Современная классификация органического мира. История развития жизни на нашей планете

Определение родства организмов в биологии посредством их сравнения во взрослом состоянии, эмбрионального развития и поиска переходных ископаемых форм. Систематика органического мира и бинарная классификация Линнея. Теории происхождения жизни на Земле.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 20.12.2010
Размер файла 717,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Ленинградский государственный университет им. А.С.Пушкина

факультет математики, физики, информатики

Реферат

по концепции современного естествознания

на тему

Современная классификация органического мира. История развития жизни на нашей планете

Выполнила:

студентка 2 курса МФИ

Сафронова Юлианна Андреевна

Проверил: доцент

Дорохов Анатолий Иосифович

Санкт-Петербург

2009г.

Содержание

  • 1. Современная классификация органического мира
    • 1.1 Введение
    • 1.2 Исследования К. Линнея
    • 1.3 Систематика органического мира
    • 1.4 Таксономические категории
    • 1.5 Современная система органического мира
  • 2. История развития жизни на нашей планете
    • 2.1 Введение
    • 2.2 Уникальность Земли
    • 2.3 Происхождение жизни на Земле
    • 2.4 Заключение
  • Список используемой литературы
  • Приложения

1. Современная классификация органического мира

1.1 Введение

Современная биология представляет комплекс, систему наук. Отдельные биологические науки или дисциплины возникли вследствие процесса дифференциации, постепенного обособления относительно узких областей изучения и познания живой природы. Это, как правило, интенсифицирует и углубляет исследования в соответствующем направлении. Так, благодаря изучению в органическом мире животных, растений, простейших одноклеточных организмов, микроорганизмов, вирусов и фагов произошло выделение в качестве крупных самостоятельных областей зоологии, ботаники, протистологии, микробиологии, вирусологии.

Изучение закономерностей, процессов и механизмов индивидуального развития организмов, наследственности и изменчивости, хранения, передачи и использования биологической информации, обеспечения жизненных процессов энергией является основой для выделения эмбриологии, биологии развития, генетики, молекулярной биологии и биоэнергетики. Исследования строения, функциональных отправлений, поведения, взаимоотношений организмов со средой обитания, исторического развития живой природы привели к обособлению таких дисциплин, как морфология, физиология, этология, экология, эволюционное учение. Интерес к проблемам старения, вызванный увеличением средней продолжительности жизни людей, стимулировал развитие возрастной биологии.

Для уяснения биологических основ развития, жизнедеятельности и экологии конкретных представителей животного и растительного мира неизбежно обращение к общим вопросам сущности жизни, уровням ее организации, механизмам существования жизни во времени и пространстве. Наиболее универсальные свойства и закономерности развития и существования организмов и их сообществ изучает общая биология. Сведения, получаемые каждой из наук, объединяются, взаимодополняя и обогащая друг друга, и проявляются в обобщенном виде, в познанных человеком закономерностях, которые либо прямо, либо с некоторым своеобразием (в связи с социальным характером людей) распространяют свое действие на человека.

Основными методами биологии являются наблюдение (позволяет описать биологические явления), сравнение (дает возможность найти общие закономерности в строении и жизнедеятельности различных организмов), эксперимент, как опыт (помогает исследователю изучить свойства биологических объектов), моделирование (имитируются многое процессы, недоступные для непосредственного наблюдения или экспериментального воспроизведения), исторический метод (позволяет на основе данных о современном органическом мире и его прошлом познать процессы развития живой природы).

1.2 Исследования К. Линнея

В классической биологии родство организмов, относящихся к разным группам, устанавливали путем сравнения организмов во взрослом состоянии, эмбрионального развития, поиска переходных Ископаемых форм. Современная биология подходит к решению этой задачи также путем изучения различий в нуклеотидных последовательностях ДНК или аминокислотных последовательностях белков. По главным своим результатам схемы эволюции, составленные на основе классического и молекулярно-биологического подходов, совпадают.

