Генетико-статистический анализ комбинационной способности сортов и форм яровой мягкой пшеницы по коэффициенту хозяйственной эффективности фотосинтеза
Применение генетико-статистических методов на разных этапах селекционного процесса. Расчет комбинационной способности родительских сортов яровой мягкой пшеницы по коэффициенту хозяйственной эффективности фотосинтеза в системе топкроссных скрещиваний.
Рубрика | Биология и естествознание |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 06.06.2011 |
Размер файла | 1,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Далее находим суммы квадратов средних значений признака( ) по всем гибридам. Например, для первого гибрида = 38,0 2 + 38,5 2 + 39,5 2 + 33,9 2 = 5635,71. Далее возводим в квадрат суммы по всем гибридам()2 = 149,9 2 = 22470,01 и т.д.
Среднее значение признака по каждому гибриду находим путём деления суммы средних значений признака по всем четырём повторностям на число повторности. Возведем найденные средние значения в квадрат = 37,47 =1404,00. Такую процедуру расчёта необходимо сделать по каждому гибриду. После нахождения сумм средних значений признака по вариантам (), сумм квадратов средних значений квадратов сумм (()2) и квадратов средних значений () для каждого гибрида, просуммируем полученные значения по столбцам таблицы дисперсионного анализа:
= 149,9 + 146,7 + 135,7 + ... + 149,1 = 2174,1.
= 5635,71 + 5423,17 + 4614,45 + ... + 5608,13 = 75172,89.
= 22470,01 +21520,89+ 18414,49+ ... +22230,81 =296818,43
= 1404,00+ 1344,68 + 1150,56 + ... + 1389,05 = 18552,72. Корректирующий фактор определяем по формуле:
Общее варьирование поделяночных значений признака определяем по формуле:
Варьирование средних значений признака у гибридов будет равно:
Варьирование повторностям равно:
Варьирование случайных факторов равно:
Таблица 4 - Результаты дисперсного анализа коэффициент хозяйственной эффективности фотосинтеза
Источник варьирования |
Сумма квадратов (88) |
Число степеней свободы т |
Средний квадрат (ш8) |
F фактическое |
F табличное |
||
0,05 |
0,01 |
||||||
Общее варьирование (Су) |
1318,04 |
63 |
- |
- |
- |
- |
|
Гибриды (Сv) |
349,74 |
15 |
23,31 |
1,62 |
1,95 |
2,52 |
|
Повторности (Ср) |
322,24 |
3 |
107,41 |
7,48 |
2,82 |
4,26 |
|
Случайные отклонения (Сz) |
646,06 |
45 |
14,35 |
- |
- |
- |
На урожайность большое влияние оказывает условия среды. У гибридов (Сv) Fф < Fт значит существенных различий нет. А у повторности (Ср) Fф > Fт это означает, что есть различия.
Числа степеней свободы для общего варьирования поделяночных значений, а также для варьирования признака по вариантам (гибридам), повторностям и для случайного отклонения равны, соответственно:
df общее варьирование) = 64 - 1 = 63.
df (гибриды) =16-1 = 15.
df (повторности) = 4-1=3.
df (случайные отклонения) = (16-1) -(4-1) = 45.
Фактические критерии Фишера для гибридов и повторностей, соответственно равны:
Табличные (теоретические) критерии Фишера находим по таблице приведённой, например, в учебнике Б.А. Доспехова [7] исходя из числа степеней свободы для соответствующих дисперсий и уровня вероятности Р = 0,95 и Р = 0,99.
Затем рассчитываем пар атипический компонент изменчивости, который используется в дальнейшем при анализе комбинационной способности:
2.3 Расчет комбинационной способности
2.3.1 Дисперсионный анализ комбинационной способности
Для удобства анализа составляем таблицу (Приложение В) в которую заносим средние значения признака по каждому гибриду (). Вначале определим суммы средних значений по каждой родительской форме (хi; хj)
Для этого сложим средние значения признака у гибридов по строкам и столбцам таблицы. Например хi (Лютесценс 78) = 37,47 + 36,67 + 33,92 + 28,35 - 136,41; xj (БСК-21 (Lr9)) =37,47 + 33,00 + 30,52 + 33,60 = 134,59.
