Стволовые клетки и искусственные органы

Изучение принципа действия биопринтера, способного из клеток создавать любой орган, нанося клетки слой за слоем. Анализ технологии выращивания искусственных органов на основе стволовых клеток. Исследование механизма быстрого самообновления клеток крови.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 25.06.2011
Размер файла 1,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Семипалатинский Государственный Медицинский Университет

Кафедра медицинской Биофизики

Реферат

На тему: Стволовые клетки и искусственные органы

г. Семей 2011 г

Введение

1. История стволовых клеток

2. Технология выращивания искусственных органов на основе стволовых клеток

3. Искусственные механические органы

1. История стволовых клеток

Первое предположение о существовании стволовых клеток было высказано именно русским ученым!

Максимов Александр Александрович (04.02.1874 - 04.12.1928) - выдающийся русский ученый, один из создателей унитарной теории кроветворения. Максимов А. А. родился в Санкт-Петербурге, где в 1896 году с отличием окончил Военно-медицинскую академию. С 1903 по 1922 гг. Максимов А. А. занимал пост профессора кафедры гистологии Военно-медицинской академии.

Максимов А. А. во многом предопределил направление развития мировой науки в области клеточной биологии. Его труды стали мировой научной классикой и до настоящего времени остаются одними из наиболее часто цитируемых среди работ отечественных исследователей.

Термин "стволовая клетка" Максимов А. А. предложил еще в 1908 году, чтобы объяснить механизм быстрого самообновления клеток крови. Он выступил с новой теорией кроветворения в Берлине на съезде гематологов. Именно этот год можно по праву считать началом истории развития исследований стволовых клеток!

Каждые сутки в крови погибают несколько миллиардов клеток, а им на смену приходят новые популяции эритроцитов, лейкоцитов и лимфоцитов. Максимов А. А. первый догадался, что обновление клеток крови -- это особая технология, отличная от простых клеточных делений. Если бы клетки крови само обновлялись простым клеточным делением, это потребовало бы гигантских размеров костного мозга.

Несколько позже профессор московского НИИ эпидемиологии и микробиологии им. Н.Ф. Гамалеи А.Я. Фриденштейн подтвердил предположение коллеги и, изучая возможности этих особых клеток, стал разрабатывать сферу их применения. Первые эксперименты по практическому использованию стволовых клеток были начаты еще в начале 1950-х годов. Именно тогда было доказано, что с помощью трансплантации костного мозга (основного источника стволовых клеток) можно спасти животных, получивших смертельную дозу радиоактивного облучения.

Понадобилось почти 20 лет, чтобы трансплантация костного мозга вошла в арсенал практической медицины. Только в конце 60-х были получены убедительные данные о возможности применения трансплантации костного мозга при лечении острых лейкозов.

В начале века ученые уже подозревали, что во многих тканях существуют клетки, способствующие регенерации (восстановлению) этих тканей и активизирующие деление обычных клеток. В 60-х годах советские ученые Александр Фриденштейн и Иосиф Чертков заложили основы науки о стволовых клетках костного мозга, доказав, что именно там главным образом и находится своеобразное депо замечательных клеток. Потом стало известно, что часть стволовых клеток мигрирует в крови, есть они и в различных тканях, в частности в кожной и жировой.

1970 год - Первые трансплантации аутологичных (своих собственных) стволовых клеток. Есть сведения, что в 70-х годах в бывшем СССР делали «прививки молодости» пожилым членам Политбюро КПСС, вводя им 2-3 раза в год препараты стволовых клеток.

1988 год - Стволовые клетки были впервые использованы для трансплантации; мальчик, которому была проведена операция, по сей день, жив и здоров.

1992 год - Первая именная коллекция стволовых клеток. Профессор Дэвид Харрис "на всякий случай" заморозил стволовые клетки пуповинной крови своего первенца. Сегодня Дэвид Харрис - директор крупнейшего в мире банка стволовых клеток пуповинной крови.

1996 год - За период с 1996 года по 2004 год были выполнены 392 трансплантации аутологичных (собственных стволовых клеток человека) стволовых клеток. Так в 1996 году преимущественно осуществлялась трансплантация костного мозга.

1996 год - Доказано, что облучение уничтожает раковые клетки, но убивает и только что пересаженные из костного мозга донора стволовые клетки. С начала 1996 года в РФ действует Закон "О радиоактивной безопасности населения".

1997 год - За предшествующие 10 лет в 45 медицинских центрах мира проведено 143 трансплантации пуповинной крови. В России проведена первая операция онкологическому больному по пересадке стволовых клеток из пуповинной крови младенцев.

1998 год - Первая в мире трансплантация "именных" стволовых клеток пуповинной крови девочке с нейробластомой (опухоль мозга). Биологическая страховка сработала - ребенок спасен. Общее число проведенных трансплантаций пуповинной крови превышает 600.