Ранее люди классифицировали организмы в зависимости от их практического значения. К. Линней (1735) ввел бинарную классификацию, согласно которой для определения положения организмов в системе живой природы указывается их принадлежность к конкретному виду и роду. Хотя бинарный принцип сохранен в современной систематике, оригинальный вариант классификации К. Линнея носит формальный характер. Биологи до создания теории эволюции относили живые существа к соответствующему роду и виду по их подобию друг другу, прежде всего близости строения. Эволюционная теория, объясняющая сходство между организмами их генетическим родством, составила естественно-научную основу биологической классификации. Приобретя в эволюционной теории такую основу, современная классификация органического мира непротиворечиво отражает, с одной стороны, факт разнообразия живых форм, а с другой - единство всего живого. Его ботанические работы, особенно Роды растений, легли в основу современной систематики растений. В них Линней описал и применил новую систему классификации, значительно упрощавшую определение организмов. В методе, который он назвал "половым", основной упор делался на строении и количестве репродуктивных структур растений, т.е. тычинок и пестиков.

Еще более смелым трудом стала знаменитая Система природы, попытка распределить все творения природы - животных, растения и минералы - по классам, отрядам, родам и видам, а также установить правила их идентификации. Исправленные и дополненные издания этого трактата выходили 12 раз в течение жизни Линнея и несколько раз переиздавались после смерти ученого.

1.3 Систематика органического мира

Систематика - это часть ботаники и зоологии, изучающая разнообразие форм живого. Систематика даёт научные названия организмам, оценивает черты сходства и различия между ними. Важной частью систематики является таксономия, целью которой является разделение организмов на группы (таксоны) и расположение этих групп в порядке, отражающем их родственные связи и иерархию. Существует несколько методов определения относительного положения таксона в системе.

Попытки классификации живой материи предпринимались учёными неоднократно. Среди первых попыток можно вспомнить труды Аристотеля по зоологии и Теофраста по ботанике. Начало современной систематике положила "Система природы" Карла Линнея. Он разделил всех животных на шесть классов: звери, птицы, гады, рыбы, насекомые и черви, а все растения - на несколько классов по способу размножения. К середине XIX века некоторые учёные (например, Эрнст Геккель) наравне с животными и растениями стали выделять новое царство протистов, в которое вошли бактерии, водоросли, грибы и одноклеточные животные.

С развитием микробиологии стало ясно, что одной из важнейших характеристик организмов является их клеточное строение. В результате, в первой половине XX века были выделены два надцарства - прокариоты и эукариоты. Надцарство прокариот включило в себя бактерии и сине-зелёные водоросли, клетки которых не содержат ядра. Остальные клеточные организмы были отнесены к ядерным (эукариотам).

Особой формой, промежуточной между живым и неживым состоянием, являются вирусы, отличающиеся от всех остальных организмов отсутствием важнейшего признака организации живой материи - клеточного строения. Некоторые исследователи, чтобы показать отличие вирусов от других организмов, вводят новый таксон - империю - и включают в одну из империй вирусы, а в другую - все клеточные организмы.

В 90-х годах XX века учёные обратили пристальное внимание на очень древнюю и сравнительно малочисленную группу архебактерий. Выяснилось, что хотя клетка архебактерии и не содержит ядра, она разительно отличается по строению и от клетки эукариот, и от клетки прокариот. В результате архебактерии, рассматривавшиеся ранее как один из классов бактерий, в настоящее время нередко выделяются в отдельное царство или даже надцарство.

Итак, в основу деления организмов по надцарствам положено строение клетки. Что касается деления эукариот на царства, то устоявшейся точки зрения пока ещё нет. Любые искусственные разграничения нарушают естественные связи между организмами. Действительно, существует большое количество отличительных признаков (рис.2), по каждому из которых может быть произведена классификация; среди них:

· строение организма;

· способ получения органических веществ;

· способность к передвижению.

В советских учебниках долгое время была распространена классификация эукариот по способу питания, подразумевавшая разделение надцарства эукариот на три царства: растения (фотосинтезирующие автотрофы), грибы (в основном, осмотрофные гетеротрофы) и животные (в основном, голозойные гетеротрофы). Однако, в эту схему достаточно сложно уложить, например, эвгленовые водоросли, которые могут питаться как автотрофно, так и гетеротрофно.

