Понятие о морфогенезе. Основные законы биологического развития

Основные законы биологического развития. Морфогенез, формообразование, возникновение новых форм и структур, как в онтогенезе, так и в филогенезе организмов. Клетки и клеточные комплексы. Концепция физиологических градиентов, морфогенетических полей.

Рубрика Биология и естествознание
Вид курсовая работа
Язык русский
Дата добавления 16.09.2015
Размер файла 106,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

ФГБОУ ВПО «Волгоградский государственный технический университет»

Факультет технологии пищевых производств

Кафедра технологии пищевых производств

СЕМЕСТРОВАЯ РАБОТА

на тему:

Понятие о морфогенезе. Основные законы биологического развития»

Волгоград, 2014

Содержание

Введение

1. Морфогенез

1.1 История

1.2 Морфогенез

1.3 Молекулярный уровень

1.4 Клеточный уровень

2. Основные законы биологического развития

2.1 Законы биологического развития

Заключение

Введение

Морфогенез, формообразование, возникновение новых форм и структур, как в онтогенезе, так и в филогенезе организмов. У животных в ходе индивидуального развития возникают субклеточные, клеточные и многоклеточные структуры. В классической эмбриологии под морфогенезом обычно понимают возникновение многоклеточных структур. Они образуются благодаря размножению, изменениям формы и перемещениям клеток развивающегося организма. Морфогенез определён генетически, но осуществляется благодаря эпигенетическим взаимозависимостям клеток и их комплексов.[3] Формообразование путём клеточного размножения характерно для постэмбрионального развития животных, морфогенез посредством изменений формы и движений клеток -- гл. обр. для их эмбриогенеза. В морфогенезе решающее значение имеют контактные, в меньшей степени -- дистантные взаимодействия клеток, обусловливающие морфогенетические корреляции и контролируемые влияния со стороны более широкого клеточного окружения (целого зачатка или зародыша). Это обеспечивает характерное для морфогенеза сочетание точности с высокими способностями к регуляции искусственных, или естественных нарушений. Нерегулируемые искажения морфогенеза приводят к аномалиям развития. В процессе эволюции при наследуемых изменениях генома видоизменяются сложившиеся в организме морфогенетические корреляции. Особи с изменённой структурой подвергаются действию естественного отбора и при благоприятных условиях могут сохраниться, дав начало потомкам с повой структурой.

Тема данной работы актуальна, так как изучение морфогенеза -- одна из основных проблем комплекса морфологических дисциплин, биологии развития и генетики, а так же важно знать все основные законы развития организма.

Исследование морфогенеза имеют целью понять процессы, которые управляют пространственным расположением клеток на протяжении эмбрионального развития организма, которые дают начало характерным формам тканей и органов и анатомии тела.

Каждый живой организм, несмотря на многообразие своих форм, и приспособлений к условиям внешней среды, в своем развитии подчинен строго определенным законам.

1. Морфогенез

1.1 История

Некоторые из самых ранних идей того, как физические процессы и математические ограничения влияют на биологический рост, были высказаны Д'Арси Вентвортом Томпсоном и Аланом Тьюрингом.[5] В 1952 году Тьюринг опубликовал работу под названием «Химические основы морфогенеза», где впервые математически описывается процесс самоорганизации материи. Эти работы постулировали наличие химических сигналов и физико-химических процессов таких как диффузия, активация и деактивация, в процессе роста клеток и организмов. Более полное понимание механизмов морфогенеза пришло с изучением ДНК, молекулярной биологии и биохимии, молекулярных механизмов регуляции работы генов.

