Генетико-статистический анализ комбинационной способности сортов и форм яровой мягкой пшеницы по коэффициенту хозяйственной эффективности фотосинтеза

Применение генетико-статистических методов на разных этапах селекционного процесса. Расчет комбинационной способности родительских сортов яровой мягкой пшеницы по коэффициенту хозяйственной эффективности фотосинтеза в системе топкроссных скрещиваний.

Рубрика Биология и естествознание
Вид курсовая работа
Язык русский
Дата добавления 06.06.2011
Размер файла 1,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Далее находим суммы квадратов средних значений признака( ) по всем гибридам. Например, для первого гибрида = 38,0 2 + 38,5 2 + 39,5 2 + 33,9 2 = 5635,71. Далее возводим в квадрат суммы по всем гибридам()2 = 149,9 2 = 22470,01 и т.д.

Среднее значение признака по каждому гибриду находим путём деления суммы средних значений признака по всем четырём повторностям на число повторности. Возведем найденные средние значения в квадрат = 37,47 =1404,00. Такую процедуру расчёта необходимо сделать по каждому гибриду. После нахождения сумм средних значений признака по вариантам (), сумм квадратов средних значений квадратов сумм (()2) и квадратов средних значений () для каждого гибрида, просуммируем полученные значения по столбцам таблицы дисперсионного анализа:

= 149,9 + 146,7 + 135,7 + ... + 149,1 = 2174,1.

= 5635,71 + 5423,17 + 4614,45 + ... + 5608,13 = 75172,89.

= 22470,01 +21520,89+ 18414,49+ ... +22230,81 =296818,43

= 1404,00+ 1344,68 + 1150,56 + ... + 1389,05 = 18552,72. Корректирующий фактор определяем по формуле:

Общее варьирование поделяночных значений признака определяем по формуле:

Варьирование средних значений признака у гибридов будет равно:

Варьирование повторностям равно:

Варьирование случайных факторов равно:

Таблица 4 - Результаты дисперсного анализа коэффициент хозяйственной эффективности фотосинтеза

Источник варьирования

Сумма квадратов (88)

Число степеней свободы

т

Средний квадрат (ш8)

F

фактическое

F табличное

0,05

0,01

Общее варьирование (Су)

1318,04

63

-

-

-

-

Гибриды (Сv)

349,74

15

23,31

1,62

1,95

2,52

Повторности (Ср)

322,24

3

107,41

7,48

2,82

4,26

Случайные отклонения (Сz)

646,06

45

14,35

-

-

-

На урожайность большое влияние оказывает условия среды. У гибридов (Сv) Fф < Fт значит существенных различий нет. А у повторности (Ср) Fф > Fт это означает, что есть различия.

Числа степеней свободы для общего варьирования поделяночных значений, а также для варьирования признака по вариантам (гибридам), повторностям и для случайного отклонения равны, соответственно:

df общее варьирование) = 64 - 1 = 63.

df (гибриды) =16-1 = 15.

df (повторности) = 4-1=3.

df (случайные отклонения) = (16-1) -(4-1) = 45.

Фактические критерии Фишера для гибридов и повторностей, соответственно равны:

Табличные (теоретические) критерии Фишера находим по таблице приведённой, например, в учебнике Б.А. Доспехова [7] исходя из числа степеней свободы для соответствующих дисперсий и уровня вероятности Р = 0,95 и Р = 0,99.

Затем рассчитываем пар атипический компонент изменчивости, который используется в дальнейшем при анализе комбинационной способности:

2.3 Расчет комбинационной способности

2.3.1 Дисперсионный анализ комбинационной способности

Для удобства анализа составляем таблицу (Приложение В) в которую заносим средние значения признака по каждому гибриду (). Вначале определим суммы средних значений по каждой родительской форме (хi; хj)

Для этого сложим средние значения признака у гибридов по строкам и столбцам таблицы. Например хi (Лютесценс 78) = 37,47 + 36,67 + 33,92 + 28,35 - 136,41; xj (БСК-21 (Lr9)) =37,47 + 33,00 + 30,52 + 33,60 = 134,59.

Таким же образом сложим средние значения по другим родительским формам. Теперь рассчитаем общую сумму всех средних значений признака у гибридов (X..). Для этого складываем полученные суммы средних значений (хj) по материнским формам (вертикальный ряд цифр): X..- 136,41 + 132,99 + 132,81 + 141,34 = 543,55. То же самое число должно получиться при сложении средних значений (хj) отцовских форм (горизонтальный ряд цифр).