В 1969 году Робертом Уиттекером была предложена система пяти царств, завоёвывающая сейчас всё больше и больше сторонников (рис.1). Прокариоты у него по-прежнему объединены в одно царство Monera. Примитивные эукариоты, не имеющие тканевой дифференциации (простейшие, водоросли, слизевики), объединены в царство Protista. Всё, что осталось от растений, (мхи, папоротники и семенные растения) составило царство Plantae, все высшие классы грибов - царство Fungi, все многоклеточные животные - царство Animalia.

Эта система, однако, тоже имеет свои недостатки. Среди них:

· систематическое положение оомицетов и слизевиков, являющихся промежуточными формами между протистами и грибами, пока что не ясно;

· сами грибы обладают многими признаками, сближающими их с протистами (таковыми, в частности, является отсутствие истинных тканей).

1.4 Таксономические категории

Наука о классификации животных и растений носит название таксономии, она определяет родственные связи между организмами. Основателем научной систематики был шведский ботаник Карл Линней, который ввел (1753) так называемую биномиальную номенклатуру, позволяющую с максимальной точностью определить положение любого животного или растения в системе. Согласно этой номенклатуре каждый вид получает двойное название: родовое и видовое. Все названия пишутся на латинском языке. Родовое имя пишется с большой буквы, видовое - с малой. Степень сходства между организмами, входящими в одну таксономическую категорию, возрастает по мере перехода к категориям более низкого ранга. Применяются следующие таксономические категории:

Основными таксонами являются царство, тип (отдел), класс, отряд (порядок), семейство, род, вид. Каждая предыдущая группа в этом списке объединяет несколько последующих (так, семейство объединяет несколько родов и, в свою очередь, принадлежит к какому-либо отряду или порядку). По мере перехода от высшей иерархической группы к низшей степень родства возрастает. Для более детальной классификации используются вспомогательные единицы, названия которых образуются прибавлением к основным единицам приставок "над-" и "под-", например, надцарство, подвид. Только виду можно дать относительно строгое определение, все остальные таксономические группы определяются достаточно произвольно.

Вид - это единственная таксономическая категория, которой можно дать относительно точное определение. Вот некоторые из определений вида:

· Вид - это группа особей, обладающих единственным в своём роде набором морфологических (структурных) и функциональных признаков, т.е. внешним видом, особенностями расположения органов и их работы и т.п.

· Вид - это группа особей, способных, скрещиваясь между собой, давать плодовитое потомство.

· Вид - это группа особей, сходных по генотипу (количеству, размеру и форме хромосом).

· Вид - это группа особей, занимающих одну и ту же экологическую нишу.

1.5 Современная система органического мира

Органический мир делится на два надцарства: ядерные (эукариоты) и безъядерные (доядерные, или прокариоты) и четыре царства: Растения, Грибы, Животные, Бактерии и цианобактерии. Основа их классификации -- родство, общность происхождения организмов.

Бактерии и сине-зеленые, или цианобактерии -- одноклеточные просто-организованные безъядерные организмы, автотрофы или гетеротрофы, посредники между неорганической природой и надцарством ядерных. Бактерии -- разрушители органических веществ, их роль в разложении органических веществ до минеральных. Роль цианобактерии в биосфере -- заселение бесплодных субстратов (камни, скалы и др.) и подготовка их для заселения разнообразными организмами.

Грибы -- одноклеточные и многоклеточные организмы, обитающие как на суше, так и в воде. Гетеротрофы. Роль грибов в круговороте веществ в природе, в превращении органических веществ в минеральные, в почвообразовательных процессах.

Растения -- одноклеточные и многоклеточные организмы, большинство которых в клетках содержит пигмент хлорофилл, придающий растению зеленую окраску. Растения -- автотрофы, синтезируют органические вещества из неорганических с использованием энергии солнечного света. Растения -- основа для существования всех других групп организмов, кроме сине-зеленых и ряда бактерий, так как растения снабжают их пищей, энергией, кислородом.

Животные -- царство организмов, активно передвигающихся в пространстве (исключение составляют некоторые полипы и др.). Гетеротрофы. Роль в круговороте веществ в природе -- потребители органического вещества. Транспортная функция животных в биосфере -- переносят вещество и энергию.

2. История развития жизни на нашей планете

2.1 Введение

На нашей планете все живое происходит от живого. Но Земля не существовала вечно, и тогда возникает вопрос: откуда взялась жизнь? Существует большое количество мнений на этот счет, но основными можно назвать следующие.

