Влияние ионов металлов на карбоангидразоподобную активность внешних водорастворимых белков PsbP и PsbQ фотосистемы 2

Строение и функционирование фотосинтетического аппарата высших растений. Измерение концентрации хлорофилла, скорости фотосинтетического выделения кислорода, фотоиндуцированных изменений выхода флуоресценции хлорофилла. Приготовление диализных трубок.

Рубрика Биология и естествознание
Вид дипломная работа
Язык русский
Дата добавления 02.08.2015
Размер файла 2,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Итак, нам удалось разделить белки PsbP и PsbQ и мы могли производить на них по отдельности дальнейшие исследования.

2.5 Определение концентрации белка по методу Брэдфорд

Для дальнейшей работы с белковыми фракциями было необходимо знать концентрацию белка в них. Для её определения был выбран метод Брэдфорд. Концентрация белка определялась исходя из данных по его оптической плотности(табл.6) через уравнение графика калибровки (рис.12). Расчеты произведенные по уравнению калибровочной кривой представлены в табл. 7.

Табл. 6.Данные оптической плотности (л = 595 нм) растворов разных концентраций бычьего сывороточного альбумина и исследуемых фракций белков.

Анализируемый компонент

Количество компонента в анализируемом растворе, мкл

Оптическая плотность (А)

NaCl

150

0,0039

БСА (0.5 мг/мл)

5

0,457

7,5

0,619

10

0,786

12,5

0,831

15

0,906

17,5

0,979

20

0,923

ФР 6

5

0,282

0,274

ФР 1 (14.05)

5

0,054

0,053

ФР 1 (19.05)

5

0,149

0,134

Рис.12. Калибровочная кривая

Табл.7.Конечная концентрация белка во фракциях

ФР 6

ФР 1 (14.05)

ФР1 (19.05)

Концентрация, мг/мл

0,3205

0, 0774

0,1402

2.6 Измерение карбоангидразоподобной активности белков PsbP и PsbQ

Как было сказано выше, КА-активность внешних белков ВОК (PsbP, PsbOи PsbQ) не подавлялась ингибиторами карбоангидраз и поэтому активность обозначили как карбоангидразоподобную (КП-активность).

Исходя из данных концентрации белка, полученных при помощи метода Брэдфорд рассчитываем количество образца для измерения карбоангидразной активности (табл. 8 и 9).

Измерение КП-активности для белка РsbР проводим по схеме описанной в табл.8, для белка РsbQ - в табл. 9. Также измеряем КА-активность для ФС-2, чтобы сравнить её с активностью белков. Результаты измерения КП-активности отражены на рис.13.

Табл. 8. Схема измерения КП-активности белка PsbP

Вероналовый буфер, мкл

HEPES (рН 7.5), мкл

PsbP, мкл

Раствор ионов металла (200 мкМ), мкл

Деионизованная вода, насыщенная СО2, мкл

1

1472,8

27,2

750

2

1472,8

27,2

3

1450,3

27,2

22,5 (MnSO4)

4

1450,3

27,2

22,5 (ZnSO4)

6

1472,8

27,2

7

1450,3

27,2

22,5 (MgSO4)

8

1450,3

27,2

22,5 (CaCl2)

9

1472,8

27,2

10

1450,3

27,2

22,5 (CuSO4)

Табл. 9. Схема измерения КП-активности белка PsbQ

Вероналовый буфер, мкл

HEPES (рН 7.5), мкл

PsbQ, мкл

Раствор ионов металла (200 мкМ), мкл

Деионизованная вода, насыщенная СО2, мкл

1

1447,69

52,31

750

2

1447,69

52,31

3

1425,19

52,31

22,5 (MnSO4)

4

1425,19

52,31

22,5 (ZnSO4)

6

1447,69

52,31

7

1425,19

52,31

22,5 (MgSO4)

8

1425,19

52,31

22,5 (CaCl2)

9

1447,69

52,31

10

1425,19

52,31

22,5 (CuSO4)

Рис.13. КА-активность ФС-2, КП-активность белков PsbPи PsbQ в присутствии или отсутствии ионов металлов.

