшиеся механические представления об окружающем мире. Во второй половине XIX века на основе исследований в области электромагнетизма сформировалась новая физическая картина мира - электромагнитная картина мира (ЭМКМ). В её формировании сыграли решающую роль исследования, проведённые выдающимися учёными М. Фарадеем и Дж. Максвеллом, Г. Герцем. Весь мир заполнен электромагнитным эфиром, который может находиться в различных состояниях. Физические поля трактовались как состояния эфира. Эфир является средой для распространения электромагнитных волн и, в частности, света. Материя существует в двух видах: вещество и поле.
Подобные документы
Требования образовательных стандартов по дисциплине "Концепции современного естествознания". Изучение и понимание сущности фундаментальных законов природы, составляющих каркас современных физики, химии и биологии. Методология современного естествознания.
лекция [26,7 K], добавлен 24.11.2017Естественнонаучная и гуманитарная культуры. Предмет и метод естествознания. Динамика естествознания и тенденции его развития. История естествознания. Структурные уровни организации материи. Макромир. Открытые системы и неклассическая термодинамика.
книга [353,5 K], добавлен 21.03.2009Естественнонаучная и гуманитарная культуры и история естествознания. Корпускулярная и континуальная концепции описания природы. Порядок и беспорядок в природе, хаос. Пространство и время, принципы относительности, симметрии, универсального эволюционизма.
курс лекций [545,5 K], добавлен 05.10.2009Значение науки в современной культуре и структура научного знания. Основные этапы эволюции европейского естествознания. Типы физических взаимодействий. Механистическая, электромагнитная и квантово-релятивистская картина мира. Модели строения атома.
учебное пособие [49,9 K], добавлен 27.01.2010Наука как часть культуры, ее критерии и структура. Методы и подходы научного познания. Сущность современных концепций физики, химии и космологии. Земля как предмет естествознания. Теории происхождения жизни, эволюции органического мира. Феномен человека.
учебное пособие [3,2 M], добавлен 21.09.2010Цели и задачи курса "Концепции современного естествознания", место данной дисциплины в системе других наук. Классификация наук, предложенная Ф. Энгельсом. Взаимосвязь физических, химических и биологических знаний. Виды атмосферных процессов в природе.
контрольная работа [28,8 K], добавлен 13.06.2013Предмет и задачи естествознания как системы научных знаний. Характеристика этапов развития естествознания. Научная картина мира как одно из основополагающих понятий в естествознании — особая форма систематизации знаний, синтез различных научных теорий.
презентация [1001,9 K], добавлен 28.09.2014Эволюция познавательной деятельности от античных времен до современности. Специфические черты науки; ее первоначальное деление на естественнонаучные и гуманитарные знания, их дальнейшее объединение в дисциплину "концепции современного естествознания".
курсовая работа [38,8 K], добавлен 08.05.2011Естествознание как система научных знаний о природе, обществе и мышлении взятых в их взаимной связи. Формы движения материи в природе. Предмет, цели, закономерности и особенности развития, эмпирическая, теоретическая и прикладная стороны естествознания.
реферат [25,4 K], добавлен 15.11.2010Социальные функции естественных наук. Естественнонаучная, гуманитарная культуры. Роль естествознания в научно-техническом прогрессе, классификация его методов, их роль в познании. Формы естественнонаучного познания: факт, проблема, идея, гипотеза, теория.
курс лекций [279,5 K], добавлен 15.11.2014