Затем возводим в квадрат вычисленные суммы средних значений признака у родительских форм и складываем их отдельно по материнским и отцовским формам. Например, для материнских форм: 136,41 +132,99 + 132,812 + 141,342 = 73909,5. Таким же образом рассчитываем суммы квадратов средних значений по отцовским формам.

Определяем суммы квадратов отклонений, вызванных ОКС материнских форм

1):

Сумма квадратов отклонений, вызванных ОКС отцовских форм (Р2) равна:

Для определения суммы квадратов отклонений, обусловленных СКС скрещиваемых родительских форм (Ss), не достаточно только рассчитать квадраты сумм средних значений () и суммы этих квадратов отдельно по материнским и отцовским формам(). Из дисперсионного анализа исходных данных необходимо взять величину суммы квадратов средних значений признака по всем 16 гибридам:

.

Затем можно рассчитать сумму квадратов отклонений, обусловленных СКС. Она равна:

Полученные данные заносим в таблицу 6.

Числа степеней свободы определяем следующим образом:

df() = Р1 -1 = 4-1 = 3;

df () = Р2 -1 = 4-1 = 3;

df () = (Р1-1)-(P2-1) = 3-3 = 9;

df () = (а -1) * (b -1) + (b -1) = 45 + 3 = 48.

Критерии Фишера по каждому виду варьирования рассчитываем подобно тому, как это сделано в приложении А, таблице А2.

Таблица 5 - Анализ комбинационной способности яровой пшеницы по коэффициенту хозяйственной эффективности фотосинтеза

Источник варьирования

SS

df

mS

F

фактическое

F табличное

0,05

0,01

11,96

3

3,98

0,79

2,80

4,22

3,85

3

1,28

0,25

2,80

4,22

71,5

9

7,94

1,58

2,08

2,8

-

48

5,04

-

-

-

Примечание: ОКСi - варьирование ОКС материнских форм; ОКСj - варьирование ОКС отцовских форм; СКСij - варьирование СКС; - паралитический компонент, взятый из результатов дисперсионного анализа исходных данных. Две звёздочки над значениями средних квадратов означают, что вклад в изменчивость признака достоверен при двух уровнях вероятности Р = 95 и Р = 99 %. По результатам дисперсионного анализа комбинационной способности построим круговую диаграмму (рис. 1), где наглядно изобразим вклад изменчивости ОКС родительских форм, СКС гибридов и случайного варьирования в общую изменчивость коэффициента хозяйственной эффективности фотосинтеза. Для этого выразим средние квадраты по каждому источнику варьирования в процентах.

Таблица 6 - Вклад ОКС и СКС в общую изменчивость коэффициента хозяйственной эффективности фотосинтеза

Источник варьирования

Средний квадрат (ш8)

В процентах

ОКСj

3,75

21,82

ОКСj

65,21

7,01

CКСij

1375,7

43,53

E

5,04

27,63

Рисунок 1 - Вклад ОКС, СКС и Ё в изменчивость коэффициента хозяйственной эффективности фотосинтеза

2.3.2 Определение эффектов ОКС материнских и отцовских форм

Для нахождения величины ОКС (окс), по какой либо конкретной родительской форме нужно рассчитать среднее арифметическое значение признака у гибридов, полученных при скрещивании с данной формой. Для этого в таблице дисперсионного анализа комбинационной способности (Таблица А2) нужно сложить средние значения признака у гибридов по вертикали и горизонтали таблицы и поделить полученные значения на число материнских или отцовских форм.

Если определяется ОКС материнских форм, то складываем средние значения признака у гибридов по горизонтали таблицы и делим полученные суммы (хi) на число отцовских форм (Р2). Например, величина ОКС для сорта Лютесценс 78 равна:

Для определения величин ОКС отцовских форм суммы средних значений признака у гибридов по вертикали таблицы нужно поделить на число материнских форм (Р1). Например, для аналога БСК-21 (Lr 9) величина ОКС равна:

Таким же образом рассчитываем величины ОКС для других родительских форм. Теперь перейдём к расчёту эффектов ОКС у материнских и отцовских форм (). Для этого необходимо дополнительно определить среднее популяционное значение признака (и), которое получается путём деления рассчитанной ранее общей суммы средних значений признака у всех гибридов на их число:

Эффекты ОКС представляют собой разницу между средней арифметической значений признака у гибридов от скрещивания с какой-либо конкретной родительской формой (величина ОКС или окс) и средней популяционной величиной изучаемого признака у всех гибридов (и). Эффекты ОКС материнских форм равны: =ОКСi-и. Величины эффектов ОКС выражаются в единицах измерения изучаемого признака. Например, для сорта Эритроспермум 59 эффект ОКС будет положительным:

(Лютесценс78)- 34,10-33,97 - 0,13%

Таким же образом находим эффекты ОКС отцовских форм. Например для аналога НС-888 (Lr 19) данный эффект будет отрицательным:

(БСК -21(Lr9)) = 33,64 - 33,97 = -0,33%

Рассчитанные величины ОКС (окс) и её эффекты ( )показаны в

приложении А, таблице А2. Для проверки правильности проведённых расчётов сложим рассчитанные эффекты ОКС отдельно по материнским и отцовским формам. Полученные суммы должны быть равны нулю. Небольшие отклонения от нуля связаны с округлением цифр в процессе расчетов. Для наглядности покажем эффекты ОКС на рисунке в виде столбчатой диаграммы (рис.2)

Лют.78

Алт. 92

Нива 2

Эр.59

БСК(Lr9)

НС(Lr19)

Терция

БСК(Од4)

2.3.3 Определение констант и варианс СКС

Константы СКС (ij) рассчитываем по каждому из 16 изучаемых гибридов исходя из средних значений признаков у данных гибридовij), величин ОКС родительских форм, которые участвовали в создании этих гибридов () и средней популяционной величины признака (и). Для этого из средней величины признака гибрида вычитаем величины ОКС обеих родительских форм и прибавляем к полученному значению среднюю популяционную величину признака. При этом необходимо пользоваться таблицей 6.

Константы СКС, так же как и эффекты ОКС имеют те же единицы измерения, что и сам признак. Например, константа СКС для первого гибрида имеет положительную величину и равна:

Для третьего гибрида величина константы СКС отрицательна:

Рассчитали таким же путём значения констант СКС по всем 16 гибридам и занесите их в таблицу 7.

Таблица 7 - Константы () СКС по коэффициенту хозяйственной эффективности фотосинтеза у гибридов пшеницы, %. В процентах

Материнские

Отцовские формы

формы

БСК-21

НС-888

Терция

БСК-21

(Lr 9)

(Lr 19)

(Од-4)

Лютесценс 78

3,7

1,85

-0,35

-5,19

Алтайская 92

0,09

0,84

-0,89

-0,01

Нива 2

-2,35

-0,9

0,55

2,71

Эритроспермум 59

-1,4

-1,78

0,7

2,5

Наименьшие константы отмечены у сорта Лютесценс 78 и аналога БСК - 21 (Од-4) (- 5,19), а наибольшие у сорта Лютесценс 78 и аналога БСК -21(Lr 9).

Для полной характеристики родительских форм по СКС необходимо также рассчитать вариансы СКС (). Для этого константы СКС () представленные в таблице 7 возведем в квадрат и полученные данные занесем в таблицу 8. Прежде чем рассчитывать вариансы СКС, найдем суммы квадратов констант() путём сложение констант СКС каждой родительской формы по строкам и столбцам. Вариансы СКС для материнских форм определяем по формуле:

,

а для отцовских форм - по формуле:

Например, для сорта Лютесценс 78:

(Лютесценс 78)=

Для аналога БСК-21 (Lr 9):

7,06027,06

Таким же образом рассчитываем вариансы СКС и по другим родительским формам. Полученные значения сумм квадратов констант и варианс CKC заносим в таблицу8.

Таблица 8 - Квадраты констант (Щ) и вариансы СКС

Материнские

Отцовские формы

формы

БСК-21

НС-888

Терция

БСК-21

( Lr 9)

(Lr 19)

(Од - 4)

Лютесценс 78

13,69

3,4225

0,1225

26,9361

44,1711

14,7237

Алтайская 92

0,0081

0,70056

0,7921

0,0001

1,5059

0,5019

Нива 2

5,5225

0,81

0,3025

7,3441

13,9791

4,6597

Эритроспермум

59

1,92

3,1684

0,49

6,25

11,8684

3,9567

21,1806

8,1065

1,7071

40,5303

-

-

7,0602

2,7021

0,5690

13,5101

Для сравнения варианс СКС среди материнских и отцовских форм определим среднюю вариансу СКС отдельно по материнским и отцовским формам В данном случае эти величины будут одинаковы, поскольку Р, = Р2.