Ранее было показано, что КП-активность белка PsbP увеличивалась в присутствии Mn2+ (Шитов с соавт., 2009). Однако, в этой работе белок PsbP содержал Mn в своём составе и осталось неясным, будет ли обладать КП-активностью этот белок, если удалить ионы Mn из белка. В нашей работе был получен образец белка PsbP, не содержащего ионов металлов в своём составе (для этого проводился диализ в присутствии ЭДТА). Нами было выяснено, что обработанный ЭДТА белок не обладал КП-активностью, но добавление ионов Mn2+ вызывало появление КП-активности этого белка. Как было показано ранее, также ведёт себя белок PsbO (Шитов с соавт., 2009). Ионы Ca2+ и Mg2+ и даже Cu2+ ещё более значительно увеличивали КП-активность белка PsbP, максимальное значение зафиксировано в опыте с ионами Mg2+ (83,29). Эти данные свидетельствуют о возможном сродстве белка PsbP к ионам двухвалентных металлов. Это предположение подтверждается результатамими, опубликованными ранее в иностранных научных статьях. Пока непонятно, насколько специфично действие определённых металлов на КП-активность PsbP и как связано это явление с механизмом функционирования и сборки ФС-2.Все эти вопросы требуют дальнейшего исследования.

В присутствии ионов Zn2+ КП-активность PsbP не проявлялась. Пока непонятно, с чем может быть связан этот результат. Возможно, играет какую-то роль неспособность ионов цинка проявлять степень окисления больше двух (как Mn), или этот ион имеет размеры, которые не подходят для мест связывания на белковой молекуле. Для решения этоих вопросов требуются дополнительные исследования.

Белок PsbQ, лишённый металлов, в отличии от белка PsbP, обладал КП-активностью, которая была сравнима с КА-активностью ФС-2. В присутствии Mn2+ и Ca2+ его КП-активность увеличивалась примерно в 3 раза. Резкое увеличение КП-активности наблюдалось с ионами Zn2+(94.77). Присутствие ионов Mg2+ и Сu2+ не приводило к увеличению КП-активности. Эти данные свидетельствуют о большем сродстве PsbQ к ионам Mn2+, Ca2+ и особенно Zn2+. Подтверждением этого сродства могут быть данные о важности белков PsbPи PsbQдля сохранения ионов Caи Cl в составе ВОК ФС-2. Косвенным подтверждением сродства Zn к PsbQ может являться тот факт, что в ФС-2 ранее обнаруживали присутствие ионов Zn2+ (Шитов с соавт., 2009).Однако, пока непонятна роль этого связывания в функционировании ФС-2. Необходимо отметить, что ионы цинка могут связываться не только с PsbQ, но и с другими белками, которые входят в состав выделенной нами фракции белка PsbQ.Для подтверждения связывания ионов Zn (а также Caи Mn), необходимо дальше очистить эту фракцию с применением других физико-химических методов (например, катионнообменной хроматографии) с целью получения белка PsbQв чистом виде и проведения аналогичных экспериментов с КП-активностью.

Так как ионы Zn2+ и Ca2+ обладали наибольшим влиянием на КП-активность, необходимо было определить зависимость активности от концентрации этих ионов (рис.14).

Из графиков видно, что зависимости КП-активности PsbQ от концентраций разных ионовзначительно отличаются. На графике концентрационной зависимости для ионов Zn2+ прослеживается пик активности (94,8 ед. W-A/мг белка при 200 мкМ Zn), а в присутствии высоких концентраций (1мМ) КП-активность уменьшается. Ионы Ca2+ действуют иначе, активность линейно возрастает по мере увеличения концентрации иона. По-видимому, это связано с различной природой взаимодействий этих ионов с белком. Причины различий в действии этих металлов пока не ясны и этот вопрос требует дальнейшего изучения.Наличие оптимума концентрации двухвалентного металла характерно для металлоферментов (в том числе и карбоангидраз) и это может быть либо признаком того, что белок PsbQявляется карбоангидразой нового класса, либо признаком присутствия посторонней карбоангидразы во фракции белка PsbQ.В любом случае, эта работа ещё не завершена и поставленные нами вопросы требуют дальнейшего исследования.

VI. ЗАКЛЮЧЕНИЕ

В настоящее время наличие карбоангидразной активности в ФС-2 высших растений (горох, шпинат, пшеница, кукуруза) показано многими исследователями и не должно вызывать сомнений. Но пока неясно, какова природа носителя карбоангидразной активности в ФС-2. Им может быть один (или несколько) из известных белков ФС-2, обладающий неизвестной ранее функцией (карбоангидразной активностью), или неизвестный белок.Принимая во внимание значимость карбоангидразной активности для функционирования донорной стороны ФС-2, особое внимание было уделено исследованию карбоангидразной активности внешних водорастворимых белков водоокисляющего комплекса. В данной работе впервые был проведен анализ действия ионов двухвалентных металлов на карбоангидразоподобную активность белков РsbРи РsbQпо отдельности.

