Характеристика возбудителей порчи мясных, молочных и яйцепродуктов
Сапрофитные микроорганизмы: гнилостные бактерии, аэробные споровые и бесспоровые палочки, плесневые грибы и дрожжи. Термоустойчивые молочнокислые палочки. Бактериофаги, маслянокислые и уксуснокислые бактерии. Энтерококки и пропионовокислые бактерии.
Рубрика | Биология и естествознание |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 18.12.2010 |
Размер файла | 58,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Молочнокислые бактерии растут в средах с низким значением рН от 5,5 до 8,8, некоторые -- при рН 2,9--3,2. Характерным свойством молочнокислых бактерий является высокая спиртоустойчивостъ. Они могут развиваться на питательных средах, содержащих 15--18 % этилового спирта, реже -- при 24 %.
Биохимические свойства молочнокислых бактерий изучают по энергии кислотообразования, предельной кислотности, способности сбраживать соли лимонной кислоты, по качеству сгустка, возможной протеолитической активности бактерий и др.
Энергию кислотообразования определяют по времени образования сгустка молока (кислотность около 58--60 °Т) при внесении 0,5 см молодой (12--20-часовой) культуры в 10 см3 стерильного обезжиренного молока и выращивании посевов при оптимальной температуре.
Кислотность молока по Тернеру определяют титрованием децинормальным раствором едкого натра при индикаторе фенолфталеине, Для титрования берут 10 см3 молока, разбавленного 20 см3 воды (можно брать в 2 раза меньше). Объем щелочи (в см3 ), пошедшей на нейтрализацию кислоты, умножают на 10 (20) и получают таким образом кислотность молока (1 °Т соответствует 9 мг молочной, кислоты в 100 см3 молока).
Протеолитическую активность бактерий изучают на мясо-пептонной желатине, молоке или определяют с помощью специальных биохимических исследований и судят о ней по общему количеству образовавшихся водорастворимых продуктов распада белка, образовании аммиака, сероводорода, индола, которые характеризуют глубокий распад белковых веществ.
Способность сбраживать соли лимонной кислоты (цитраты) определяют посевом бактерий на плотную среду с цитратом кальция. Появление зон просветления вокруг колоний свидетельствует об образовании водорастворимых продуктов брожения при наличии фермента цитритазы.
Активность образования ароматических веществ устанавливают по количеству образовавшихся летучих соединений (методом возгонки) и четырехуглеродных соединений (диацетила и ацетоина).
Молочнокислые стрептококки обладают различной ферментативной активностью.
Lac. lactis является активным кислотообразователем, Активные штаммы свертывают молоко за 4--7 ч, Предельная кислотность при его развитии достигает 120 °Т. Восстанавливает и свертывает лакмусовое молоко, не образует ацетоина, разлагает аргинин с образованием аммиака. Не развивается в среде, содержащей 6,5 % NaSi, и в щелочной среде при рН 9,5. Многие штаммы продуцируют антибиотик низин, который является полипептидом с молекулярной массой 3500. Он подавляет большинство стрептококков (но не энтерококков), стафилококков, микрококков, некоторые виды бацилл, лактобактерий, клостридий, актиномицетов. При этом в отношении грамотрицательных бактерий низин бактерицидным действием не обладает.
Lac. cremoris в отличие от молочного стрептококка не сбраживает мальтозу и декстрин, лишен способности дезаминировать аргинин. Не растет на средах, содержащих 4 % КаС1, а также при температуре 39--40 °С. При пониженных температурах культивирования (15--20 °С) некоторые штаммы образуют значительное количество летучих кислот, восстанавливают и свертывают (иногда только частично) лакмусовое молоко. Имеются слизеобразующие штаммы, формирующие сгустки молока. Их используют в заквасках для производства сметаны.
Энергия кислотообразования у Lac. cremoris слабее, чем у Lac. lactis, и составляет 6--8 ч, а предельная кислотность -- 110-115°Т.