Таким же образом сложим средние значения по другим родительским формам. Теперь рассчитаем общую сумму всех средних значений признака у гибридов (X..). Для этого складываем полученные суммы средних значений (хj) по материнским формам (вертикальный ряд цифр): X..- 136,41 + 132,99 + 132,81 + 141,34 = 543,55. То же самое число должно получиться при сложении средних значений (хj) отцовских форм (горизонтальный ряд цифр).
Затем возводим в квадрат вычисленные суммы средних значений признака у родительских форм и складываем их отдельно по материнским и отцовским формам. Например, для материнских форм: 136,41 +132,99 + 132,812 + 141,342 = 73909,5. Таким же образом рассчитываем суммы квадратов средних значений по отцовским формам.
Определяем суммы квадратов отклонений, вызванных ОКС материнских форм
(Р1):
Сумма квадратов отклонений, вызванных ОКС отцовских форм (Р2) равна:
Для определения суммы квадратов отклонений, обусловленных СКС скрещиваемых родительских форм (Ss), не достаточно только рассчитать квадраты сумм средних значений () и суммы этих квадратов отдельно по материнским и отцовским формам(). Из дисперсионного анализа исходных данных необходимо взять величину суммы квадратов средних значений признака по всем 16 гибридам:
.
Затем можно рассчитать сумму квадратов отклонений, обусловленных СКС. Она равна:
Полученные данные заносим в таблицу 6.
Числа степеней свободы определяем следующим образом:
df() = Р1 -1 = 4-1 = 3;
df () = Р2 -1 = 4-1 = 3;
df () = (Р1-1)-(P2-1) = 3-3 = 9;
df () = (а -1) * (b -1) + (b -1) = 45 + 3 = 48.
Критерии Фишера по каждому виду варьирования рассчитываем подобно тому, как это сделано в приложении А, таблице А2.
Таблица 5 - Анализ комбинационной способности яровой пшеницы по коэффициенту хозяйственной эффективности фотосинтеза
Источник варьирования |
SS |
df |
mS |
F фактическое |
F табличное |
||
0,05 |
0,01 |
||||||
11,96 |
3 |
3,98 |
0,79 |
2,80 |
4,22 |
||
3,85 |
3 |
1,28 |
0,25 |
2,80 |
4,22 |
||
71,5 |
9 |
7,94 |
1,58 |
2,08 |
2,8 |
||
- |
48 |
5,04 |
- |
- |
- |
Примечание: ОКСi - варьирование ОКС материнских форм; ОКСj - варьирование ОКС отцовских форм; СКСij - варьирование СКС; - паралитический компонент, взятый из результатов дисперсионного анализа исходных данных. Две звёздочки над значениями средних квадратов означают, что вклад в изменчивость признака достоверен при двух уровнях вероятности Р = 95 и Р = 99 %. По результатам дисперсионного анализа комбинационной способности построим круговую диаграмму (рис. 1), где наглядно изобразим вклад изменчивости ОКС родительских форм, СКС гибридов и случайного варьирования в общую изменчивость коэффициента хозяйственной эффективности фотосинтеза. Для этого выразим средние квадраты по каждому источнику варьирования в процентах.
Таблица 6 - Вклад ОКС и СКС в общую изменчивость коэффициента хозяйственной эффективности фотосинтеза
Источник варьирования |
Средний квадрат (ш8) |
В процентах |
|
ОКСj |
3,75 |
21,82 |
|
ОКСj |
65,21 |
7,01 |
|
CКСij |
1375,7 |
43,53 |
|
E |
5,04 |
27,63 |
Рисунок 1 - Вклад ОКС, СКС и Ё в изменчивость коэффициента хозяйственной эффективности фотосинтеза
2.3.2 Определение эффектов ОКС материнских и отцовских форм
Для нахождения величины ОКС (окс), по какой либо конкретной родительской форме нужно рассчитать среднее арифметическое значение признака у гибридов, полученных при скрещивании с данной формой. Для этого в таблице дисперсионного анализа комбинационной способности (Таблица А2) нужно сложить средние значения признака у гибридов по вертикали и горизонтали таблицы и поделить полученные значения на число материнских или отцовских форм.