В этом же году американскими учеными Джеймсом Томсоном и Джоном Беккером удалось выделить человеческие эмбриональные стволовые клетки и получить их первые линии.

В 1998 г. ученые нашли способ выращивать стволовые клетки в питательной среде.

1999 год - Журнал «Science» признал открытие эмбриональных стволовых клеток третьим по значимости событием в биологии после расшифровки двойной спирали ДНК и программы «Геном человека».

В 1999 году между Санкт-Петербургским Государственным Медицинским Университетом имени академика И. П. Павлова и Европейским институтом поддержки и развития трансплантологии был заключен договор, согласно которому в Университете создается отделение трансплантации костного мозга, соответствующее всем международным требованиям. Открытие отделения произошло в июне 2000 года. Основная цель - выполнение трансплантации гемопоэтических стволовых клеток, в том числе и от неродственных доноров.

2000 год - В мире проведено 1.200 трансплантаций стволовых клеток пуповинной крови, из них двести родственных. Шестилетний ребенок с анемией Фанкони вылечен с помощью стволовых клеток пуповинной крови своего новорожденного брата. В этой истории интересно то, что второй ребенок был рожден после искусственного оплодотворения (ЭКО). Среди полученных эмбрионов был выбран один наиболее совместимый с реципиентом и не содержащий признаков болезни.

2001 год - Опубликованы первые официальные данные о возможности применения трансплантации стволовых клеток пуповинной крови у взрослых пациентов. Из них более 90% с хорошим результатом.

В этом же году показана способность взрослых гемопоэтических и стромальных клеток костного мозга человека дифференцироваться в кардиомиоциты и гладкомышечные клетки, эта способность используется в регенеративной кардиологии.

2003 год - Журнал Национальной Академии Наук США (PNAS USA) опубликовал сообщение о том, что через 15 лет хранения в жидком азоте стволовые клетки пуповинной крови полностью сохраняют свои биологические свойства. С этого момента криогенное хранение стволовых клеток стало рассматриваться, как "биологическая страховка". Мировая коллекция стволовых клеток, хранящихся в банках, достигла 72.000 образцов. По данным на сентябрь 2003 г. в мире произведено уже 2.592 трансплантаций стволовых клеток пуповинной крови, из них 1.012 - взрослым пациентам.

В выпуске The Lancet от 4 января 2003 г. опубликовано два сообщения о результатах инъекции аутологичных (собственных) стволовых клеток костного мозга больным, страдающим тяжелой стенокардией или перенесшим инфаркт миокарда. Источником культивированных мононуклеарных клеток служил костный мозг, взятый из гребня подвздошной кости больного. Через несколько месяцев отмечено заметное улучшение перфузии миокарда и функции левого желудочка.

2004 год - Общая мировая коллекция стволовых клеток пуповинной крови приближается к 400.000 образцов. В мире произведено около 5.000 трансплантаций пуповинной крови. Для сравнения, число трансплантаций костного мозга за тот же период составило около 85.000.

2005 год - Перечень заболеваний, при лечении которых может быть успешно применена трансплантация стволовых клеток, достигает нескольких десятков. Основное внимание уделяется лечению злокачественных новообразований, различных форм лейкозов и других болезней крови. Появляются сообщения об успешной трансплантации стволовых клеток при заболеваниях сердечнососудистой и нервной систем. Разработаны международные протоколы лечения рассеянного склероза. Проводятся многоцентровые исследования при лечении инфаркта миокарда и сердечной недостаточности. Ищутся подходы к лечению инсульта, болезни Паркинсона и Альцгеймера.

Исследования, как эмбриональных стволовых клеток, так и стволовых клеток взрослого организма ведутся чрезвычайно активно, в мировой научной прессе что ни день появляются все новые сообщения о достижениях ученых: одним удалось получить из стволовых клеток нейроны, другим - кожную или хрящевую ткань, третьим - вырастить сосуды, кость или даже челюсть!

Следующие 20 лет биология будет расшифровывать, как план строения организма упаковывается в одну клетку. Сейчас мы делаем первые шаги, чтобы переосмыслить наши биологические возможности и резервы. Термины "стволовые клетки", "пуповинная кровь", "криобанк" наши соотечественники впервые услышали сравнительно недавно - пять лет назад. Тем не менее, первое предположение о существовании стволовых клеток было высказано именно русским ученым!

Уже сегодня стволовые клетки успешно используются при лечении тяжелых наследственных и приобретенных заболеваний, болезней сердца, эндокринной системы, неврологических заболеваний, болезнях печени, желудочно-кишечного тракта и легких, заболеваний мочеполовой и опорно-двигательной систем, заболеваний кожи. Во многих случаях своевременное лечение стволовыми клетками буквально «ставит человека на ноги»!