Ароматобразующие стрептококки содержат фермент цитритазу, которая расщепляет цитраты с образованием диоксида углерода (ССЬ) и ароматических веществ -- ацетоина и диацетила. Сравнительно слабый кислотообразователь, но образует диацетил в значительном количестве. Имеет слабую энергию кислотообразования (более 16 ч), предельная кислотность в молоке достигает 70--100 °Т. Сгусток молока часто содержит пузырьки газа (СО2). Запах сгустка специфический, обусловлен накоплением диацетила. Восстанавливает и свертывает лакмусовое молоко, сначала оно становится розовым, затем быстро обесцвечивается. Многие штаммы разлагают аргинин с выделением аммиака, устойчивы к содержанию в среде 4 % NaCl. Leu. dextranicum является также слабым кислотообразователем. Он свертывает молоко при оптимальной температуре через 2 -- 3 сут. Предельная кислотность составляет 70 -- 80 °Т. Для развития Leu. dextranicum и Leu. cremoris большое значение имеет марганец, добавление которого в молоко стимулирует их рост и ароматообразование.
Str. thermophilus по энергии кислотообразования превосходит все молочнокислые стрептококки, достигая уровня термофильных лактобактерий. Он сквашивает молоко через 3,5 -- 6 ч, предельная кислотность составляет 1 10 -- 1 15° Т.
Термофильный стрептококк не растет на средах с пенициллина 0,01 МЕ/см3 и стрептомицина 5 мкг/см3 используют в качестве тест-культуры при выявлении антибиотиков в молоке. Чувствителен к действию специфических бактериофагов. Более интенсивный рост термофильных стрептококков наблюдается при добавлении к питательным средам основных аминокислот -- валина, лейцина, изолейцина, лизина, аргинина, метионина, гистидина и пролина. Str. thermophilus обладает относительно высокой термоустойчивостью. Он выдерживает температуру 75 °С в течение 15 мин и 65 °С в течение 30 мин, вследствие чего составляет значительную часть остаточной микрофлоры в молоке после пастеризации.
В жидкой среде, содержащей глюкозу и 4 % №С1, термофильный стрептококк кислоту не образует, а при содержании 2 % МаС1 молочную кислоту синтезируют отдельные штаммы. При наличии в среде 0,1 % метиленового голубого Str. thermophilus не развивается, он не восстанавливает лакмусовое молоко. Некоторые штаммы образуют диацетил, в небольшом количестве синтезируют ацетоин.
Молочнокислые палочки . Молочнокислые палочки (лактобактерии) относят к семейству Lactobacteriaceaе, роду Lactobacterium, включающему три подрода: Thermobacterium, Streptobacterium и Betabacterium. Термо- и стрептобактерии являются гомоферментативными, а бета- бактерии -- гетероферментативными молочнокислыми палочками.
К термобактериям относятся 8 видов палочек, среди которых наиболее часто применяют L. helveticum, L. acidophilum, L. bulgaricum, L.lactis. Подрод стрептобактерии включает 7 видов, среди которых в молочной промышленности используют L. plantarum и L.rhamnosus. В подрод бета-бактерий входят 11 видов палочек, наиболее изученными среди них являются L. brevis, L. buchneri, L. fermentum и др.
Лактобактерии представляют собой палочки, одиночные или соединенные попарно, размером (4.. .10) х (0,5.. .0,6) мкм. Они неподвижны, спор и капсул не образуют, по Граму красятся положительно. Клетки стрептобактерии мельче, чем клетки термобактерий, и часто располагаются в виде цепочек. Бета-бактерии имеют наиболее мелкие и тонкие клетки.
Молочнокислые палочки являются факультативными анаэробами или микроаэрофилами. По отношению к температуре стрептобактерии и бета-бактерии являются мезофилами, термобактерии -- термофилами. На обычных средах они не растут, их выращивают на средах с молоком. При развитии в молоке вызывают образование однородного плотного сгустка с приятными кисломолочными запахом и вкусом.