Если определяется ОКС материнских форм, то складываем средние значения признака у гибридов по горизонтали таблицы и делим полученные суммы (хi) на число отцовских форм (Р2). Например, величина ОКС для сорта Лютесценс 78 равна:
Для определения величин ОКС отцовских форм суммы средних значений признака у гибридов по вертикали таблицы нужно поделить на число материнских форм (Р1). Например, для аналога БСК-21 (Lr 9) величина ОКС равна:
Таким же образом рассчитываем величины ОКС для других родительских форм. Теперь перейдём к расчёту эффектов ОКС у материнских и отцовских форм (). Для этого необходимо дополнительно определить среднее популяционное значение признака (и), которое получается путём деления рассчитанной ранее общей суммы средних значений признака у всех гибридов на их число:
Эффекты ОКС представляют собой разницу между средней арифметической значений признака у гибридов от скрещивания с какой-либо конкретной родительской формой (величина ОКС или окс) и средней популяционной величиной изучаемого признака у всех гибридов (и). Эффекты ОКС материнских форм равны: =ОКСi-и. Величины эффектов ОКС выражаются в единицах измерения изучаемого признака. Например, для сорта Эритроспермум 59 эффект ОКС будет положительным:
(Лютесценс78)- 34,10-33,97 - 0,13%
Таким же образом находим эффекты ОКС отцовских форм. Например для аналога НС-888 (Lr 19) данный эффект будет отрицательным:
(БСК -21(Lr9)) = 33,64 - 33,97 = -0,33%
Рассчитанные величины ОКС (окс) и её эффекты ( )показаны в
приложении А, таблице А2. Для проверки правильности проведённых расчётов сложим рассчитанные эффекты ОКС отдельно по материнским и отцовским формам. Полученные суммы должны быть равны нулю. Небольшие отклонения от нуля связаны с округлением цифр в процессе расчетов. Для наглядности покажем эффекты ОКС на рисунке в виде столбчатой диаграммы (рис.2)
Лют.78 |
Алт. 92 |
Нива 2 |
Эр.59 |
БСК(Lr9) |
НС(Lr19) |
Терция |
БСК(Од4) |
2.3.3 Определение констант и варианс СКС
Константы СКС (ij) рассчитываем по каждому из 16 изучаемых гибридов исходя из средних значений признаков у данных гибридов (хij), величин ОКС родительских форм, которые участвовали в создании этих гибридов () и средней популяционной величины признака (и). Для этого из средней величины признака гибрида вычитаем величины ОКС обеих родительских форм и прибавляем к полученному значению среднюю популяционную величину признака. При этом необходимо пользоваться таблицей 6.
Константы СКС, так же как и эффекты ОКС имеют те же единицы измерения, что и сам признак. Например, константа СКС для первого гибрида имеет положительную величину и равна:
Для третьего гибрида величина константы СКС отрицательна:
Рассчитали таким же путём значения констант СКС по всем 16 гибридам и занесите их в таблицу 7.
Таблица 7 - Константы () СКС по коэффициенту хозяйственной эффективности фотосинтеза у гибридов пшеницы, %. В процентах
Материнские |
Отцовские формы |
||||
формы |
БСК-21 |
НС-888 |
Терция |
БСК-21 |
|
(Lr 9) |
(Lr 19) |
(Од-4) |
|||
Лютесценс 78 |
3,7 |
1,85 |
-0,35 |
-5,19 |
|
Алтайская 92 |
0,09 |
0,84 |
-0,89 |
-0,01 |
|
Нива 2 |
-2,35 |
-0,9 |
0,55 |
2,71 |
|
Эритроспермум 59 |
-1,4 |
-1,78 |
0,7 |
2,5 |
Наименьшие константы отмечены у сорта Лютесценс 78 и аналога БСК - 21 (Од-4) (- 5,19), а наибольшие у сорта Лютесценс 78 и аналога БСК -21(Lr 9).