Есть предположение, что жизнь была когда-то создана какими-то сверхъестественными силами или существом, которым мог быть бог, полубог или кто-нибудь подобный. Здесь тоже существует большое количество различных точек зрения, но главной из них - идеи божественного начала жизни на Земле -- придерживается основное количество верующих.

Существует также гипотеза, предполагающая произвольное зарождение жизни. Величайшие биологи всех времен пытались воспроизвести зарождение жизни, то есть создать живой организм. Но ни одна из попыток не привела к желаемому результату. Откуда же взялся первый организм?

Теория, утверждающая, что Земля, а также жизнь на ней существовали вечно, подвергается большому сомнению. По оценке ученых возраст Земли равен приблизительно пяти миллиардам лет. Есть еще факты, ставящие под сомнение эту теорию, хотя в ней и так немало противоречий.

Есть также предположение, что Земля заселена извне. Но на самом деле достоверных фактов о существовании НЛО (неопознанных летающих объектов), занесших жизнь на Землю, нет. Хотя наскальные рисунки первобытного человека подтверждают эти догадки.

И последняя из основных гипотез - химическая эволюция. Еще тогда, когда Земля только родилась, точнее, когда она стала остывать после очень бурного вулканического периода, все тогда было в состоянии хаоса, природного месива. Возможно, тогда среди беспрерывных химических процессов возник малюсенький живой комочек. Кто знает, может быть он возник случайно, может быть, и нет... И все же в мире нет ни одного достоверного доказательства, подтверждающего хотя бы одну из этих гипотез.

2.2 Уникальность Земли

Когда рассматриваешь главные особенности развития Земли, становится ясным, что путь её эволюции в решающей мере был предопределён как местом Земли в Солнечной системе, светимостью Солнца, так её массой и химическим составом. Так, если бы наше Солнце принадлежало к типу переменных звёзд, то на Земле попеременно становилось бы нестерпимо жарко или невыносимо холодно. Если бы масса Солнца была существенно бoльшей, то оно уже через несколько десятков или сотен миллионов лет после своего образования взорвалось бы и превратилось в нейтронную звезду или даже в чёрную дыру. Нам и всему живому на Земле очень повезло, что Солнце -- спокойная звезда со средней звёздной массой, относится к звёздам-карликам спектрального класса G2 и является стационарной звездой, слабо меняющей свою светимость в течение многих миллиардов лет. Последнее особенно важно, поскольку за последние 4 млрд лет оно позволило земной жизни пройти длительный путь эволюции от зарождения простой и примитивной жизни к её высшим формам.

Оптимальным оказалось и расстояние Земли от Солнца, поскольку при их более близком взаимном расположении на Земле было бы слишком жарко и мог бы возникнуть, как на Венере, необратимый парниковый эффект, а при более удалённом -- Землю сковал бы мороз и она могла превратиться в "белую" планету с устойчивым оледенением.

Повезло нам и с массивным спутником Земли -- Луной. В гл. 3 было отмечено, что её возникновение на близкой околоземной орбите существенно ускорило тектоническое развитие Земли. Если бы у нашей планеты не было массивного спутника, то Земля, скорее всего, подобно Венере, медленно вращалась бы в обратную сторону и так же задержалась в своём тектоническом развитии на 2,5 -- 3 млрд лет. В таком варианте сейчас на Земле господствовали бы условия позднего архея с плотной углекислотной атмосферой и высокими температурами, а вместо современной высокоорганизованной жизни Землю населяли бы только примитивные бактерии -- одноклеточные прокариоты.