На плотной питательной среде лактобактерии формируют мелкие гладкие блестящие колонии со сферической поверхностью серо-белого цвета. Колонии лактобактерий разных видов почти не различаются. Однако в некоторых случаях наблюдаются волокнистые, врастающие в субстрат колонии R-формы в отличие от гладких колоний, относящихся к S-формам. Глубинные колонии термобактерий могут быть темными, желтовато-бурыми, иногда с короткими отходящими нитями. В отличие от глубинных колоний поверхностные колонии более крупные, локонообразные или зернистые. Глубинные колонии стрептобактерий имеют лодочкообразную форму, иногда с выростом.
Температурные границы роста для термобактерий составляют 20 - 55 °С, для мезофилов -- 15-38 °С. Оптимальной температурой развития для L. helveticum является 40 °С, для L. bulgaricum, L. lactis- 45°С, L. acidophilum-- 37-38 °С. Для мезофилов оптимальной является температура 30 °С.
Лактобактерии обладают слабой протеолитической активностью и поэтому не растут в субстратах, где единственным источником азота является белок, т. е. где отсутствуют различные аминокислоты.
В то же время имеются молочнокислые бактерии, которые могут расщеплять белки.
Молочнокислые бактерии не восстанавливают нитраты в нитриты, не образуют пигментов. Цитохромы и пероксидазу не образуют, но некоторые продуцируют каталазу, разлагающую пероксид водорода (Н2О2). Лактобактерии обладают хорошо выраженными сахаролитическими свойствами. Кроме глюкозы и лактозы они сбраживают и другие сахара. Так, многие гомо- и гетероферментативные виды (L. plantarum и L. brevis и др.) интенсивно используют пентозы, иногда даже активнее, чем глюкозу.
Гетероферментативные молочнокислые бактерии сбраживают фруктозу, поскольку у них имеется маннитдегидрогеназа, осуществляющая восстановление фруктозы до маннита. Продуктами сбраживания фруктозы также являются лактаты, ацетаты и углекислый газ.
Термофильные молочнокислые палочки являются активными кислотообразователями, они сквашивают молоко через 4--5 ч, предельная кислотность достигает 200--350° Т,
L. helveticum является самым активным кислотообразователем, предельная кислотность молока при его развитии достигает 350 °Т. Эта палочка сбраживает мальтозу и декстрин, не сбраживает сахарозу, раффинозу, салицин. Некоторые штаммы развиваются в субстратах, содержащих до 5 % поваренной соли.
Штаммы L. helveticum можно выделить из сычуга телят или кислого сырого молока.
L. bulgaricum доводит предельную кислотность молока до 200-300°Т. Штаммы болгарской палочки образуют ацетальдегид -- ароматическое вещество, придающее специфические вкус и запах, и антибиотические вещества, подавляющие нежелательную микрофлору кишечника. Болгарская палочка чувствительна ко многим антибиотикам, устойчива к бактериофагу.
Штаммы L. bulgaricum выделяют, как правило, из сырого молока. L. acidophylum является кишечным микробом, который можно выделить ю содержимого пищеварительного тракта человека и различных животных. Ацидофильная палочка способна после культивирования в молоке вновь приживаться в кишечнике человека и подавлять там развитие патогенных и нежелательных микроорганизмов (сальмонеллы, шигеллы, стафилококки, эшерихии и др.). Антагонистическое действие L. acidophylum обусловлено продуцируемыми антибиотиками -- ацидофилином и лактоцидином.
Ацидофильные бактерии устойчивы к щелочной реакции (рН 8,3), наличию в среде фенола (0,25--0,4 %), желчи (20 %), КаСl (2 %). Предельная кислотность ацидофильной палочки достигает 200--250 °Т. L. acidophylum сбраживает сахарозу, мальтозу, салицин, часто раффинозу, декстрин. Имеются слизеобразующие штаммы ацидофильной палочки.
L. lactis по своим свойствам и поведению в закваске проявляет большое сходство с L.bulgaricum. Сбраживают глюкозу, лактозу, мальтозу, сахарозу, галактозу, раффинозу, декстрин и салицин. Предельная кислотность молока, сквашенного L. lactis, достигает 120--180 °Т.