1.2 Морфогенез

Морфогенез -- это процесс возникновения новых структур и изменения их формы в ходе индивидуального развития организмов. Морфогенез, как рост и клеточная дифференцировка, относится к ациклическим процессам, т.е. не возвращающимся в прежнее состояние и по большей части необратимым.[1] Главным свойством ациклических процессов является их пространственно-временная организация. Морфогенез на надклеточном уровне начинается с гастру-ляции. У хордовых животных после гаструляции происходит закладка осевых органов. В этот период, как и во время гаструляции, морфологические перестройки охватывают весь зародыш. Следующие затем органогенезы представляют собой местные процессы. Внутри каждого их них происходит расчленение на новые дискретные (отдельные) зачатки. Так последовательно во времени и в пространстве протекает индивидуальное развитие, приводящее к формированию особи со сложным строением и значительно более богатой информацией, нежели генетическая информация зиготы.

Морфогенез связан с очень многими процессами, начиная с прогенеза. Поляризация яйцеклетки, овоплазматическая сегрегация после оплодотворения, закономерно ориентированные деления дробления, движения клеточных масс в ходе гаструляции и закладок различных органов, изменения пропорций тела -- все это процессы, имеющие большое значение для морфогенеза. Помимо надклеточного уровня к морфопроцессам относятся такие процессы, которые протекают на субклеточном и молекулярном уровнях. Это изменения формы и строения отдельных клеток, распад и воссоздание молекул и крупных молекулярных комплексов, изменение конформации молекул.

Таким образом, морфогенез представляет собой многоуровневый динамический процесс. В настоящее время уже многое известно о тех структурных превращениях, которые происходят на внутриклеточном и межклеточном уровнях и которые преобразуют химическую энергию клеток в механическую, т.е. об элементарных движущих силах морфогенеза.

В расшифровке всех этих внутриуровневых и межуровневых процессов большую роль сыграл каузально-аналитический (от лат. causa -- причина) подход. Данный отрезок развития считают объясненным, если его удалось представить в виде однозначной последовательности причин и следствий. В этом аспекте одним из первостепенных является вопрос о том, содержится ли в геноме данного вида или в генотипе зиготы информация о конкретных морфологических процессах. Очевидно, что в геноме данного вида заложена информация о конечном результате, т.е. развитии особи определенного вида. Очевидно также, что в генотипе зиготы содержатся определенные аллели родителей, обладающие возможностью реализоваться в определенные признаки. Но из каких именно клеток, в каком месте и в какой конкретно форме разовьется тот или иной орган, в генотипе не заложен о.

Это утверждение вытекает из всех сведений о явлениях эмбриональной регуляции, которые показывают, что конкретные пути морфогенеза как в эксперименте, так и в нормальном развитии могут варьировать. Гены, лишенные однозначного морфогенетического смысла, приобретают его, однако, в системе целостного развивающегося организма ив контексте определенных, структурно устойчивых схем морфогенеза.

Клетки и клеточные комплексы совершают закономерные спонтанные, не порождаемые внешними силами, макроскопические морфогенетические движения. При изменении положения, уменьшении или увеличении количества бластомеров и при пересадке эмбриональных индукторов в нетипичное место нередко достигается нормальный результат. Это позволяет рассматривать морфогенез как самоорганизующийся процесс образования структур из исходно однородного состояния, что является неотъемлемым свойством самоорганизующихся систем, обладающих свойством целостности.

Одновременно с взаимосвязью всех частей развивающегося эмбриона возникают относительно автономизированные биологические системы, способные продолжать развитие в условиях изоляции от целого организма. Если зачаток бедра куриного зародыша культивировать в искусственной среде, он продолжает развиваться в прежнем направлении. Глаз крысы, изолированный на стадии 14--17 сут, продолжает автоматически развиваться, хотя дефектно и медленнее. Через 21 сут глаз в культуре тканей приобретает ту степень сложности структуры, которую нормально он уже имеет на 8-е сутки после рождения крысы. Для объяснения всех этих явлений каузально-аналитический подход неприменим. На вооружение взята физико-математическая теория самоорганизации неравновесных природных систем, как биологических, так и небиологических.

В настоящее время разрабатывают несколько подходов к проблеме регуляции и контроля морфогенеза.