Сегодня фундаментальное изучение и применение стволовых клеток под силу только Медицинским Центрам Федерального значения, таких как ГУ Медицинским радиологическим научным центром Российской Академии Медицинских Наук в Обнинске (ГУ МРНЦ РАМН) и ФГУ Научным центром Акушерства, Гинекологии и Перинатологии Росмедтехнологий (ФГУ НЦ А, ГиП Росмедтехнологий). Надо отметить усилия в продвижении метода клиникой стволовых клеток.

За 21 год успешного изучения стволовых клеток был разработан и лицензирован метод выделения и культивирования мезенхимальных стволовых клеток из аутологичного костного мозга. Разработанная методика культивирования позволяет получить необходимое количество стволовых клеток с нужными характеристиками и их клеточного потомства в различные органы и ткани. При хранении в криобанке полученные культуры сохраняют высокий уровень выживаемости и высокую активность.

Мы располагаем всеми медицинскими технологиями, позволяющими в кратчайшие сроки поставить диагноз и определить круг проблем пациента. При необходимости он может проконсультироваться и получить лечение у наших специалистов. В нашей клинике собраны лучшие специалисты - академики, профессора, доктора и кандидаты наук, которые периодически принимают участие в авторитетных медицинских конгрессах, как в России, так и за рубежом.

На сегодняшнем этапе развития науки ученые умеют выделять ранние недифференцированные стволовые клетки из бластоцист - пятидневных зародышей, представляющих собой эмбрион сферической формы, образующийся при делении оплодотворенной яйцеклетки, насчитывающий порядка сотен клеток и впоследствии развивающийся в плод. Такие эмбриональные стволовые клетки могут давать начало практически всем клеткам, входящим в состав человеческого организма, а также обладают способностью к самовоспроизведению в культуре. Возможность выращивать линии как эмбриональных, так и региональных плюрипотентных стволовых клеток в лабораторных условиях и направлять их дифференцировку в нужном направлении является ключом к спасению огромного количества жизней посредством контроля над развитием злокачественных опухолей, восстановления подвижности перенесших инсульт пациентов, излечения диабета, регенерации тканей поврежденного спинного и головного мозга, а также излечение многочисленных заболеваний, ассоциированных со старением. Таким образом, стволовые клетки дают исследователям возможность - впервые в истории человечества - манипулировать индивидуальным геномом in vitro.

Уникальность взрослых стволовых клеток в том, что они позволяют в реальном времени декодировать как универсальные, обще видовые программы, так и индивидуальные программы развития одного организма. Стволовые клетки позволяют исследователям продвигаться вверх от «текста» гена к его функции: сперва в одном типе клеток, затем в разных органах и, наконец, в целом организме. Стволовые клетки в одном лице и «программисты», и «операторы» программ эмбриогенеза. Уникальная способность этих клеток воспроизводить эмбриогенез человека в лабораторных условиях делает их ключевыми игроками современной биологии.

В отличие от оплодотворенной яйцеклетки, имеющей лишь одну заданную траекторию развития, ЭСК и СК наделены гибкими альтернативными программами развития. Хотя в реальных условиях организма каждая клетка имеет лишь «one way ticket» («билет в одну сторону»), общий потенциал стволовых клеток организма позволяет обращать вспять до сих пор необратимые химические повреждения ДНК и клеточных органелл. Практические возможности индивидуального генома на уровне потенций ЭСК и ПСК только начинают осмысляться. Но уже очевидно, что расшифровка направленного репрограммирования стволовых клеток в культуре открывает дорогу в медицину ближайшего будущего. [Репин B.C., и др., 2002].

2. Технология выращивания искусственных органов на основе стволовых клеток

Биопринтер -- биологическая вариация технологии reprap, устройство, способное из клеток создавать любой орган, нанося клетки слой за слоем, уже создано. В декабре 2009 года американской кампанией Organovo и австралийской кампанией Invetech было разработан биопринтер, рассчитанный на мелкосерийный промышленный выпуск. Вместо того, чтобы вырастить нужный орган в пробирке, гораздо легче его напечатать -- так считают разработчики концепции.

Разработки технологии начались ещё несколько лет назад. До сих пор над данной технологией работают исследователи сразу в нескольких институтах и университетах. Но больше преуспели на этой ниве профессор Габор Форгач (Gabor Forgacs) и сотрудники его лаборатории Forgacslab в университете Миссури в рамках проекта Organ Printing, раскрывшие новые тонкости биопечати ещё в 2007 году.

Для коммерциализации своих разработок профессор и сотрудники основали кампанию Organovo. Кампанией была создана технология NovoGen, которая включала в себя все необходимые детали биопечати как в биологической части, так и в части "железа". Была разработана лазерная калибровочная система и роботизированная система позиционирования головок, точность которой составляет несколько микрометров.

Это очень важно для размещения клеток в правильном положении. Первые экспериментальные принтеры для Organovo (и по её "эскизам") строила компания nScrypt. Но те устройства были ещё не приспособлены для практического использования, и применялись для шлифовки технологии.