В результате жизнедеятельности термоустойчивых палочек происходит интенсивное кислотообразование, обуславливающее порок творога, сметаны, обыкновенной простокваши - излишне кислотный вкус. Могут вызывать тягучесть и нечистый, неприятный вкус.
Стрептобактерии обладают менее выраженной кислотообразующей способностью. Они сквашивают молоко через 2--3 сут., предельная кислотность составляет 180 °Т.
Стрептобактерии L. plantarum, L. rhamnosus способны усваивать кроме лактозы также соли молочной кислоты, т. е. лактаты. Они растут в гидролизованном молоке, содержащем 6 % МаС1 и 20--40 % желчи, восстанавливают и свертывают лакмусовое молоко и не образуют аммиак из аргинина. Обладают высокой протеолитической активностью (в 2 раза выше, чем у мезофильных молочнокислых стрептококков), содержание свободных аминокислот в молоке повышают с 10 до 60 мг%. L. rhamnosum в отличие от L. plantarum образует СО2 го цитрата натрия.
L. plantarum продуцирует антибиотик лактолин, действующий угнетающе на кишечную микрофлору и маслянокислые бактерии.
Стрептобактерии обладают хорошо выраженными сахаролитическими свойствами. Они сбраживают фруктозу., галактозу, маннит, маннозу, раффинозу, рибозу, салицин, сорбит, трегалозу, эскулин и др. Глюкозу сбраживают без образования газа.
Термоустойчивые молочнокислые палочки
Эти микроорганизмы могут выдерживать кратковременное нагревание в молоке при температуре 85-90 °С, иногда выше, что является важным отличительным признаком этих бактерий от других видов термофильных молочнокислых палочек.
Клетки представляют собой средних размеров или крупные палочки, располагаются одиночно или цепочками, часто с выраженными зернами в цитоплазме. По Граму красятся положительно, спор и капсул не образуют, неподвижны.
Термоустойчивые бактерии являются факультативными анаэробами, на обычных средах не растут. Хорошо растут в обезжиренном молоке, а также на агаре с гидролизованным молоком.
В отличие от термофильных лактобактерий, используемых в молочной промышленности, термоустойчивые палочки на агаре с гидролизованным молоком образуют поверхностные колонии более крупные, локонообразные или зернистые, с темным центром. Глубинные колонии мелкие, темные или желтовато-бурые, иногда с короткими отходящими нитями. Растут при температуре от 20 до 65 °С, оптимум 45-55 °С.
Термоустойчивые палочки свертывают молоко в течение 8-10 ч, предельная кислотность достигает 150-220 °Т. При сквашивании молока образуется ровный слизистый или неслизистый сгусток, без газа. Растут в среде с содержанием 2-3 % КаС1, 30-40 % желчи. Устойчивы к действию дезинфицирующих средств, применяемых в молочной промышленности, что затрудняет борьбу с ними. Обладают антагонистической активностью по отношению к кишечным палочкам.
В результате жизнедеятельности термоустойчивых палочек происходит интенсивное кислотообразование, обусловливающее порок творога, сметаны, обыкновенной простокваши - излишне кислый вкус. Могут вызывать тягучесть и нечистый неприятный вкус.
Термоустойчивые молочнокислые бактерии обнаруживают в сыром молоке, в молоке, пастеризованном при 74-76 °С с выдержкой 15-20 с и при 80-85 °С с выдержкой 5-10 мин; на оборудовании, в кисломолочных продуктах и в заквасках.
Для контроля пастеризованного молока и сливок на наличие термоустоичивых палочек готовят разведения исследуемых проб в стерильном растворе хлористого натрия. Полученные разведения пастеризованного молока или сливок засевают в стерильное обезжиренное молоко (до 6-го разведения). Посевы помещают в термостат с температурой 42 °С и выдерживают 3 сут.
Из образовавшихся сгустков готовят бактериоскопические препараты, микроскопируют их и устанавливают наличие или отсутствие в них термоустойчивых палочек.