Для полной характеристики родительских форм по СКС необходимо также рассчитать вариансы СКС (). Для этого константы СКС () представленные в таблице 7 возведем в квадрат и полученные данные занесем в таблицу 8. Прежде чем рассчитывать вариансы СКС, найдем суммы квадратов констант() путём сложение констант СКС каждой родительской формы по строкам и столбцам. Вариансы СКС для материнских форм определяем по формуле:
,
а для отцовских форм - по формуле:
Например, для сорта Лютесценс 78:
(Лютесценс 78)=
Для аналога БСК-21 (Lr 9):
7,06027,06
Таким же образом рассчитываем вариансы СКС и по другим родительским формам. Полученные значения сумм квадратов констант и варианс CKC заносим в таблицу8.
Таблица 8 - Квадраты констант (Щ) и вариансы СКС
Материнские |
Отцовские формы |
||||||
формы |
БСК-21 |
НС-888 |
Терция |
БСК-21 |
|||
( Lr 9) |
(Lr 19) |
(Од - 4) |
|||||
Лютесценс 78 |
13,69 |
3,4225 |
0,1225 |
26,9361 |
44,1711 |
14,7237 |
|
Алтайская 92 |
0,0081 |
0,70056 |
0,7921 |
0,0001 |
1,5059 |
0,5019 |
|
Нива 2 |
5,5225 |
0,81 |
0,3025 |
7,3441 |
13,9791 |
4,6597 |
|
Эритроспермум |
|||||||
59 |
1,92 |
3,1684 |
0,49 |
6,25 |
11,8684 |
3,9567 |
|
21,1806 |
8,1065 |
1,7071 |
40,5303 |
- |
- |
||
7,0602 |
2,7021 |
0,5690 |
13,5101 |
Для сравнения варианс СКС среди материнских и отцовских форм определим среднюю вариансу СКС отдельно по материнским и отцовским формам В данном случае эти величины будут одинаковы, поскольку Р, = Р2.
Например, для материнских форм:
Для отцовских форм:
Результаты расчёта варианс СКС также как и эффекты ОКС можно изобразить в виде столбчатой диаграммы (рисунок 3).
Лют.78 |
Алт. 92 |
Нива 2 |
Эр.59 |
БСК(Lr9) |
НС(Lr19) |
Терция |
БСК(Од4) |
2.3.4 Определение варианс эффектов, различий между эффектами и стандартных ошибок
Заключительным этапом анализа комбинационной способности является определение варианс эффектов и различий между эффектами, а также стандартных ошибок. Стандартные ошибки используют для сравнения достоверности определения пределов средних значений и различий между теми или иными эффектами. Варианса случайных отклонений для среднего значения изучаемого признака у любого гибрида будет равна:
где E2 - паралитический эффект, определяемый при дисперсионном анализе исходных данных.
В нашем случае 2 = = 5,04
Варианса разности средних значений признака любых двух гибридов составит:
Вариансы эффектов вычисляем по формулам:
1)
2)
3)
4)
Вариансы разности эффектов вычисляем по формулам:
1)
2)
3)
4)
Стандартные ошибки найдём путём извлечения квадратного корня из варианс эффектов и разностей эффектов. Полученные значения варианс эффектов, различий между ними и стандартные ошибки показаны в таблице 9.
Таблица 9 - Вариансы эффектов, различий между эффектами и стандартные ошибки
Вариансы эффектов и |
Значения варианс |
Стандартные ошибки |
|
различии между эффектами |
|||
5,04 |
2,244 |
||
10,08 |
3,174 |
||
0,31 |
0,556 |
||
15,12 |
3,888 |
||
15,12 |
3,888 |
||
2,83 |
1,682 |
||
2,52 |
1,587 |
||
2,52 |
1,587 |
||
2,52 |
1,587 |
||
5,04 |
2,244 |
Анализ полученных результатов
В начале рассмотрим результаты дисперсионного анализа комбинационной способности представленные в таблицах 6 и 7 и проиллюстрированные на рисунке 1.