Рассматривая эволюцию Земли в тесном взаимодействии с Солнцем и Луной, поражаешься, насколько это оптимальная и тонко сбалансированная система, так удачно обеспечившая появление на нашей планете весьма комфортных условий для возникновения и развития высокоорганизованной жизни. При ближайшем рассмотрении этой системы обращает на себя внимание оптимальная масса Земли, способная удерживать на своей поверхности умеренно плотную атмосферу, а также исключительно удачный её химический состав. Действительно, даже сравнительно небольшие отклонения от исходных концентраций в земном веществе таких элементов и соединений, как Fe, FeO, CO2, H2O, N2 и др., могли привести к необратимым и катастрофическим для жизни последствиям. В частности, если бы в первичном земном веществе было меньше воды, то с меньшей интенсивностью поглощался бы углекислый газ и он стал бы накапливаться в земной атмосфере. В результате ещё в архее мог возникнуть необратимый парниковый эффект и наша Земля превратилась бы в "горячую" планету типа Венеры. Если бы воды было заметно больше либо меньше свободного железа, то Земля превратилась бы в планету "Океан". Если бы в Земле было меньше азота, то ещё в раннем протерозое она превратилась бы в сплошь покрытую снегом "белую" и холодную планету. При бoльшем количестве свободного (металлического) железа в первичном земном веществе в современной атмосфере, как и в протерозое, не смог бы накапливаться свободный кислород, а следовательно, на Земле не могло возникнуть царства животных. Наоборот, при меньшей исходной концентрации железа уже сейчас или даже раньше должно было начаться обильное выделение эндогенного (абиогенного) кислорода, и всё живое на Земле к настоящему времени уже "сгорело" бы в такой атмосфере. Кроме того, процесс дегазации глубинного кислорода должен привести к сильнейшему парниковому эффекту, после чего Земля также превратилась бы в горячую планету типа Венеры.

2.3 Происхождение жизни на Земле

Первичная Земля, сформировавшаяся за счёт аккреции исходного протопланетного вещества, должна была быть полностью безжизненной планетой. Связано это с тем, что само вещество протопланетного газопылевого облака образовалось благодаря взрывам сверхновых звёзд и было полностью стерилизовано жёстким космическим излучением ещё задолго до начала аккреции планет Солнечной системы. Кроме того, на Земле в те далёкие времена ещё не существовало ни плотной атмосферы, ни гидросферы, т. е. наиболее благоприятных сред для возникновения, обитания и защиты от разрушения жизни. Это объясняется тем, что земное вещество с самого начала было резко обеднено летучими соединениями, а та их ничтожная часть, которая всё-таки освобождалась при ударах и тепловых взрывах планетезималей, тут же сорбировалась очень пористым грунтом и быстро выводилась с поверхности Земли, захораниваясь постепенно в её недрах при выпадении всё новых и новых порций протопланетного вещества. К тому же в первое время после образования Земли её поверхность подвергалась исключительно интенсивному воздействию мощного потока корпускулярного излучения молодого Солнца, находившегося тогда, подобно звёздам Т-Тельца, в самом начале главной последовательности своего развития. Этот интенсивный поток корпускул, в основном протонов и ядер гелия, должен был буквально сдувать с поверхности Земли все остатки газовых составляющих.

После первой активной стадии развития молодого Солнца его светимость около 4,6 млрд лет назад примерно на 30-25% была ниже современного уровня. Поэтому условия существования на молодой и лишённой плотной атмосферы Земле были исключительно суровыми. С одной стороны, её поверхность представляла собой холодную пустыню, а с другой -- она подвергалась постоянному и интенсивному облучению потоками жёстких космических лучей.

Неблагоприятные условия для возникновения и развития жизни на Земле продолжались до тех пор, пока не начал действовать процесс дегазации земного вещества. Однако это могло произойти только после подъёма температуры в недрах молодой Земли до уровня появления у неё астеносферы и возникновения конвективных движений в мантии, т. е. после начала действия наиболее мощного процесса гравитационной дифференциации земного вещества. При этом образование астеносферы и процесс зонного плавления земного вещества привели к резкому усилению приливного взаимодействия Земли с Луной и к существенному перегреву верхней мантии в экваториальном поясе Земли. Произошли эти события примерно 4,0-3,9 млрд лет назад.