Промышленного партнёра медицинскую кампанию Invetech. Эта кампания обладает более чем 30-летним опытом производства лабораторного и медицинского оборудования, в том числе и компьютеризированного. В начале декабря первый экземпляр 3D-биопринтера, воплощающего в себе технологию NovoGen, был отправлен из Invetech в Organovo. Новинку отличают компактные размеры, интуитивно понятный компьютерный интерфейс, высокая степень интеграции узлов и высокая надёжность. В ближайшее время Invetech намерена поставить ещё несколько таких же аппаратов для Organovo, а она уже займётся распространением новинки в научном сообществе. Новый аппарат имеет настолько скромные габариты, что его можно будет поставить в биологический шкаф, который необходим для того, чтобы обеспечить стерильную среду в процессе печати Надо сказать, что биопечать -- не единственный способ искусственно создавать органы. Однако классический способ выращивания требует прежде всего изготовить каркас, задающий форму будущего органа. При этом сам каркас несёт опасность стать инициатором воспаления органа.

Преимущество биопринтера в том, что он не требует такого каркаса. Форму органа задаёт само печатающее устройство, располагая клетки в требуемом порядке. Сам биопринтер имеет две головки, наполняемые двумя типами чернил.

В роли чернил в первой используются клетки различных типов, а во второй -- вспомогательные материалы (поддерживающий гидрогель, коллаген, факторы роста). «Цветов» у принтера может быть больше двух -- если требуется использовать разные клетки или вспомогательные материалы разного вида.

Особенностью технологии NovoGen является то, что печать ведётся не отдельными клетками. Принтер наносит сразу конгломерат из нескольких десятков тысяч клеток. Это есть основное отличие технологии NovoGen от других технологий биопечати.

Схема работы принтера представлена на рисунке 4. Итак, сначала выращиваются требуемые ткани. Затем выращенная ткань нарезается цилиндрами в соотношении диаметра к длине 1:1 (пункт a).

биопринтер стволовой клетка орган

Далее -- пункт b -- эти цилиндрики на время помещаются в специальную питательную среду, где они приобретают форму маленьких шаров. Диаметр такого шара -- 500 микрометров (пол миллиметра). Оранжевый цвет ткани придаётся с помощью специального красителя. Далее, шарики загружаются в картридж (пункт c) -- который содержит пипетки, наполняемые шариками в порядке один за другим. Сам трёхмерный биопринтер (пункт d) должен наносить эти сфероиды с микрометровой точностью (то есть ошибка должна быть меньше тысячной доли миллиметра). Принтер также оборудуется камерами, которые способны наблюдать в реальном времени процесс печати.

Созданный образец принтера работает сразу с тремя «цветами» - два вида клеток (в последних опытах Форгача это были клетки сердечной мышцы и эпителиальные клетки) -- а третий -- это смесь, включающая в себя скрепляющий гель, содержащий коллаген, фактор роста и ряд других веществ. Эта смесь позволяет органу сохранять форму, прежде чем клетки срастутся между собой (пункт d).По словам Габора, принтер не воспроизводит структуру органа в точности. Однако этого и не требуется. Природная программа клеток сама корректирует структуру органа.

Схема собирания органа и срастания шаров в орган показана на рисунке 5.

В ходе экспериментов биопринтер из клеток эндотелия и клеток сердечной мышцы цыпленка напечатал «сердце» (рисунок 6). Через 70 часов шарики срослись в единую систему, а через 90 часов - «сердце» начало сокращаться. Причём клетки эндотелия сформировали структуры, подобные капиллярам. Также мышечные клетки, первоначально сокращавшиеся хаотично, с течением времени самостоятельно синхронизировались и стали сокращаться одновременно. Впрочем, к практическому использованию этот прототип сердца пока что не пригодно -- даже если вместо куриных клеток использовать человеческие -- технология биопечати должна быть улучшена ещё.

Гораздо лучше принтер справляется с созданием более простых органов -- например, кусков человеческой кожи или кровеносных сосудов. При печати кровеносных сосудов коллагеновый клей наносится не только на края сосуда, но и в середину. А затем, когда клетки сростутся, клей с лёгкостью удаляется. Стенки сосуда состоят из трех слоёв клеток -- эндотелий, гладкие мышцы и фибробласты. Но исследования показали, что в печати можно воспроизводить только один слой, состоящий из смеси этих клеток -- клетки сами мигрируют и выстраиваются в три однородных слоя. Этот факт может облегчить процесс печати многих органов. Таким образом команда Форгача уже может создавать очень тонкие и ветвящиеся сосуды любой формы. Сейчас исследователи работают над наращиванием слоя мышц на сосудах, что сделает сосуды применимыми для имплантации. Особый интерес представляют сосуды толщиной менее 6 миллиметров -- так как для больших существуют подходящие синтетические материалы.