Было выяснено, что белок PsbPне обладал КП-активностью пока к нему не добавляли ионы двухвалентных металлов. Особенно эффективным активатором КП-активности оказался ион Mg2+, несколько менее эффективными - ионы Ca, Cu, Mn. Вопрос о специфичности ионов металлов в активации КП-активности PsbP пока остаётся открытым.

Было показано, что очищенный от ионов металлов белок PsbQобладал КП-активностью, которая сильно возрастала в присутствии ионов Zn2+, в присутствии ионов Caи Mn КП-активность увеличивалась с в два раза меньшей эффективностью. Также было выявлено, что Zn и Ca по-разному влияют на увеличение КП-активности, что может свидетельствовать о разной природе взаимодействий ионов этих металлов с белком PsbQ. Природу этих взаимодействий необходимо более тщательно исследовать, поскольку это важно для понимания закономерностей функционирования фотосистемы 2. В силу актуальности этой тематики, эта работа требует продолжения.

Роль обнаруженных носителейкарбоангидразной активности, находящихся в люменальной части ФС-2, в непосредственной близости к ВОК, может быть важна для фотосинтетического окисления воды, подобно функциональной активности карбоангидразы cah3, обнаруженной ранее в составе «ядерного» комплекса ФС-2 клеток C. reinhardtii и необходимой (наряду с анионом бикарбоната) для формирования, стабилизации и функционирования Mn2+-содержащего водоокисляющего комплекса (Villarejoetal., 2002;Shutovaetal., 2008).

VII. ВЫВОДЫ

1. Фрагменты тилакоидных мембран хлоропластов, обогащенных фотосистемой 2, выделенные из листьев гороха, обладали хорошей фотохимической активностью и по своему белковому составу соответствовали препаратам фотосистемы 2, описанным ранее в научной литературе.

2. Выбранные нами методы и подходы позволили выделить изолированные фракции белков PsbPи PsbQс сохранением их КП-активности.

3.Выявлено, что изолированный и очищенный от металлов белок PsbP не обладал карбоангидразоподобной активностью. Эта активность проявлялась только в присутствии ионов двухвалентных металлов, таких как Mn2+, Ca2+, Mg2+, Cu2+. Ионы Zn2+не вызывали увеличения КП-активности.

4. Белок РsbQобладал КП-активностью без добавления ионов двухвалентных металлов. Однако, его активность значительно возрастала в присутствии ионов Zn2+, Ca2+ и Mn2+.Было выяснено, что ионы Zn2+и Ca2+ по-разному воздействуют на карбоангидразоподобную активность белка PsbQ.

VIII. СПИСОК ЛИТЕРАТУРЫ

Antal T. K., Venediktov P. S., Konev Yu. N., Matorin D. N., Hapter R., and Rubin A. B. (1998) Assessment of Vertical Profiles of Phytoplankton Photosynthetic Activity by the Fluorescence Method

Arnon D.I. (1949) Copper Enzymes in Isolated Chloroplasts.Polyphenoloxidase in Beta vulgaris.Plant Physiology 24, 1-15.

Arun K. Shanker (2008) Trace elements: Nutritional benefits, environmental contamination and health; 21 Modeofaction and toxicity of trace elements,Edited by M.N.V. Prasad

Barber J. (2002)P680: what is it and where is it?, Bioelectrochemistry. Jan;55(1-2):135-8.

Barber J., Chapman D.J. and Telfer A. (1987) Characterization of a PSII reaction center isolated from the chloroplasts of Pisum sativum. FEBS Lett. v.220, p.67-73.

Basics G. H. Krause E. Weis (1991) Сhlorophyll fluorescence and photosynthesis

Bradford M. M. (1976) A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding

Dai X., Yu Y., Zhang R., Yu X., He P. and Xu C. (2001) Relationship among Photosystem II carbonic anhydrase, extrinsic polypeptides and manganese cluster. Chinese Science Bulletin46, 406-408.