На ранних этапах дегазации Земли бoльшая часть попадавшей на её поверхность воды и других элементоорганических соединений поглощалась реголитом первозданного грунта молодой Земли. Высокая пористость и сорбционная способность реголита, по-видимому, могли обеспечить наиболее благоприятные условия для формирования сложных органических соединений и зарождения жизни. Вероятнее всего жизнь зародилась именно в мелких порах первозданного реголита после того, как они оказались заполненными дегазированной и минерализованной водой (Сорохтин, Ушаков, 1991). Первичные углеводородные соединения могли возникать за счёт гидратации железосодержащих ультраосновных пород в присутствии CO2 , а оксиды азота, нитраты, нитриты, аммиак, а также хлориды, карбонаты, сульфаты аммония и другие многочисленные соединения азота и углерода -- благодаря грозовой активности углекислотно-азотной атмосферы раннего архея. Соединения фосфора, по-видимому, поступали в растворы непосредственно из вещества первозданного реголита. Необходимые же условия протекания реакций образования более сложных органических молекул при повышенных температурах атмосферы уже в начале архея обеспечивались капиллярным давлением водных растворов в порах реголита и каталитическим действием содержавшихся в нём свободных переходных металлов (Fe, Ni, Cr, Со и др.). Формированию сложных протоорганических молекул способствовало и то обстоятельство, что только в мелких порах реголита благодаря их большой сорбционной активности и высоким капиллярным давлениям концентрация элементоорганических соединений могла достигать уровня, необходимого для синтеза более сложных органических веществ (в морских бассейнах эти соединения оказались бы слишком разбавленными).

Напомним, что классические эксперименты С. Миллера (1959), А. Вильсона (1960), Дж. Оро (1965, 1966), С. Фокса (1965) и других исследователей показали возможность синтезирования достаточно сложных органических молекул из неорганических соединений при их нагревании в полях электрических разрядов. В России направление автохтонного происхождения жизни путём синтезирования органических молекул из неорганических соединений активно разрабатывал академик А.И. Опарин (1965).

Поэтому есть веские основания предполагать, что жизнь на Земле зародилась в пропитанном водой и элементоорганическими соединениями первозданном грунте и вулканических пеплах в начале раннего архея, около 4,0-3,9 млрд лет назад в то время, когда на Земле возникла восстановительная азотно-углекислотно-метановая атмосфера. Таким образом, зарождение жизни на Земле совпало с первым и наиболее сильным тектоническим и геохимическим рубежом в истории её развития -- с начальным моментом выделения земного ядра (с началом химико-плотностной дифференциации земного вещества), приведшим к формированию гидросферы, плотной атмосферы и континентальной земной коры.

В работе известного российского геохимика Э.М. Галимова (2001), посвящённой проблемам происхождения и эволюции жизни на Земле, показывается, что происхождение жизни должно было быть связано с протеканием энергетических химических реакций, снижающих энтропию системы. Такие высокоэнергетические и низкоэнтропийные реакции могут протекать, например, с участием аденозинтрифосфата (АТФ), а синтез АТФ вполне мог происходить на ранних стадиях развития Земли. При этом для образования АТФ вначале необходимо синтезировать основание аденин -- продукт полимеризации синильной кислоты HCN, и рибозу -- продукт полимеризации формальдегида HCOH. Таким образом, согласно Э.М. Галимову синтез аденозинтрифосфата представляется необходимой предпосылкой зарождения и развития эволюционного процесса развития жизни на Земле.

Таким образом, в самом начале архея на Земле действительно сложились условия, благоприятные для возникновения исходных химических составов, пригодных для дальнейшего синтеза более сложных органических веществ и предбиологических соединений. Этому способствовало и присутствие в реголите активных катализаторов -- переходных металлов Fe, Cr, Co, Ni, Pt и др. Возникшие к этому времени в грунте наиболее простые ассоциации сложных органических молекул или примитивные, но уже содержащие рибонуклеиновые кислоты, образования могли затем перемещаться в воду молодых морских бассейнов раннего архея.

Вероятно, в то время появились наиболее примитивные вирусы и одноклеточные организмы -- прокариоты, уже ограниченные от внешней среды защитными полупроницаемыми мембранами, но ещё не обладавшие обособленным ядром. По-видимому, тогда же появились и фотосинтезирующие одноклеточные микроорганизмы (типа цианобактерий), способные окислять железо. Об этом, в частности, говорит распространённость в отложениях раннего архея возрастом около 3,75 млрд лет железорудных формаций, сложенных окислами трёхвалентного железа (например, формации Исуа в Западной Гренландии).