Иллюстрация с другими экспериментами биопечати -- на рисунке 7.

Пункт a -- кольцо из двух видов биочернил. Они специально окрашены разными флуоресцирующими веществами. Ниже -- это же кольцо через 60 часов. Клетки самостоятельно срастаются. Пункт b - развитие трубки, набранной из колец, показанных на картинке. Пункт c сверху - 12-слойная трубка, составленная из клеток гладких мышечных волокон пуповины; пункт c, внизу - разветвлённая трубка прообраз сосудов для трансплантации. Пункт d - построение сокращающейся сердечной ткани. Слева показана решётка (6 на 6) из сфероидов с клетками сердечной мышцы (без эндотелия), распечатанных на коллагеновой "биобумаге". Если в те же "чернила" добавляются клетки эндотелия (второй рисунок -- красный цвет, кардиомиоциты же тут показаны зелёным), они заполняют сначала пространство между сфероидами, а через 70 часов (пункт d, справа) вся ткань становится единым целым. Внизу: график сокращения клеток полученной ткани. Как видно, амплитуда (отмерена по вертикали) сокращений составляет примерно 2 микрона, а период -- около двух секунд (время отмечено по горизонтали) (фото и иллюстрации Forgacs et al). На рисунке 8 также приведены структура распечатанных тканей сердца (фотографии Forgacs etal).

Первые образцы 3D-биопринтера от Organovo и Invetech будут доступны для исследовательских и медицинских организаций в 2011 году. Следует отметить, что Organovo не является единственным игроком на данном рынке. Некоторое время назад западная биотехнологическая компания Tengion представила свою технологию воссоздания органов. Между подходами Tengion и Organovo есть некоторые различия. К примеру две технологии по-разному подходят к организации живых клеток в группы для создания тканей, кроме того принтеры компаний по-разному подходят к проблеме получения образцов и генного анализа. В обеих компания отмечают, что сталкиваются с одними и теми же трудностями - довольно сложно воспроизводить сложные ткани, оба принтера очень долго настраиваются на один тип трехмерной печати. Также разработка самого принтера -- это лишь часть задачи. Также требуется создать специальное программное обеспечение, которое поможет моделировать ткань перед печатью и быстро перенастроить принтер. Сам принтер должен справится с созданием сложнейшего органа за несколько часов. По тонким капиллярам следует как можно скорее подавать питательные вещества, иначе орган погибнет. Тем не менее, обе компании имеют одинаковую конечную цель - «печать» органов человека.

Поначалу оборудование будет использоваться в исследовательских целях. Например, напечатанные фрагменты печени можно будет использовать в токсикологических экспериментах. Позже искусственные фрагменты кожи и мышц, капилляры, кости можно будет использовать для лечения тяжёлых травм и для пластических операций. Как Organovo, так и Tengion сходятся в том, что оборудование, способное быстро и качественно печатать органы целиком появится примерно в 2025-2030 году. Внедрение биопечати позволит сильно удешевить создание новых органов. Новые органы можно будет использовать для замены устаревших частей тела человека и как результат - радикального продления жизни (иммортализма). В перспективе биопечать позволит изобретать новые биологические органы для усовершенствования человека и животных и изобретения искусственных живых существ.

Технологии биопечати.

Этот пост о биопринтерах - изобретении, которое поможет человеку выращивать новые органы взамен

износившихся от старости и таким образом значительно продлить ему жизнь.

О технологии биопечати, разработанной Габором Форгачем в кампании Organovo, я уже рассказывал в одном из своих прошлых постов. Однако, это не единственная технология создания искусственного создания органов из клеток. Справедливости ради стоит рассмотреть другие. Пока что до массового применения они все далеки, но то, что такие работы ведутся, радует и вселяет надежду, что по крайней мере одна линия искусственных органов достигнет успеха.

Первое -- это разработки американских учёных Владимира Миронова (Vladimir Mironov) из медицинского университета Южной Каролины (Medical University of South Carolina) и Томаса Боланда (Thomas Boland) из университета Клемсона (Clemson University). Первым исследования начал доктор Боланд, который придумал идею и начал исследования в своей лаборатории, и увлёк ею своего коллегу. Вместе они с помощью принтера смогли реализовать технологию нанесения клеток слой за слоем. Для опыта были взяты старые принтеры Hewlett-Packard - старые модели использовались потому что у их картриджей достаточно крупные отверстия, чтобы не повредить клетки. Картриджи были тщательно очищены от чернил, и вместо чернил в них была залита клеточная масса. Также пришлось несколько переделать конструкцию принтера, создать программное обеспечение для контроля над температурой, электрическим сопротивлением и вязкостью "живых чернил". Наносить клетки на плоскость слой за слоем ранее пытались и другие учёные, но эти впервые смогли это сделать с помощью струйного принтера.