Как видно из полученных данных наибольший и достоверный вклад в изменчивость ОКС у гибридов внесли материнские формы (21,82%), что свидетельствует о различиях в комбинационной способности данных форм по коэффициенту хозяйственной эффективности фотосинтеза.
Вклад отцовских форм в изменчивость ОКС был значительно меньшим (7,01%). Из этих данных можно сделать вывод о том, что наибольшее значение в формировании коэффициента хозяйственной эффективности фотосинтеза у гибридов имеют аддитивные эффекты генов материнских форм. Также вклад в изменчивость СКС был значительно больше (43,53%). В связи с этим отбор в гибридных популяциях с участием данных родительских форм по коэффициенту хозяйственной эффективности фотосинтеза следует проводить в поздних поколениях гибридов. Для удобства анализа результатов расчётов эффектов ОКС и варианс СКС составляем сводную таблицу 10.
Таблица 10 - Эффекты ОКС и вариансы СКС родительских сортов и форм по коэффициенту хозяйственной эффективности фотосинтеза
Сорт, аналог |
Эффекты ОКС,% |
Вариансы СКС |
|
Материнские формы: |
|||
Лютесценс 78 |
0,13 |
14,723 * |
|
Алтайская 92 |
-0,73 |
0,501 |
|
Нива 2 |
-0,77 |
4,659 |
|
Эритроспермум 59 |
1,36 |
3,956 |
|
Стандартная ошибка; |
1,58 |
5,959 |
|
Отцовские формы: |
|||
БСК-21 (Lr9) |
-0,33 |
7,060 |
|
НС-888 (Lr 19) |
0,72 |
2,702 |
|
Терция |
0,17 |
0,569 13,510 * |
|
БСК-21 (Од-4) |
-0,56 |
||
Стандартная ошибка; |
1,58 |
5,959 |
* Звездочкой отмечены максимальные положительные эффекты ОКС и варианты СКС превышающие среднюю вариансу.
Максимальные вариансы СКС у сортов Лютесценс 78(14,723) и аналога БСК-21 (Од-4) (13,510). С использованием данных форм можно создавать высокогетерозисные гибридные комбинации по коэффициенту хозяйственной эффективности фотосинтеза. Остальные сорта и формы, имеющие низкую изменчивость СКС целесообразно применять в качестве компонентов синтетического гибридного сорта.
Сорта и формы с низким эффектом ОКС в дальнейшем рекомендуют использовать при селекции на повышение коэффициента хозяйственной эффективности фотосинтеза у яровой мягкой пшеницы. В данном случае это такие родительские формы как Алтайская 92, Нива 2 и БСК-21 (Lr9)
Выводы и предложения селекционной практике
1. В результате дисперсионного анализа исходных, данных, полученных в полевом опыте, не установлено существенных различии по выраженности коэффициента хозяйственной эффективности фотосинтеза в гибридных комбинациях от скрещивания сортов и аналогов яровой мягкой пшеницы.
2. Анализ комбинационной способности родительских сортов и форм в топкроссных скрещиваниях позволяет утверждать, что ведущая роль в наследовании коэффициента хозяйственной эффективности фотосинтеза принадлежит неаддитивным эффектам гена.
3. В результате расчёта эффектов ОКС выделены родительские формы, которые способны передавать гибридам при скрещивании высокую выраженность коэффициента хозяйственной эффективности фотосинтеза.
4. Отмечены формы с наиболее высокой изменчивостью СКС, формирующие высокогетерозисные комбинации гибридов.
Предложения селекционной практике могут быть следующие:
1. Отбор по коэффициенту хозяйственной эффективности фотосинтеза в гибридных популяциях созданных с участием данных родительских форм следует проводить в поздних гибридных поколениях (F5-F6).