Концепция физиологических градиентов, предложенная в начале XX в. американским ученым Ч. Чайльдом, заключается в том, что у многих животных обнаруживаются градиенты интенсивности обмена веществ и совпадающие с ними градиенты повреждаемости тканей. Эти градиенты обычно снижаются от переднего полюса животного к заднему. Они определяют пространственное расположение морфогенеза и цитодифференцировки. Возникновение самих градиентов определяется гетерогенностью внешней среды, например питательных веществ, концентрации кислорода или силы тяжести. Любое из условий или их совокупность могут вызвать первичный физиологический градиент в яйцеклетке. Затем возможно возникновение вторичного градиента под некоторым углом к первому. Система из двух градиентов (или более) создает определенную координатную систему. Функцией координаты является судьба клетки.

Ч. Чайльд открыл также, что верхний конец градиента является доминирующим. Выделяя некоторые факторы, он подавлял развитие таких же структур из других клеток зародыша. Наряду с подтверждающими имеются явления, которые не укладываются в упрощенную схему, и поэтому концепцию Чайльда нельзя рассматривать как универсальное объяснение пространственной организации развития.

Более современной является концепция позиционной информации, по которой клетка как бы оценивает свое местоположение в координатной системе зачатка органа, а затем дифференцируется в соответствии с этим положением. По мнению современного английского биолога Л. Вольперта, положение клетки определяется концентрацией некоторых веществ, расположенных вдоль оси зародыша по определенному градиенту. Ответ клетки на свое местоположение зависит от генома и всей предыдущей истории ее развития. По мнению других исследователей, позиционная информация есть функция полярных координат клетки. Существует также мнение о том, что градиенты представляют собой стойкие следы периодических процессов, распространяющихся вдоль развивающегося зачатка. Концепция позиционной информации позволяет формально интерпретировать некоторые закономерности онтогенетического развития, но она очень далека от общей теории целостности.

Концепция морфогенетических полей, базирующаяся на предположении о дистантных либо контактных взаимодействиях между клетками зародыша, рассматривает эмбриональное формообразование как самоорганизующийся и самоконтролируемый процесс. Предыдущая форма зачатка определяет характерные черты его последующей формы. Кроме того, форма и структура зачатка способны оказать обратное действие на биохимические процессы в его клетках. Наиболее последовательно эту концепцию разрабатывал в 20--30-х гг. отечественный биолог А. Г. Гурвич, предложивший впервые в мировой литературе математические модели формообразования. Он, например, моделировал переход эмбрионального головного мозга из стадии одного пузыря в стадию трех пузырей.

Модель исходила из гипотезы об отталкивающих взаимодействиях между противоположными стенками зачатка. На рисунке 1. эти взаимодействия отображены тремя векторами (А, А1, А2). Гурвич впервые указал также на важную роль неравновесных надмолекулярных структур, характер и функционирование которых определяются приложенными к ним векторами поля. В последние годы К. Уоддингтон создал более обобщенную концепцию морфогенетического векторного поля, включающую не только формообразование, но и любые изменения развивающихся систем.

биологический развитие морфогенез клетка

Рисунок 1-Моделирование морфогенеза головного мозга зародыша курицы

Близкие идеи лежат в основе концепции диссипативных структур. Диссипативными (от лат. dissipatio -- рассеяние) называют энергетически открытые, термодинамически неравновесные биологические и небиологические системы, в которых часть энергии, поступающей в них извне, рассеивается. В настоящее время показано, что в сильно неравновесных условиях, т.е. при достаточно сильных потоках вещества и энергии, системы могут самопроизвольно и устойчиво развиваться, дифференцироваться. В таких условиях возможны и обязательны нарушения однозначных причинно-следственных связей и проявления эмбриональной регуляции и других явлений. Примерами диссипативных небиологических систем являются химическая реакция Белоусова -- Жаботинского, а также математическая модель абстрактного физико-химического процесса, предложенная английским математиком А. Тьюрингом.