Например, для материнских форм:

Для отцовских форм:

Результаты расчёта варианс СКС также как и эффекты ОКС можно изобразить в виде столбчатой диаграммы (рисунок 3).

Лют.78

Алт. 92

Нива 2

Эр.59

БСК(Lr9)

НС(Lr19)

Терция

БСК(Од4)

2.3.4 Определение варианс эффектов, различий между эффектами и стандартных ошибок

Заключительным этапом анализа комбинационной способности является определение варианс эффектов и различий между эффектами, а также стандартных ошибок. Стандартные ошибки используют для сравнения достоверности определения пределов средних значений и различий между теми или иными эффектами. Варианса случайных отклонений для среднего значения изучаемого признака у любого гибрида будет равна:

где E2 - паралитический эффект, определяемый при дисперсионном анализе исходных данных.

В нашем случае 2 = = 5,04

Варианса разности средних значений признака любых двух гибридов составит:

Вариансы эффектов вычисляем по формулам:

1)

2)

3)

4)

Вариансы разности эффектов вычисляем по формулам:

1)

2)

3)

4)

Стандартные ошибки найдём путём извлечения квадратного корня из варианс эффектов и разностей эффектов. Полученные значения варианс эффектов, различий между ними и стандартные ошибки показаны в таблице 9.

Таблица 9 - Вариансы эффектов, различий между эффектами и стандартные ошибки

Вариансы эффектов и

Значения варианс

Стандартные ошибки

различии между эффектами

5,04

2,244

10,08

3,174

0,31

0,556

15,12

3,888

15,12

3,888

2,83

1,682

2,52

1,587

2,52

1,587

2,52

1,587

5,04

2,244

Анализ полученных результатов

В начале рассмотрим результаты дисперсионного анализа комбинационной способности представленные в таблицах 6 и 7 и проиллюстрированные на рисунке 1.

Как видно из полученных данных наибольший и достоверный вклад в изменчивость ОКС у гибридов внесли материнские формы (21,82%), что свидетельствует о различиях в комбинационной способности данных форм по коэффициенту хозяйственной эффективности фотосинтеза.

Вклад отцовских форм в изменчивость ОКС был значительно меньшим (7,01%). Из этих данных можно сделать вывод о том, что наибольшее значение в формировании коэффициента хозяйственной эффективности фотосинтеза у гибридов имеют аддитивные эффекты генов материнских форм. Также вклад в изменчивость СКС был значительно больше (43,53%). В связи с этим отбор в гибридных популяциях с участием данных родительских форм по коэффициенту хозяйственной эффективности фотосинтеза следует проводить в поздних поколениях гибридов. Для удобства анализа результатов расчётов эффектов ОКС и варианс СКС составляем сводную таблицу 10.

Таблица 10 - Эффекты ОКС и вариансы СКС родительских сортов и форм по коэффициенту хозяйственной эффективности фотосинтеза

Сорт, аналог

Эффекты ОКС,%

Вариансы СКС

Материнские формы:

Лютесценс 78

0,13

14,723 *

Алтайская 92

-0,73

0,501

Нива 2

-0,77

4,659

Эритроспермум 59

1,36

3,956

Стандартная ошибка;

1,58

5,959

Отцовские формы:

БСК-21 (Lr9)

-0,33

7,060

НС-888 (Lr 19)

0,72

2,702

Терция

0,17

0,569

13,510 *

БСК-21 (Од-4)

-0,56

Стандартная ошибка;

1,58

5,959

* Звездочкой отмечены максимальные положительные эффекты ОКС и варианты СКС превышающие среднюю вариансу.

Максимальные вариансы СКС у сортов Лютесценс 78(14,723) и аналога БСК-21 (Од-4) (13,510). С использованием данных форм можно создавать высокогетерозисные гибридные комбинации по коэффициенту хозяйственной эффективности фотосинтеза. Остальные сорта и формы, имеющие низкую изменчивость СКС целесообразно применять в качестве компонентов синтетического гибридного сорта.

Сорта и формы с низким эффектом ОКС в дальнейшем рекомендуют использовать при селекции на повышение коэффициента хозяйственной эффективности фотосинтеза у яровой мягкой пшеницы. В данном случае это такие родительские формы как Алтайская 92, Нива 2 и БСК-21 (Lr9)

Выводы и предложения селекционной практике

1. В результате дисперсионного анализа исходных, данных, полученных в полевом опыте, не установлено существенных различии по выраженности коэффициента хозяйственной эффективности фотосинтеза в гибридных комбинациях от скрещивания сортов и аналогов яровой мягкой пшеницы.