На нанесении клеток на плоскость учёные останавливаться не собираются. Чтоб напечатать трёхмерный орган, в качестве клея для соединения клеток предполагается использовать экзотический термообратимый (или "термореверсируемый") гель, созданный недавно Анной Гатовска (Anna Gutowska) из тихоокеанской северо-западной национальной лаборатории (Pacific Northwest National Laboratory) .Этот гель является жидким при 20 градусах по Цельсию и затвердевает при температуре выше, чем 32 градуса. И, к счастью, он не вреден для биологических тканей.

При печати на стеклянную подложку наносятся через один слои клеток и слои геля. Если слои достаточно тонкие, то клетки потом срастаются. Гель не мешает срастанию клеток, и в то же самое время придаёт конструкции прочность до того момента, когда клетки срастутся. После чего гель может быть легко удалён с помощью воды. Команда уже провела несколько экспериментов, используя легко доступные клеточные культуры, типа клеток яичника хомяка. По мнению авторов, трёхмерная печать может решить проблему создания новых органов для медицины взамен повреждённых или выращивание органов для биологических опытов. Скорее всего, первой будет пущено в массовое использование технология выращивания больших участков кожи для лечения людей, поражённых ожогами. Поскольку исходные клетки для культивирования "живых чернил" будут взяты от самого пациента, так что проблемы с отторжением быть не должно. Заметим также, что традиционное выращивание органов может занять несколько недель -- так что пациент может не дождаться нужного органа. При пересадке органа от другого человека обычно только каждому десятому удаётся дождаться своей очереди на орган, остальные погибают. Но технология биопечати при наличии достаточно количества клеток может потребовать всего несколько часов для построения органа.

Во время печати потребуется решать такие проблемы, как питание искусственного органа. Очевидно, принтер должен печатать орган со всеми сосудами и капиллярами, через которые уже в процессе печати следует подавать питательные вещества (впрочем, как показали опыты Габора Форгача, по крайней мере некоторые органы способны формировать капилляры самостоятельно). Также орган должен быть напечатан не более чем за несколько часов -- поэтому для повышения прочности креплений клеток предполагается добавлять в скрепляющий раствор белок коллаген. По прогнозу учёных, уже через несколько лет биопринтеры появятся в клиниках. Перспективы, которые при этом открываются, огромны. Для печати по этой технологии сложного органа, состоящего из большого количества клеток, требуются картриджи с большим разнообразием чернил. Однако, доктор Фил Кэмпбелл (Phil Campbell) и его коллеги из американского университета Карнеги-Меллона (Carnegie Mellon University), в частности, профессор роботехники Ли Вейсс (Lee Weiss) -- которые тоже проводят эксперименты с биопечатью -- придумали способ, как уменьшить количество видов чернил без вреда для результирующего органа. Для этого в качестве одного из биоцветов он предложил использовать раствор, содержащий фактор роста BMP-2. В качестве другого биоцвета стволовые использовались клетки, полученные из мышц ног мышей. Далее, принтером были нанесены на стекло четыре квадрата со сторонами по 750 микрометров -- в каждом из них концентрация гормона роста была различна. Стволовые клетки, оказавшиеся на участках с фактором роста, начали превращаться в клетки костной ткани. И чем большей была концентрация BMP-2, тем выше "урожай" дифференцированных клеток. Стволовые же клетки, которые оказались на чистых участках, превратились в мышечные клетки, так как этот путь развития стволовая клетка выбирает по умолчанию.

Ранее клетки различных видов выращивались отдельно. Но, по словам учёного, совместное выращивание клеток делает эту технику более близкой к природной. "Вы можете создать такую структуру подложки, в которой один конец будет развивать кость, ещё один край -- сухожилие, а третий -- мускулы. Это обеспечивает вам больший контроль над регенерацией ткани", -- говорит автор работы. И при этом будет использоваться только два вида чернил -- что упрощает конструкцию биопринтера.

Проблемой управляемого изменения клеточных структур заинтересовались и учёные из России. «На сегодняшний день ведется очень много разработок, связанных с выращиванием тканей из стволовых клеток, -- комментирует учёный Николай Адреанов. -- Наилучших результатов ученые достигли при выращивании эпителиальной ткани, так как ее клетки очень быстро делятся. А теперь исследователи пытаются с помощью стволовых клеток создать нервные волокна, клетки которых в естественных условиях очень медленно восстанавливаются».Также по словам Ли Вейсса, занимавшегося разработкой принтера, их технология ещё далека от промышленного внедрения. Кроме того, не помешало бы расширение знания о биологии. "Я могу напечатать довольно сложные вещи. Но, вероятно, один из самых серьёзных ограничивающих факторов (для данной технологии) - это понимание биологии. Нужно точно знать, что именно печатать". На другую проблему указывает кандидат биологических наук, старший научный сотрудник Института биологии развития РАН Александр Ревищин. «В принципе печать тканей “клеточными чернилами” возможна, однако технология пока еще несовершенна, -- отметил он -- Например, если пересадить стволовые клетки в непривычные условия, эти клетки потеряют нить естественного развития и связь с окружающими клетками, что может привести к их перерождению в опухоль». Но, будем надеется, что в ближайшие годы технология будет отработана.