Guskov A., Kern J., Gabdulkhakov A., Broser M., Zouni A., Saenger W. (2009) Cyanobacterial photosystem II at 2.9 A resolution: role of quinones, lipids, channels and chloride. Nat. Struct. Mol. Biol. 16, 334-342.

Kang D., Gho Y.S., Suh M. and Kang C. (2002) Highly Sensitive and Fast Protein Detection with Coomassie Brilliant Blue in Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis.Bulletin of the Korean Chemical Society23, 1511-1512.

Khristin M.S., Ignatova L.K., Rudenko N.N., Ivanov B.N. and Klimov V.V. (2004) Photosystem II associated carbonic anhydrase activity in higher plants is situated in core complex. FEBS Letters577, 305-308.

Klimov V.V., Allakhverdiev S.I., Shuvalov V.A. and Krasnovsky A.A. (1982) Effect of extraction and re-addition of manganese on light reactions of photosystem-II preparations.FEBS Letters148, 307-312.

Laemmli U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature227, 680-685.

Lu Y.K. and Stemler A.J. (2007) Differing responses of the two forms of photosystem II carbonic anhydrase to chloride, cations, and pH.Biochimica et Biophysica Acta (BBA) - Bioenergetics 1767, 633-638.

Lu Y.K., Theg S.M. and Stemler A.J. (2005) Carbonic anhydrase activity of the photosystem II OEC33 protein from pea.Plant and Cell Physiology 46, 1944-1953.

McConnell I.L., Badger M.R., Wydrzynski T. and Hillier W. (2007) A quantitative assessment of the carbonic anhydrase activity in photosystem II.Biochimica et Biophysica Acta (BBA) - Bioenergetics 1767, 639-647.

Moroney J.V., Ma Y., Frey W.D., Fusilier K.A., Pham T.T., Simms T.A., DiMario R.J., Yang J.and Mukherjee B. (2011) The carbonic anhydrase isoforms of Chlamydomonas reinhardtii: intracellular location, expression, and physiological roles. Photosynthesis Research109, 133-149.

Moskvin O.V., Razguljayeva A.Y., Shutova T.V., Khristin M.S., Ivanov B.N. and Klimov V.V. (1999) Carbonic anhydrase activity of different Photosystem II preparations. In: Garab G. (ed.) Photosynthesis: Mechanism and Effects, Vol. 2, pp. 1201-1204. Kluver Academic Publishers, Dordrecht.

Renger G. (1992) Energy transfer and trapping in photosystem II. -In: Topics in photosynthesis, the photosystems: structure, functions and molecular biology. (ed.: Barber J.), Elsevier, Amsterdam, 45-99.

Muh F., Glockner C., Hellmich J., Zouni A., (2012) Light-induced quinone reduction in photosystem II. Biochimica et Biophysica Acta 1817, 44-65.

Rudenko N.N., Ignatova L.K. and Ivanov B.N. (2007) Multiple sources of carbonic anhydrase activity in pea thylakoids: soluble and membrane-bound forms. Photosynthesis Research 91, 81-89.

Shutova T., Nikitina J., Deikus G., Andersson B., Klimov V. and Samuelsson G. (2005) Structural dynamics of the manganese-stabilizing protein-effect of pH, calcium, and manganese. Biochemistry44, 15182-15192.

Stemler A. (1986) Carbonic anhydrase associated with thylakoids and Photosystem II particles from maize. Biochimica et Biophysica Acta (BBA) - Bioenergetics850, 97-107.

Villarejo A., Shutova T., Moskvin O., Forssen M., Klimov V.V. and Samuelsson G. (2002) A photosystem II-associated carbonic anhydrase regulates the efficiency of photosynthetic oxygen evolution. EMBO Journal21, 1930-1938.

Wilbur K.M. and Anderson N.G. (1948) Electrometric and colorimetric determination of carbonic anhydrase.The Journal of Biological Chemistry176, 147-154.

Гольцев В.Н., Каладжи М.Х., Кузманова М.А., Аллахвердиев С.И.(2014). Переменная и замедленная флуоресценция хлорофилла a - теоретические основы и практическое приложение в исследовании растений . Ижеск-Москва: Институт компьютерных исследований.

Казимирко Ю. В. Разработка флуорометрических методов оценки состояния фотосинтетического аппарата для биоиндикации среды: диссертация ... кандидата биологических наук : 03.00.02, 03.00.16. - Москва, 2006. - 117 с.