Для обнаружения термоустойчивых молочнокислых палочек на технологическом оборудовании стерильным тампоном, смоченным стерильным раствором хлористого натрия, протирают исследуемый участок оборудования. Тампон опускают в пробирку со стерильным молоком и выдерживают 16-24 ч при 42°С. После культивирования просматривают микроскопические препараты, приготовленные из молока, и устанавливают наличие термоустойчивых молочнокислых палочек.
Бактериофаги
Представляют собой разнообразно устроенные ДНК- или РНК-содержащие вирусы, являющиеся внутриклеточными паразитами бактерий. Они вызывают лизис (растворение) бактерий, используемых при производстве молочных продуктов, в результате чего увеличиваются сроки выработки продукта, ухудшается его качество.
При производстве кисломолочных продуктов наибольшее значение имеют фаги, поражающие мезофильные молочнокислые стрептококки: Lac. lactis, Lac.diacetylactis, Lac. cremoris. Обнаружены бактериофаги, поражающие Str. thermophilus и молочнокислые палочки. Однако среди этих микроорганизмов бактериофаги встречаются очень редко.
При попадании фаговой частицы в культуру бактерий она адсорбируется на бактериальной клетке и при помощи протеолитического фермента разрыхляет клеточную стенку, Затем белковая оболочка фага сокращается и ДНК впрыскивается в цитоплазму бактериальной клетки. В клетке начинается синтез ДНК фага и его белка. Одновременно подавляется бактериальная генетическая система, В дальнейшем образуются вегетативные фаговые частицы, а через 30--60 мин стенка бактериальной клетки набухает и прорывается, при этом освобождается до 100 новых частиц, которые могут инфицировать 100 новых бактериальных клеток. Так продолжается до тех пор, пока не лизируются все чувствительные клетки бактерий.
Благоприятные условия для размножения фагов находятся в диапазоне температур от 8 до 46 °С. Основными условиями, способствующие размножению бактериофага, являются непрерывное ведение технологического процесса, кислая реакция среды, добавление СаС1 ь разбрызгивание сыворотки, перемешивание.
Основными условиями, подавляющими развитие бактериофага, служат внесение в молоко сычужного фермента, обработка оборудования УФ-лучами, раствором хлорной извести или другими моюще-дезинфицирующими растворами.
Различают две разновидности фагов: вирулентные и умеренные. При инфекции вирулентными фагами их цикл размножения завершается лизисом бактериальной клетки и выходом фаговых частиц. Умеренные фаги в бактериальной клетке не размножаются, в виде профагов встраиваются в генетический аппарат клетки, не принося ей вреда. При этом возможно одновременное деление клетки-хозяина и профага. Вновь образовавшиеся клетки бактерий также не лизируются, и это состояние сожительства клетки и профага может сохраняться на протяжении многих поколений бактерий.
Клетки бактерий, а также их культуры, содержащие профаг, называют лизогенными. Профаг в клетке хозяина может погибнуть или под влиянием внешних индуцирующих воздействий может вновь стать вирулентным, способным размножаться.
Лизогенные штаммы молочнокислых бактерий является основным источником попадания профагов в производственные закваски, которые в дальнейшем размножаются в микрофлоре полуфабрикатов, продуктов, оборудования, молочной сыворотки и др.
Большое практическое значение имеет специфичность фагов, т. е. способность их размножаться в определенных видах бактерий. Такие фаги и клетки бактерий называют гомологичными.
Что касается специфичности бактериофагов к определенным штаммам бактерий, то они могут лизировать один, и даже восемь штаммов одного вида микробов. Установлена также различная фагочувствительность штаммов бактерий, которые могут лизироваться одним или несколькими штаммами бактериофагов. В связи с этим в лабораториях, разрабатывающих закваски, определяют чувствительность заквасочных штаммов к бактериофагу.
Фаги устойчивы к воздействию высоких температур. Они выдерживают режимы пастеризации молока при 75 °С в течение 15с.
Они хорошо переносят замораживание и длительное хранение (годами) при низких температурах в высушенных субстратах. 1%-ный раствор фенола не оказывает на них заметного действия, 1%-ный раствор формалина инактивирует фаг через несколько минут. Фаги обладают высокой чувствительностью к кислотам. Ультрафиолетовые лучи и ионизирующая радиация вызывают их инактивацию, а в более низких дозах--мутации.