2. Анализ комбинационной способности родительских сортов и форм в топкроссных скрещиваниях позволяет утверждать, что ведущая роль в наследовании коэффициента хозяйственной эффективности фотосинтеза принадлежит неаддитивным эффектам гена.

3. В результате расчёта эффектов ОКС выделены родительские формы, которые способны передавать гибридам при скрещивании высокую выраженность коэффициента хозяйственной эффективности фотосинтеза.

4. Отмечены формы с наиболее высокой изменчивостью СКС, формирующие высокогетерозисные комбинации гибридов.

Предложения селекционной практике могут быть следующие:

1. Отбор по коэффициенту хозяйственной эффективности фотосинтеза в гибридных популяциях созданных с участием данных родительских форм следует проводить в поздних гибридных поколениях (F5-F6).

2. В качестве доноров высокого коэффициента хозяйственной эффективности фотосинтеза в селекционных программах следует вовлекать в скрещивания сорта Эритроспермум 59, НС - 888 (Lr 19).

3. Сорт Лютесценс 78 и аналог БСК-21 (Од - 4) можно также рекомендовать для создания высокогетерозисных комбинаций по изучаемому признаку в селекции на гетерозис у пшеницы.

5. Сорта Алтайская 92, Нива 2, Терция и БСК-21 (Lr9), в данной системе скрещиваний не могут быть использованы для селекции на повышение коэффициента хозяйственной эффективности фотосинтеза у яровой мягкой пшеницы.

Заключение

Генетика изменчивости все еще не в состоянии объяснить и прогнозировать многие реальные ситуации, возникающие в селекционно-генетических опытах с растениями. В результате эффективность селекционных воздействий падает, удлиняется процесс выведения новых сортов. Без уточнения количественных закономерностей генетических процессов в популяциях, наследственной и средовой изменчивости признаков селекция будет оставаться в большей степени искусством и в меньшей - наукой. Используются специально разработанные генетико-математические модели и методы. К ним относятся популяционно-генетический и биометрико-генетический анализ. Эти модели и соответствующие методы используют для углубленного статистического анализа количественных признаков. Необходимо стремиться к компромиссу между сложностью и точностью, подбирать простые модели с высокой чувствительностью и конечно, адекватные, т. е. согласующиеся с результатами, полученными в эксперименте. В любом случае при использовании следует тщательно учитывать биологическую, содержательную, сторону экспериментов, генетических и селекционных задач.

Для сбора, накопления и обработки опытных данных с помощью генетико-математических методов желательно применять современные компьютерные технологии. Без компьютера, базы данных, пакетов прикладных программ сегодня практически невозможно моделирование сложных селекционно-генетических процессов на должном уровне.

Изложенный материал позволяет глубже понять возможности и проблемы современной генетики, осознанно применять основные генетико-математические методы для повышения эффективности селекционно-генетических исследований.

При написании курсовой работы я приобрел навыки по математико-статистическим методам, комбинационной способности, а также применять анализ комбинационной способности сортов яровой мягкой пшеницы в топкроссных скрещиваниях. Делать расчеты комбинационной способности, а также определять эффекты ОКС, константы и вариансы СКС родительских форм. Научился пользоваться учебной литературой, делать ссылки, а также вводить данные в формулу.

Библиографический список

1. Учебник Смирняева, Кимчевского 2007 год.

2. Драгавцев В. А. Генетика признаков продуктивности яровых пшениц в Западной Сибири / Цильке Р.А., Рейтер Б.Г. и др.Новосибирск; Издате - льство «Наука», 1984. -125 с.

3. ГужовЮ.Л. Селекция и семеноводство культурных растений/ Ю.Л. Гужов, А. Фукс, П. Валичек; Под ред. Ю.Л. Гужова. - М.: Агропромиздат, 1991.- 463 с.

4. Гуляев Г.В Селекция и семеноводство полевых культур/ Г.В Гуляев, Ю.Л Гужов, 3-е изд., перераб. и доп. - М.: Агропромиздат, 1987. - 449 с.

5. Трущенко А.Ю. Селекционно-генетическая оценка аналогов сорта Саратовская 29 и создание исходного материала яровой мягкой пшеницы для селекции в условиях южной лесостепи Западной Сибири: автореф. дис. ... канд. с.-х. наук: 06.01.05. / А.Ю. Трущенко. - Омск, 2002. - 16 с.