2. В качестве доноров высокого коэффициента хозяйственной эффективности фотосинтеза в селекционных программах следует вовлекать в скрещивания сорта Эритроспермум 59, НС - 888 (Lr 19).
3. Сорт Лютесценс 78 и аналог БСК-21 (Од - 4) можно также рекомендовать для создания высокогетерозисных комбинаций по изучаемому признаку в селекции на гетерозис у пшеницы.
5. Сорта Алтайская 92, Нива 2, Терция и БСК-21 (Lr9), в данной системе скрещиваний не могут быть использованы для селекции на повышение коэффициента хозяйственной эффективности фотосинтеза у яровой мягкой пшеницы.
Заключение
Генетика изменчивости все еще не в состоянии объяснить и прогнозировать многие реальные ситуации, возникающие в селекционно-генетических опытах с растениями. В результате эффективность селекционных воздействий падает, удлиняется процесс выведения новых сортов. Без уточнения количественных закономерностей генетических процессов в популяциях, наследственной и средовой изменчивости признаков селекция будет оставаться в большей степени искусством и в меньшей - наукой. Используются специально разработанные генетико-математические модели и методы. К ним относятся популяционно-генетический и биометрико-генетический анализ. Эти модели и соответствующие методы используют для углубленного статистического анализа количественных признаков. Необходимо стремиться к компромиссу между сложностью и точностью, подбирать простые модели с высокой чувствительностью и конечно, адекватные, т. е. согласующиеся с результатами, полученными в эксперименте. В любом случае при использовании следует тщательно учитывать биологическую, содержательную, сторону экспериментов, генетических и селекционных задач.
Для сбора, накопления и обработки опытных данных с помощью генетико-математических методов желательно применять современные компьютерные технологии. Без компьютера, базы данных, пакетов прикладных программ сегодня практически невозможно моделирование сложных селекционно-генетических процессов на должном уровне.
Изложенный материал позволяет глубже понять возможности и проблемы современной генетики, осознанно применять основные генетико-математические методы для повышения эффективности селекционно-генетических исследований.
При написании курсовой работы я приобрел навыки по математико-статистическим методам, комбинационной способности, а также применять анализ комбинационной способности сортов яровой мягкой пшеницы в топкроссных скрещиваниях. Делать расчеты комбинационной способности, а также определять эффекты ОКС, константы и вариансы СКС родительских форм. Научился пользоваться учебной литературой, делать ссылки, а также вводить данные в формулу.
Библиографический список
1. Учебник Смирняева, Кимчевского 2007 год.
2. Драгавцев В. А. Генетика признаков продуктивности яровых пшениц в Западной Сибири / Цильке Р.А., Рейтер Б.Г. и др.Новосибирск; Издате - льство «Наука», 1984. -125 с.
3. ГужовЮ.Л. Селекция и семеноводство культурных растений/ Ю.Л. Гужов, А. Фукс, П. Валичек; Под ред. Ю.Л. Гужова. - М.: Агропромиздат, 1991.- 463 с.
4. Гуляев Г.В Селекция и семеноводство полевых культур/ Г.В Гуляев, Ю.Л Гужов, 3-е изд., перераб. и доп. - М.: Агропромиздат, 1987. - 449 с.
5. Трущенко А.Ю. Селекционно-генетическая оценка аналогов сорта Саратовская 29 и создание исходного материала яровой мягкой пшеницы для селекции в условиях южной лесостепи Западной Сибири: автореф. дис. ... канд. с.-х. наук: 06.01.05. / А.Ю. Трущенко. - Омск, 2002. - 16 с.
6. Шаманин В.П. Общая селекция и сортоведение полевых культур : учеб. пособие / В.П. Шаманин, А.Ю. Трущенко. - Омск : Изд-во ФГОУ ВПО ОмГАУ, 2006. - 399 с. (электронный вариант).