Бактериофаги имеют широкое распространение. Их можно встретить в почве, фекалиях и сточных водах. Поэтому первичное загрязнение молока происходит обычно на ферме. Другими источниками загрязнения являются воздух, зараженная фагами вода, а также недостаточно вымытые и продезинфицированные емкости.
Маслянокислые бактерии
К маслянокислым бактериям относят Clostridium saaccharobutyricum, Clostrydium pasteurianum. Это палочки цилиндрической формы, длиной от 4--5 до 7--12 мкм и толщиной 0,5--1,5 мкм (рис.32). Подвижны, образуют споры, капсул не образуют. Грамположителъны. Перед образованием спор в них накапливается гранулеза (крахмалоподобное вещество), которое окрашивается йодом в синий цвет. Спора чаще всего располагается в центре клетки, и ее диаметр превышает размер вегетативной формы клетки. Клетки приобретают форму веретена (клостридии); иногда спора располагается на конце клетки, форма которой приобретает вид ракетки (плектридии). Споры выносят кипячение в течение 1--2 мин и не погибают при пастеризации. Относятся к анаэробам. Оптимальная температура развития 30--35°С, минимальная 8--10°С, максимальная 45°С. Отличительные признаки этих бактерий: бурное газообразование при их развитии, неприятный запах масляной кислоты. Маслянокислые бактерии сбраживают молочный сахар и расщешмют соли молочной кислоты. При этом образуется масляная, уксусная, пропионовая, муравьиная кислота и небольшое количество спирта (этилового, бутилового, пропилового).
Маслянокислые бактерии способны усваивать белковый, аминокислотный и аммонийный азот, а некоторые даже азот воздуха. Они чувствительны к кислой реакции среды.
Clostridium saaccharobutyricum. Это строгий анаэроб, оптимальная температура развития 30--40°С.
Сбраживает многие углеводы (гексозы, пентозы, дисахариды, крахмал) и близкие к ним соединения с выделением водорода, углекислота и масляной кислоты.
Clostrydium pasteurianum. Он способен усваивать атмосферный азот. По многим признакам сходен с Clostridium saaccharobutyricum, но отличается тем, что не сбраживает крахмала.
При развитии их в молочнокислых продуктах появляется неприятный острый запах масляной кислоты, наблюдается бурное выделение газа, что обусловливает прогоркание продукта. Маслянокислые бактерии часто являются причиной порчи различных консервов (мясных, рыбных, овощных и др.) и длительно хранящихся молочных продуктах (сыр, творог, сливки и др.), так как в них постепенно снижается кислотность в результате разложения белков. Могут вызывать позднее вспучивание сыра
Уксуснокислые бактерии (Acetobacter) - палочки, не образующие спор, подвижны (встречаются и неподвижные), располагаются одиночно или цепочками. Строгие аэробы. Оптимальная температура развития 30°С. Колонии вырастают только на поверхности питательной среды. На жидких подкисленных средах эти бактерии образуют пленку (на поверхности свернувшегося молока появляется оранжевое кольцо). При доступе воздуха они легко окисляют спирт в уксусную кислоту, поэтому при развитии их в простокваше, твороге, сметане возникает неприятный запах и привкус уксусной кислоты, а также ослизнение.
Энтерококки
Энтерококками называют молочнокислые стрептококки кишечного происхождения, т.е. они являются представителями нормальной микрофлоры кишечника человека и животного и выделяются в окружающую среду в довольно значительных количествах (в 1 г фекалий до 10 --109 жизнеспособных особей), но примерно в 10 раз меньше, чем бактерий группы кишечных палочек (БГКП).
Энтерококки наряду с БПСП являются постоянными обитателями кишечника человека и животных, в большом количестве выделяются во внешнюю среду, поэтому обнаружение их в пищевых продуктах, воде, почве и др. объектах свидетельствует о фекальном загрязнении объекта,
Энтерококки относятся к роду Streptococcus.