На пути моделирования морфогенеза как самоорганизующегося процесса сделаны первые шаги, а все перечисленные концепции целостности развития носят пока фрагментарный характер, освещая то одну, то другую сторону.

1.3 Молекулярный уровень

Вещества, оказывающие влияние на морфогенез, называют морфогенами.

Важный класс морфогенов -- факторы транскрипции, определяющие судьбу клетки путём взаимодействия с ДНК. Факторы транскрипции катализируют транскрипцию определенных генов, участвующих в клеточной дифференцировке, а также генов других факторов транскрипции. Таким образом, происходит регуляция экспрессии генов по каскадному принципу.

Другой класс морфогенов -- вещества, контролирующие межклеточные контакты, в том числе агрегацию клеток. Например, во время гаструляции некоторые клетки зародыша утрачивают межклеточные контакты, становятся способными к миграции, занимают новое положение в эмбрионе, где они могут снова образовать межклеточные контакты и сформировать ткани и органы.

1.4 Клеточный уровень

Морфогенез возникает из-за изменений в клеточной структуре или из-за взаимодействий клеток в тканях. По современным представлениям связующим звеном контроля и регуляции между клеткой и целостным организмом является ниша стволовой клетки. Клетки некоторых типов сортируются. Это означает, что клетки собираются в кластеры так, чтобы максимизировать контакт с клетками того же типа (см. агрегация клеток). Два хорошо известных типа таких клеток -- эпителиальные и мезенхимальные. В процессе эмбрионального развития происходят несколько событий клеточной дифференцировки, когда мезенхимальные клетки становятся эпителиальными и наоборот (см. Эпителиально-мезенхимальный переход). При этом клетки могут мигрировать из эпителия и ассоциироваться с другими подобными клетками в новом месте.

2. Основные законы биологического развития.

2.1 Законы биологического развития

Каждый живой организм, несмотря на многообразие своих форм и приспособлений к условиям внешней среды, в своем развитии подчинен строго определенным законам.[2]

1) Закон исторического развития. Все ныне живущие организма, независимо от их уровня организации, прошли длительный путь исторического развития (филогенез). Этот закон, сформулированный Ч.Дарвиным, нашел свое развитие в трудах А.Н.Северцева и И.И.Шмальгаузена.

Жизнь на Земле зародилась около 4-5 млрд лет назад. Вначале на Земле существовали простейшие одноклеточные организмы, потом многоклеточные, появились губки, кишечнополостные, немертины, кольчатые черви, моллюски, членистоногие, иглокожие, хордовые. Именно хордовые животные дали начало позвоночным, к которым относятся круглоротые, рыбы, амфибии, рептилии, млекопитающие и птицы. Таким образом, наши домашние животные в историческом плане прошли очень сложный путь развития и этот путь называется филогенезом.

Итак, филогенез (phylo-род, genesis-развитие) - это историческое развитие определенного вида животного от низших форм к высшим. Советский ученый И.И.Шмальгаузен сформулировал следующие принципы филогенеза:

а) В процессе развития организма постоянно идет дифференциация клеток и тканей с одновременной их интеграцией. Дифференциация - это разделение между клетками функций, одни участвуют в переваривании пищи, другие, как, например, эритроциты в переносе кислорода. Интеграция- это процесс укрепления между клетками, тканями взаимосвязей, которые обеспечивают организму целостность.

б) Каждый орган имеет несколько функций, но одна из них является главной. Остальные функции являются как бы второстепенными, запасными, но благодаря им орган имеет возможность преобразоваться. Так, например, поджелудочная железа имеет несколько функций, но главная это выделение панкреатического сока для переваривания пищи.

в) При изменении условий жизни может произойти смена главной функции на второстепенную и наоборот. Так, например, печень у зародыша вначале выполняет кроветворную функцию, а после рождения является пищеварительной железой.