Ланкин А.В., Креславский В.Д., Худякова А.Ю., Жармухамедов С.К., Аллахвердиев С.И. (2014) Влияние нафталина на фотохимическую активность фотосистемы 2

Лукаткин А. С., Ревин В. В., Башмаков Д. И., Кренделева Т. Е., Антал Т. К., Рубин А. Б. (2009), Экологическая оценка состояния древесных растений г. Cаранска по флуоресценции хлорофилла

Малиновский В. И. (2004) Физиология растений, Владивосток: ДВГУ

Остерман, Л. (1981). Методы исследования белков и нуклеиновых кислот: электрофорез и ультрацентрифугирование. Москва: Наука.

Полевой В. В. (1989) Физиология растений, Москва: Высшая школа

Холл Д., Рао К. (1983) Фотосинтез, Москва: Мир

Шитов, А. В. Исследование карбоангидразной активности фотосистемы 2 гороха:диссертация ... кандидата биологических наук:03. 01. 04- Пущино, 2013. - 116 с.

Якушкина И. И. (2004). Физиология растений, Москва: Владос

Яныкин, Д. В. Фотопоглощение молекулярного кислорода на донорной стороне фотосистемы 2 в субхлоропластных мембранных препаратах с разрушенным водоокисляющим комплексом: диссертация ... кандидата биологических наук:03. 01. 04- Пущино, 2013. - 133с.

Размещено на Allbest.ru


Подобные документы

  • Определение влияния гипотермии на содержание водорастворимых белков в тканях высших растений, бактерий и водорослей. Применение электрофореза для разделения растительных белков. Влияние развития морозоустойчивости на синтез белков, изменение экспрессии.

    реферат [22,1 K], добавлен 11.08.2009

  • Рецепторные системы растений и животных. Становление и функционирование системы восприятия света фотосистемами. Включение энергии фотона в процессы фотосинтеза. Основные химические формулы хлорофилла. Защитная фотопротекторная функция каротиноидов.

    реферат [26,1 K], добавлен 17.08.2015

  • Клеточные структуры, строение, состав и свойства основных компонентов растительной клетки. Поглощение и выделение веществ и энергии клеткой. Хлоропласты, их строение, химический состав и функции. Строение молекулы хлорофилла, флавоноидные пигменты.

    контрольная работа [1,0 M], добавлен 05.09.2011

  • Обзор особенностей автотрофного питания высших цветковых растений. Описания паразитов, полностью или частично лишенных хлорофилла. Изучение наиболее известных корневых полупаразитов. Анализ влияния цветковых паразитов на качества урожая растений-хозяев.

    реферат [12,7 K], добавлен 19.03.2014

  • Отделы моховидных, плауновидных, хвощевидных, голосеменных и покрытосеменных. Эволюция высших растений, их морфологические и биологические особенности, распространение. Развитие специализированных тканей как важное условие для выхода растений на сушу.

    презентация [2,3 M], добавлен 25.10.2010

  • Значение фотосинтеза и причины его дневных изменений. Факторы, влияющие на образование хлорофилла. Механизм фотосинтеза и световые его реакции. Поглощение двуокиси углерода фотосинтезирующими тканями. Общий фотосинтез и характер его сезонных изменений.

    реферат [866,4 K], добавлен 05.06.2010

  • Световые и темновые реакции. Фотосинтез как один из мощных процессов преобразования солнечной энергии. Локализация фотосинтетического аппарата в клетке зеленого растения. Фотосистема в тилакоидной мембране. Нециклический и циклический поток электронов.

    презентация [3,3 M], добавлен 01.03.2016

  • Причины токсичности тяжелых металлов и поливалентных катионов. Строение высшего растения, особенности корневой системы и надземной части растений. Роль различных тканей растения в транспорте и распределении тяжелых металлов и поливалентных катионов.

    курсовая работа [2,1 M], добавлен 27.05.2012

  • Фотосинтез - основа энергетики биосферы: понятие и роль. Структурная организация фотосинтетического аппарата. Пигменты хлоропластов. Световая и темновая фаза фотосинтеза. Фотодыхание и его значение. Зависимость процесса фотосинтеза от внешней среды.

    реферат [4,2 M], добавлен 07.01.2011

  • Разработка естественной классификации высших растений на основе выделения таксономических единиц. Происхождение и методы систематики растений: сравнительно-морфологический, географический, экологический, анатомический, цитологический и биохимический.

    курс лекций [321,3 K], добавлен 09.04.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.