Морфология. Энтерококки представляют собой грамположительные, попарно расположенные кокка, несколько вытянутые в длину, наружные концы их заострены. В жидких средах встречаются короткие цепочки кокков. Энтерококки не образуют спор и капсул. Им свойственен значительный полиморфизм, т.е. клетки различаются по размерам и по форме (круглые, длинные, иногда вытянутые настолько, что напоминают коккобактерии). Величина отдельных кокков колеблется от 0,5 до 1,2 мкм. В отличие от стрептококков у энтерококков есть штаммы, обладающие подвижностью. Среди Str. bovis также встречаются подвижные штаммы.
Энтерококки наряду с БГКП являются постоянными обитателями кишечника человека и теплокровных животных, в большом количестве выделяются во внешнюю среду, поэтому обнаружение их в пищевых продуктах, воде, почве и др. объектах внешней среды свидетельствует о фекальном загрязнении объекта.
Культуральные свойства. Энтерококки растут на МПА, МПБ, но лучший рост отмечен на средах, содержащих углеводы и факторы роста (дрожжевой экстракт, диализат). В жидких средах наблюдают диффузное помутнение с образованием вначале аморфного, затем ослизняющегося осадка. На плотных средах энтерококки растут в виде мелких, прозрачных голубоватых колоний. При обильном посеве образуют сплошной рост в отличие от стрептококков, которые при густом посеве дают изолированные колонии. На кровяном агаре Ent. liguefaciens вызывает гемолиз эритроцитов; Ent. faecalis образует вокруг колоний зеленоватобурую зону т.к. гемоглобин превращается в метагемоглобин. Оптимальная температура роста 37 °С, пределы 10-45 °С. Для выявления энтерококков используют молочную среду с полимиксином (Г.П. Калина). Типичные колонии энтерококков на этой среде - колонии округлой формы с ровными краями, диаметром 1,5-2мм, имеют красноватую окраску с зоной протеолиза на светлоголубом фоне.
Биохимические свойства. Энтерококки ферментируют лактозу, маннит, глицерин, а сорбит, арабинозу, сахарозу не постоянно и не все штаммы энтерококков. Желатин разжижают и пептонизируют молоко только var. liguefaciens; var. zimogenes не постоянно, но не обладают каталазой активностью (в отличие от других грамположительных кокков). По антигенной структуре они однородны и относятся к группе Д по классификации Ленсфильд.
Энтерококки устойчивы к действию низких температур, активного хлора, некоторых антибиотиков, красителей и др. Дифференциацию Ent. faecalis от Ent. faecium проводят по способности ферментировать глицерин: Ent. faecalis расщепляет глицерин в аэробных и анаэробных условиях, а Ent. faecium только в аэробных. Для дифференциации энтерококков рекомендовано свыше 30 тестов.
Пропионовокислые бактерии
Пропионовокислые бактерии характеризуются полиморфизмом -прямые, изогнутые, ветвящиеся и даже кокковидные неподвижные палочки, спор и капсул не образуют, грамположительные. Их свойства близки к свойствам молочнокислых бактерий. Оптимальная температура развитии бактерий 30-35°С. Они являются возбудителями пропионовокислого брожения, при котором молочный сахар, молочная кислота и ее соли превращаются в пропионовую кислоту и побочные продукты - уксусную кислоту, диоксид углерода и воду. В процессе размножения бактерии способны синтезировать витамин В.
Список использованной литературы
- Корнелаева Р. П., Степаненко П.П., Павлова Е. В., Санитарная микробиология сырья и продуктов животного происхождения.--М.: 2006.--407с.
- М.А. Сидоров, Р.П. Корнелаева «Микробиология мяса и мясопродуктов» 3е издание. Москва «Колос» 1998--134стр.
- Билетова Н. В., Корнелаева Р. П., Кострикина Л.Г. и др. Под ред. Любашенкои С.Я. Санитарная микробиология.--М.: Пищевая пром-сть, 1980.--352 с.
- Степаненко П. П. Микробиология молока и молочных продуктов.--М.: Лира, 2002.--413с.