3. Искусственные механические органы

Искусственные механические органы -- пожалуй, наиболее реалистичный на сегодня способ починить порядком износившееся тело, которому уже не поможет традиционный терапевтический «ремонт». Что касается других методов, то пересадка органов осложняется дефицитом доноров и биологической несовместимостью. А стволовые клетки, о которых так много говорят, к сожалению, пока слишком далеки от практического применения.

Первыми искусственными органами, видимо, стоит считать зубные протезы. Позднее хирурги стали вживлять металлические суставы и связки, а затем появились и электронные протезы конечностей. Но назвать эти аппараты «революцией в искусственных органах» можно лишь с натяжкой. Конечно, они улучшают качество жизни, но прожить можно и без них. Для создания таких аппаратов главное -- подобрать прочный, легкий и безопасный материал, изготовить из него нужную деталь и разработать технологию «установки» в человеческое тело.

Другое дело -- наши внутренние органы. Миллионы людей ежегодно умирают от тяжелых болезней сердца, легких, печени и почек, и помочь им зачастую нет никакой возможности. Почти все изобретенные аппараты для поддержания жизни -- искусственное легкое, печень или почки -- занимают места не меньше, чем холодильник и рассматриваются лишь как временная мера. Как правило, пациент находится около такой машины постоянно и ожидает органа для пересадки. Но подходящих доноров удается найти далеко не всегда.

Но не все так безнадежно. Самым «простым» из этих органов является сердце. Еще в 1938 году американские хирурги впервые использовали аппарат искусственного кровообращения. Не так давно было создано искусственное сердце AbioCor, которое позволяет человеку не просто «доживать», а ходить и даже заниматься спортом. А последняя разработка -- австралийский прибор VentrAssist -- вовсе должна работать 50 лет. Но об этом аппарате мы расскажем позднее, потому что его технические характеристики будут выглядеть слишком блекло без теоретического вступления.

Параметры искусственного тела

Идеальные искусственные органы -- это машины, которые будут работать десятки лет под большими нагрузками и не требовать какого-либо технического обслуживания. Скажем, мощность сердца человека в покое составляет чуть больше 3 ватт. Это значит, что за день оно совершает работу почти в 90 килоджоулей. То есть «поднимает» тонну груза на четвертый этаж. При физической нагрузке, естественно, его производительность должна значительно возрастать. А теперь представьте, что такой аппарат еще должен умещаться в груди, иметь запас энергии, и не останавливаться ни на минуту в течение всей жизни.

Искусственные легкие -- не менее сложная задача. Поверхность «оригинальных» дыхательных органов примерно равна теннисному корту. За одну минуту на ней двадцать раз равномерно «разливается» и убирается стакан крови. Кроме того, постоянно происходит самоочищение легких от сажи, пыли и других вредных частиц, которые мы вдыхаем. Если добавить, что такой орган по объему не должен превышать пяти литров, становится понятно, что работа над таким аппаратом еще очень далека от завершения.

Печень -- тоже довольно маленький орган, в котором умещается «химический завод» и мощная система фильтрации. Только за одну минуту через нее проходит полтора литра крови, которую нужно очистить от продуктов жизнедеятельности, не нарушив при этом электролитный, гормональный и белковый баланс. Многие вещества, например -- алкоголь, лекарства, жиры, не просто задерживаются в печени, но и перерабатываются в форму, наиболее удобную для выведения из организма. Кроме того, этот орган отвечает за синтез примерно литра желчи -- эмульгатора пишевых жиров.

Еще один орган, без которого человек прожить не может -- это почка. Аппарат, его замещающий должен, как и печень, фильтровать всю кровь организма. Но на этом функция почек не заканчивается: их биологический «компьютер» анализирует состав крови и на основании этих данных поддерживает в очень узких пределах содержание практически всех растворенных в ней веществ.

Беспроводное сердце

Теперь, когда мы оценили масштабы задачи, посмотрим, как она решается в отношении сердца. Аппарат AbioCor денверской компании Abiomed -- это настоящее искусственное сердце, которое заменяет оба желудочка и обеспечивает поступление крови в легкие и остальные органы человека. В приборе размером с грейпфрут и весом 900 граммов находятся титановый насос, блок управления и батарея. Ее емкости хватает на 30 минут автономной работы, а зарядка происходит через кожу: то есть на поверхность тела не выходит никаких проводов. Внешняя батарея, носимая на поясе, позволяет оставаться без подзарядки несколько часов.

Такой аппарат предназначен для пациентов с конечной стадией сердечной недостаточности и неблагоприятным прогнозом. Причем, создатели аппарата заявляют, что он позволяет больным не просто «доживать», но гарантирует им вполне приемлемое качество жизни.