6. Шаманин В.П. Общая селекция и сортоведение полевых культур : учеб. пособие / В.П. Шаманин, А.Ю. Трущенко. - Омск : Изд-во ФГОУ ВПО ОмГАУ, 2006. - 399 с. (электронный вариант).

7. Доспехов Б.А. Методика полевого опыта (с основами статистической обработки результатов исследований) / Б.А. Доспехов, 5-е изд-е, перераб. и доп. - М.: Агропромиздат, 1985. - 355 с.

8. Селекция яровой пшеницы в Западной Сибири / Под общей ред. С.И. Леонтьева: Учеб. пособие. - Омск: ОмСХИ, 1987. - 105 с.

9. Плотникова Л.Я. Иммунитет растений и селекция на устойчивость к заболеваниям и вредителям / Л.Я. Плотникова - Омск: Изд - во ФГОУ ВПО Ом ГАУ, 2001.-37 с.

10. Селекционно-генетическая оценка сортов и гибридов пшеницы на засухо-устойчивость / Под общей ред. С.И. Леонтьева - Новосибирск, 1983 - 45 с.

Размещено на Allbest.ru


Подобные документы

  • Фотосинтез и жизнь на Земле. Влияние физических и химических факторов на процесс фотосинтеза. Экспериментальные исследования интенсивности фотосинтеза в облученных семенах озимой и яровой пшеницы по отношению к контролю методом измерения давления.

    контрольная работа [1,8 M], добавлен 05.11.2013

  • История открытия фотосинтеза - превращения углекислого газа и воды в углеводы и кислород под действием энергии солнечного света. Описание способности хлорофилла поглощать и трансформировать солнечную энергию. Световая и темновая фазы фотосинтеза.

    презентация [533,1 K], добавлен 18.03.2012

  • Сущность процесса фотосинтеза – процесса превращения углекислого газа и воды в углеводы и кислород под действием энергии солнечного света. Зелёный пигмент – хлорофилл, и органы растений его содержащие – хлоропласты. Световая и темновая фазы фотосинтеза.

    презентация [298,6 K], добавлен 30.03.2011

  • Изучение фотосинтеза с момента его открытия Д. Пристли. Краткая хронология открытий ХХ в. в области фотосинтеза. Идея Тимирязева о непосредственном участии хлорофилла в акте фотосинтеза, обратимые окислительно-восстановительные превращения пигмента.

    реферат [21,3 K], добавлен 08.03.2011

  • Создание устойчивых к болезням сортов пшеницы, обеспечение длительного сохранения их свойств как актуальная задача селекции. Изучение биохимических механизмов, ответственных за устойчивость; генно-молекулярные технологии, ускоряющие процесс селекции.

    курсовая работа [50,6 K], добавлен 16.01.2013

  • История открытия фотосинтеза. Образование в листьях растений веществ, выделение кислорода и поглощение углекислого газа на свету и в присутствии воды. Роль хлоропластов в образовании органических веществ. Значение фотосинтеза в природе и жизни человека.

    презентация [1,4 M], добавлен 23.10.2010

  • Значение фотосинтеза и причины его дневных изменений. Факторы, влияющие на образование хлорофилла. Механизм фотосинтеза и световые его реакции. Поглощение двуокиси углерода фотосинтезирующими тканями. Общий фотосинтез и характер его сезонных изменений.

    реферат [866,4 K], добавлен 05.06.2010

  • Искусственный фотосинтез как новый источник энергии. Искусственный фотосинтез в суперкомпьютере. Улучшение фотосинтеза нанотехнологиями. Обеспечение сверхурожая с помощью ускорения процесса фотосинтеза. Внедрение углеродных нанотрубок в хлоропласты.

    презентация [2,5 M], добавлен 11.11.2014

  • Фотосинтез - основа энергетики биосферы: понятие и роль. Структурная организация фотосинтетического аппарата. Пигменты хлоропластов. Световая и темновая фаза фотосинтеза. Фотодыхание и его значение. Зависимость процесса фотосинтеза от внешней среды.

    реферат [4,2 M], добавлен 07.01.2011

  • Определение, общее уравнение, основные этапы становления учения о фотосинтезе. Историческое значение работ К.А. Тимирязева. Роль фотосинтеза в процессах энергетического и пластического обмена растительного организма. Космическая роль фотосинтеза.

    реферат [10,9 M], добавлен 07.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.