2.4 Заключение

Историю человеческого общества, народов, государств можно изучать, исследуя исторические документы и предметы материальной культуры (остатки одежды, орудий, жилищ и т. п.). Где отсутствуют исторические данные, там нет науки. Исследователь истории жизни на Земле, очевидно, тоже нуждается в документах, но они значительно отличаются от тех, с которыми имеет дело историк. Земные недра-- это тот архив, в котором сохранились "документы" прошлого Земли и жизни на ней. В земных пластах находятся остатки древней жизни, которые показывают, какой она была тысячи и миллионы лет назад. В недрах Земли можно найти следы капель дождя и волн, работы ветров и льда; по отложениям горных пород можно восстановить контуры моря, реки, болота, озера и пустыни далекого прошлого. Геологи и палеонтологи, изучающие историю Земли, работают над этими "документами".

Пласты земной коры -- это огромный музей истории природы. Он окружает нас всюду: на крутых обрывистых берегах рек и морей, в каменоломнях и шахтах. Лучше всего он открывает перед нами свои сокровища, когда мы ведем специальные раскопки. Как же и в каком виде дошли до нас остатки организмов прошлого? Попав в реку, озеро или береговую полосу моря, остатки организмов могут иногда довольно быстро покрываться илом, песком, глиной, пропитываться солями и таким образом навеки "окаменевать". В дельтах рек, прибрежных зонах морей, озерах иногда бывают крупные скопления ископаемых организмов, которые образуют громадные "кладбища". Ископаемые не всегда бывают окаменелыми. Встречаются остатки растений и животных (особенно недавно живших), которые незначительно изменились. Например, трупы мамонтов, живших несколько тысяч лет назад, находят иногда полностью сохранившимися в вечной мерзлоте. Обычно животные и растения редко сохраняются целиком. Чаще всего остаются их скелеты, отдельные кости, зубы, раковины, стволы деревьев, листья или отпечатки их на камнях. Российский палеонтолог профессор И. А. Ефремов в последние годы детально разработал учение о захоронении древних организмов. По остаткам организмов можно сказать, какие это были существа, где и как они жили и почему изменились. В окрестностях Москвы можно увидеть известняк с многочисленными остатками кораллов. Какие выводы следуют из этого факта? Можно утверждать, что на территории Подмосковья шумело море, а климат был теплее, чем теперь. Это море было мелководным: ведь кораллы не живут на большой глубине. Море было соленым: в опресненных морях кораллов мало, а здесь их изобилие. Можно сделать и другие заключения, хорошо исследовав строение кораллов. Ученые могут по скелету и другим сохранившимся частям животного (кожа, мускулы, некоторые внутренние органы) восстановить не только его облик, но и образ жизни. Даже по части скелета (челюсти, черепу, костям ног) позвоночного можно сделать научно обоснованное заключение о строении животного, образе его жизни и ближайших родственниках как среди ископаемых, так и среди современных животных. Непрерывность развития организмов на Земле -- основной закон биологии, открытый Ч. Дарвином. Чем древнее животные и растения, населявшие Землю, тем они проще устроены. Чем ближе к нашему времени, тем организмы становятся сложнее и все более похожими на современных.

По данным палеонтологии и геологии, история Земли и жизни на ней разделена на пять эр, каждая из них характеризуется определенными организмами, преобладавшими в течение этой эры. Каждая эра разделяется на несколько периодов, а период в свою очередь -- на эпохи и века. Ученые установили, какие геологические события и какие изменения в развитии живой природы происходили на протяжении той или иной эры, периода, эпохи.

Науке известно несколько способов определения возраста древних пластов, а следовательно, и времени существования тех или иных ископаемых организмов. Ученые установили, например, что возраст самых древних пород на Земле, архейской эры (от греческого слова "архайос" -- древний), около 3,5 млрд. лет. Разными способами была вычислена длительность теологических эр и периодов. Эра, в которой мы живем,-- самая молодая. Называется она кайнозойской -- эрой новой жизни. Ей предшествовала мезозойская -- эра средней жизни. Следующая по старшинству -- палеозойская-- эра древней жизни. Еще раньше были эры протерозойская и архейская. Вычисление возраста далекого прошлого очень важно для понимания истории нашей планеты, развития жизни на ней, истории человеческого общества, а также для решения практических задач, в том числе научно обоснованных поисков полезных ископаемых.