7. Доспехов Б.А. Методика полевого опыта (с основами статистической обработки результатов исследований) / Б.А. Доспехов, 5-е изд-е, перераб. и доп. - М.: Агропромиздат, 1985. - 355 с.
8. Селекция яровой пшеницы в Западной Сибири / Под общей ред. С.И. Леонтьева: Учеб. пособие. - Омск: ОмСХИ, 1987. - 105 с.
9. Плотникова Л.Я. Иммунитет растений и селекция на устойчивость к заболеваниям и вредителям / Л.Я. Плотникова - Омск: Изд - во ФГОУ ВПО Ом ГАУ, 2001.-37 с.
10. Селекционно-генетическая оценка сортов и гибридов пшеницы на засухо-устойчивость / Под общей ред. С.И. Леонтьева - Новосибирск, 1983 - 45 с.
Размещено на Allbest.ru
Подобные документы
Фотосинтез и жизнь на Земле. Влияние физических и химических факторов на процесс фотосинтеза. Экспериментальные исследования интенсивности фотосинтеза в облученных семенах озимой и яровой пшеницы по отношению к контролю методом измерения давления.
контрольная работа [1,8 M], добавлен 05.11.2013История открытия фотосинтеза - превращения углекислого газа и воды в углеводы и кислород под действием энергии солнечного света. Описание способности хлорофилла поглощать и трансформировать солнечную энергию. Световая и темновая фазы фотосинтеза.
презентация [533,1 K], добавлен 18.03.2012Сущность процесса фотосинтеза – процесса превращения углекислого газа и воды в углеводы и кислород под действием энергии солнечного света. Зелёный пигмент – хлорофилл, и органы растений его содержащие – хлоропласты. Световая и темновая фазы фотосинтеза.
презентация [298,6 K], добавлен 30.03.2011Изучение фотосинтеза с момента его открытия Д. Пристли. Краткая хронология открытий ХХ в. в области фотосинтеза. Идея Тимирязева о непосредственном участии хлорофилла в акте фотосинтеза, обратимые окислительно-восстановительные превращения пигмента.
реферат [21,3 K], добавлен 08.03.2011Создание устойчивых к болезням сортов пшеницы, обеспечение длительного сохранения их свойств как актуальная задача селекции. Изучение биохимических механизмов, ответственных за устойчивость; генно-молекулярные технологии, ускоряющие процесс селекции.
курсовая работа [50,6 K], добавлен 16.01.2013История открытия фотосинтеза. Образование в листьях растений веществ, выделение кислорода и поглощение углекислого газа на свету и в присутствии воды. Роль хлоропластов в образовании органических веществ. Значение фотосинтеза в природе и жизни человека.
презентация [1,4 M], добавлен 23.10.2010Значение фотосинтеза и причины его дневных изменений. Факторы, влияющие на образование хлорофилла. Механизм фотосинтеза и световые его реакции. Поглощение двуокиси углерода фотосинтезирующими тканями. Общий фотосинтез и характер его сезонных изменений.
реферат [866,4 K], добавлен 05.06.2010Искусственный фотосинтез как новый источник энергии. Искусственный фотосинтез в суперкомпьютере. Улучшение фотосинтеза нанотехнологиями. Обеспечение сверхурожая с помощью ускорения процесса фотосинтеза. Внедрение углеродных нанотрубок в хлоропласты.
презентация [2,5 M], добавлен 11.11.2014Фотосинтез - основа энергетики биосферы: понятие и роль. Структурная организация фотосинтетического аппарата. Пигменты хлоропластов. Световая и темновая фаза фотосинтеза. Фотодыхание и его значение. Зависимость процесса фотосинтеза от внешней среды.
реферат [4,2 M], добавлен 07.01.2011Определение, общее уравнение, основные этапы становления учения о фотосинтезе. Историческое значение работ К.А. Тимирязева. Роль фотосинтеза в процессах энергетического и пластического обмена растительного организма. Космическая роль фотосинтеза.
реферат [10,9 M], добавлен 07.01.2011