Первое сердце AbioCor было пересажено в 2001 году. С тех пор было установлено не более 20 аппаратов, однако в компании смотрят на перспективы аппарата оптимистично и оценивают рынок в 100000 операций в год.

Насос на 50 лет

Аппарат VentrAssist, созданный австралийскими исследователями, в отличие от сердца AbioCor, не может полностью заменить природный орган. VentrAssist лишь помогает перекачивать кровь левому желудочку -- самому нагруженному отделу сердца.

Внутрь тела помещается лишь титановый роторный насос. Его ресурс австралийцы оценивают как 50 лет непрерывной работы. Контроллер и батарею, емкости которой хватает на 8 часов, больной носит на поясе.

По замыслу разработчиков, такой прибор должен помочь многим людям с сердечной недостаточностью. Однако в медицинской практике он появится лишь после соответствующего разрешения лицензирующих органов.

Если жизнь дорога…

Сердце AbioCor сейчас стоит чуть меньше 100 тысяч долларов, VentrAssist обойдется примерно в 50. Однако эта цена значительно меньше затрат, связанных с каждой пересадкой донорского сердца.

Если учесть еще и те средства, которые уходят на медицинское обслуживание больных с сердечной недостаточностью, станет понятно: искусственное сердце не только полезно, но и выгодно для медицинской индустрии. А финансовые стимулы, как известно -- самые сильные. В том числе и для технического прогресса.

Остается только уточнить, что поддерживать этот прогресс ценой собственной жизни совершенно необязательно. При своевременной профилактике сердечных заболеваний ваше собственное сердце может прослужить значительно дольше, чем 50 лет. И главное, практически бесплатно.

Размещено на Allbest.ru


Подобные документы

  • Достижения в области изучения стволовых клеток. Виды стволовых клеток, особенности их функционирования. Эмбриональные и гемопоэтические стволовые клетки. Стволовые клетки взрослого организма. Биоэтика использования эмбриональных стволовых клеток.

    презентация [908,9 K], добавлен 22.12.2012

  • Тканеспецифичные стволовые клетки, стволовые клетки крови млекопитающих. Базальные кератиноциты - стволовые клетки эпидермиса. Способность клеток к специализации (дифференцировке). Регенерация сердечной ткани. Перспективы применения стволовых клеток.

    реферат [25,2 K], добавлен 07.04.2014

  • История изучения стволовых клеток. Изолирование линий эмбриональных стволовых клеток человека и животных. Эмбриональные, гемопоэтические, мезенхимальные, стромальные и тканеспецифичные стволовые клетки. Использование дезагрегированных эмбрионов.

    реферат [32,5 K], добавлен 13.12.2010

  • Понятие и назначение стволовых клеток, их локализация и порядок исследования русскими учеными. Pаботы, доказывающие наличие cтволовых клеток пpактичеcки во вcех оpганах взpоcлых животных и человека. Эмбриональные стволовые клетки, их применение.

    реферат [65,0 K], добавлен 08.12.2010

  • Основные функции бокаловидных клеток как клеток эпителия слизистой оболочки кишечника и других органов позвоночных животных и человека. Форма клеток и особенности их локализации. Секрет бокаловидных клеток. Участие бокаловидных клеток в секреции слизи.

    реферат [2,9 M], добавлен 23.12.2013

  • Понятие и история открытия стволовых клеток - особых клеток живых организмов, каждая из которых способна впоследствии изменяться (дифференцироваться) особым образом (получать специализацию и далее развиваться как обычная клетка). Медицинское значение.

    реферат [14,7 K], добавлен 07.05.2012

  • Изучение процесса образования, развития и созревания клеток крови: лейкоцитов, эритроцитов, тромбоцитов у позвоночных. Исследование основных гемопоэтических факторов роста. Клетки - предшественницы кроветворения. Анализ основных классов клеток крови.

    презентация [2,9 M], добавлен 07.04.2014

  • Строение и функции оболочки клетки. Химический состав клетки. Содержание химических элементов. Биология опухолевой клетки. Клонирование клеток животных. А была ли Долли? Клонирование - ключ к вечной молодости? Культивирование клеток растений.

    реферат [27,3 K], добавлен 16.01.2005

  • Изучение эксперимента на мухе дрозофиле для исследования наследственности и изменчивости видов. Перепрограммирование соматических клеток. Принцип применения индуцированных плюрипотентных стволовых клеток. Метод переноса ядра соматической клетки в ооцит.

    курсовая работа [705,9 K], добавлен 02.04.2015

  • Роль стромы и микроокружения кроветворных органов в образовании и развитии клеток крови. Теории кроветворения, постоянство состава клеток крови и костного мозга. Морфологическая и функциональная характеристика клеток различных классов схемы кроветворения.

    реферат [1,1 M], добавлен 07.05.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.