Нужны секунды, чтобы увидеть, как передвинулась минутная стрелка; два-три дня, чтобы убедиться, насколько выросла трава; три-четыре года, чтобы заметить, как юноша становится взрослым. Требуются тысячелетия, чтобы подметить некоторые изменения в очертаниях материков и океанов. Время человеческой жизни -- это неощутимое мгновение на грандиозных часах истории Земли, поэтому людям издавна казалось, что очертания океанов и суши постоянны, а животные и растения, окружающие человека, не изменяются. Знание истории и законов развития жизни на Земле необходимо каждому, оно служит фундаментом научного миропонимания и открывает пути покорения сил природы.

Список используемой литературы

1. О. Г. Сорохтин, С. А. Ушаков - "Развитие Земли"

2. Н. Грин, У. Стаут, Д. Тейлор "Биология" : В 3-х т. Т.1.: Пер. с англ. / Под ред. Р.Сопера. - М.:Мир, 1990.

3. Райнхарт Юнкер, Зигфрид Шерер - "История происхождения и развития жизни"

4. А.Л.Тахтаджян - "Жизнь растений в шести томах"

Приложения

Рис.1. Система пяти царств Уиттекера

Рис.2. Отличительные признаки основных царств природы


Подобные документы

  • Геохронологическая таблица развития жизни на Земле. Характеристика климата, тектонических процессов, условий появления и развития жизни в архейской, протерозойской, палеозойской и мезозойской эре. Отслеживание процесса усложнения органического мира.

    презентация [1,0 M], добавлен 08.02.2011

  • Образование и зарождение жизни на Земле; влияние геологических процессов на изменение климата и условия существования организмов. Этапы создания типов и классов животных; эволюция "первичного бульона" до современного видового состава органического мира.

    презентация [6,8 M], добавлен 17.02.2012

  • Характеристика общих представлений об эволюции и основных свойствах живого, которые важны для понимания закономерностей эволюции органического мира на Земле. Обобщение гипотез и теорий происхождения жизни и этапы эволюции биологических форм и видов.

    курсовая работа [38,6 K], добавлен 27.01.2010

  • Сущность эволюционного учения как науки о причинах, движущих силах и общих закономерностях исторического развития живой природы. Новые идеи эволюции органического мира в теориях Дарвина и Ламарка. Механизмы и закономерности эволюционного процесса.

    презентация [127,7 K], добавлен 13.01.2011

  • Море как первичная среда развития жизни на Земле. Изменения в развитии живых организмов: половой процесс, многоклеточный и фотосинтез. Развитие наземных организмов в палеозойскую эру. Предпосылки для выхода на сушу кистеперых предков земноводных.

    реферат [18,0 K], добавлен 02.10.2009

  • Развитие ботаники. Господство в науке представлений о неизменности природы и "изначальной целесообразности". Труды К. Линнея по систематике. Зарождение эволюционных идей. Учение Ж.-Б. Ламарка об эволюции органического мира. Первые русские эволюционисты.

    реферат [26,4 K], добавлен 03.03.2009

  • Первая классификация живых организмов, предложенная Карлом Линнеем. Три этапа Великих биологических объединений. Концепция эволюции органического мира Жан-Батиста Ламарка. Основные предпосылки возникновения теории Дарвина. Понятие естественного отбора.

    реферат [762,6 K], добавлен 06.09.2013

  • Рассмотрение гипотезы Опарина о возникновении жизни на Земле. Ознакомление с теориями происхождения и становления человека как биологического вида. Изучение свойств, границ, условий и плотности жизни в биосфере, круговорота веществ и энергии в ней.

    реферат [21,6 K], добавлен 08.07.2010

  • Системы органического мира, их характеристика. Современная классификация организмов. Паренхиматозные и репродуктивные органы животных. Эволюция систем органов животных. Эволюция висцерального скелета. Строение пищеварительной системы кишечнополостных.

    контрольная работа [38,4 K], добавлен 15.03.2012

  • История развития Земли, эры — длительные отрезки времени, каждый из которых получил свое название. География и климат ордовикского периода. Животный и растительный мир девона. Четвертичный период (Голоценовая эпоха): состояние органического мира.

    презентация [1,1 M], добавлен 06.05.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.