- Макаров В.А. и др. «Ветеринарно-санитарная экспертиза с основами технологии и стандартизации продуктов животноводства». М.: Агропромиздат. 1991.
- Королева Н.С., Семенихина В.Ф. Санитарная микробиология молока и молочных продуктов. - М.: Пищевая промышленность, 1980. -256 с.
- Гигиенические требования к качеству и безопасности продовольственного сырья и пищевых продуктов. Санитарные правила и нормы (САНПиН 2.3.2.560-96). - М., 1997.
- Загаевский И.С. Жмурко Т.В. «Ветеринарно-санитарная экспертиза с основами технологии переаботки продуктов животноводства». М.: Колос. 1983.
-П.П. Степаненко «Микробиология молока и молочных продуктов» Москва 1999--стр120.
-Ю.Г. Костенко, М.П. Бутко, В.М. Ковбасенко второе издание «Руководство по ВСЭ и гигиене производства мяса и мясных продуктов» РИФ «Антиква» Москва--1994--153-155стр
Подобные документы
Систематика кишечной палочки. Строение и химический состав бактериальной клетки. Морфология кишечной палочки и ее представителей. Обнаружение возбудителей кишечных инфекций в воде открытых водоемов и сточных водах на фоне массы сапрофитной микрофлоры.
курсовая работа [230,2 K], добавлен 31.05.2013Аэробные спорообразующие бактерии (бациллы), род Bacillus семейства Bacillaceae, их морфолого-физиологические признаки. Санитарно-показательные микроорганизмы. Санитарно-гигиеническая характеристика пищевых продуктов. Возбудители кишечных заболеваний.
контрольная работа [20,4 K], добавлен 10.06.2009Систематика. Строение прокариот. Размножение. Образ жизни. Основніе группы прокариот: бактерии – фототрофы, бактерии – хемоавтотрофы, бактерии – органотрофы, бактерии – паразиты. Сине-зеленые водоросли.
реферат [18,1 K], добавлен 22.10.2003Вирулентные и лизогенные бактерии и их свойства. Факторы, способствующие индуцированию развития профага. Способность к интеграции с хромосомой хозяина. Состояние лизогении и феномена лизогенной конверсии. Искусственно полученные лизогенные бактерии.
контрольная работа [907,3 K], добавлен 30.11.2011Структура цитоплазматической мембраны бактерии. Анализ функций клетки: деление, биосинтез ряда компонентов, хемо и фотосинтез. Трансмембранный фрагмент белка как альфа-спираль. Транспорт веществ в бактерии: пассивный, активный транслокация групп.
презентация [812,1 K], добавлен 17.11.2013Характеристика физических факторов, влияющих на развитие микробов: температура, влажность, излучения, ультразвук, давление, фильтрование. Типология и механизм действия противомикробных химических веществ. Препараты, содержащие бактерии и бактериофаги.
реферат [20,3 K], добавлен 29.09.2009Псевдомонады - грамотрицательные неспороносные бактерии, их морфологические, культуральные и физиолого-биохимические признаки. Пигментные формы микроорганизмов. Биологические свойства синегнойной палочки, факторы патогенности, ее опасность для человека.
реферат [94,8 K], добавлен 15.11.2010Морфологические и биохимические признаки палочки инфлюэнцы, ее культуральные свойства и условия роста. Антигенная структура бактерии рода Haemophilus; патогенез, клинические проявления поражений; микробиологическая диагностика, профилактика и лечение.
презентация [214,2 K], добавлен 16.03.2014Галофильные микроорганизмы. Биосинтез эктоина и гидроксиэктоина. Осмоадаптация аэробных метилотрофных бактерий. Получение бесклеточных экстрактов, определение концентрации белка. Идентификация генов биосинтеза эктоина у бактерии Methylarcula marina.
диссертация [1,0 M], добавлен 24.11.2010Хемолитоавтотрофные организмы. Нитрифицирующие бактерии, бесцветные серобактерии, железобактерии, водородные бактерии и серобактерии. Способ автотрофного питания. Процессы окисления различных неорганических веществ. Гниение органических остатков.
презентация [1,2 M], добавлен 19.12.2013