г) В организме всегда наблюдаются два противоположных процесса: прогрессивное развитие и регрессивное развитие. Регрессивное развитие еще называют редукцией. Органы, которые утрачивают свои функции, как правило, подвергаются редукции, т.е. постепенному исчезновению. Иногда они сохраняются в виде рудимента (при сохранении второстепенной функции)- рудимент ключицы у собак и кошек.

д) Все изменения в организме происходят коррелятивно, т.е. изменения в одних органах непременно ведут к изменениям в других органах.

2) Закон единства организма и среды. Организм без внешней среды, поддерживающей его существование, невозможен. Этот закон, сформулированный И.М.Сеченовым, нашел свое развитие в трудах И.П.Павлова, А.Н..Северцева. Согласно А.Н.Северцеву биологический прогресс у животных в окружающей среде характеризуется увеличением числа особей, расширением ареала обитания и разделением на подчиненные систематические группы. Он достигается 4 путями:

а) путем ароморфоза, т.е. морфофизиологического прогресса, в результате которого усложняется организация животного и происходит общий подъем энергии жизнедеятельности (ракообразные, паукообразные, насекомые, позвоночные);

б) путем идиоадаптации, т.е. частных (полезных) приспособлений, но при этом сама организация животного не усложняется (простейшие, губки, кишечнополостные, иглокожие);

в) путем ценогенеза, т.е. эмбриональных приспособлений, которые развиваются только у зародышей, а у взрослых исчезают (акулы, ящерицы, гаттерии);

г) путем общей дегенерации, т.е. упрощением организации и снижением интенсивности жизнедеятельности, при этом интенсивно развивается половая система и пассивные органы защиты, вследствие чего так же достигается победа в борьбе за существование (паразитические плоские и круглые черви, оболочники, усоногие раки).

3) Закон целостности и неделимости организма. Этот закон выражается в том, что каждый организм является единым целым, в котором все органы и ткани находятся в тесной взаимосвязи. Этот закон, сформулированный еще в 13 веке, нашел свое развитие в трудах И.М.Сеченова, И.П.Павлова.

4) Закон единства формы и функции. Форма и функция органа образуют единое целое. Этот закон, сформулированный А.Дорном, нашел свое развитие в трудах Н.Клейнберга, П.Ф.Лесгафта.

5) Закон наследственности и изменчивости. В ходе возникновения и развития жизни на Земле наследственность играла важную роль, обеспечивая закрепление достигнутых эволюционных преобразований в генотипе. Она неразрывно связана с изменчивостью. Благодаря наследственности и изменчивости стало возможным существование разнообразных групп животных.

6) Закон гомологичных рядов гласит о том, что чем ближе генетические виды, тем больше они имеют сходных морфологических и физиологических признаков. Этот закон, сформулированный И.Гете, Ж.Кювье, Э.Геккелем, нашел свое развитие в трудах Н.И.Вавилова.

7) Закон экономии материала и места. Согласно этому закону каждый орган и каждая система построены так, чтобы при минимальной затрате строительного материала он могли бы выполнять максимальную работу (П.Ф. Легавт). Подтверждение этого закона можно видеть в строении центральной нервной системы, сердца, почек, печени.

8) Основной биогенетический закон (Бэра-Геккеля).

Анатомия изучает организм в течение всей жизни: от момента его возникновения до смерти, и этот путь называется онтогенезом. Итак, онтогенез (onto-особь, genesis-развитие) - это индивидуальное развитие животного. Онтогенез делится на два этапа: пренатальный (который происходит в организме матери от момента оплодотворения и до рождения) и постнатальный (который происходит во внешней среде после рождения и до смерти).

Пренатальный этап включает в себя три периода: зародышевый, предплодный и пдодный. А постнатальный этап шесть: неонатальный период; молочный период; ювенальный период; период полового созревания; период морфофункциональной зрелости и геронтологический период. Каждый из этих этапов характеризуется определенными морфофункциональными особенностями.

Исследуя развитие животных, особенно в пренатальном онтогенезе, К. Бэр и Э.Геккель установили, что «онтогенез вкратце повторяет филогенез». Это положение получило название основного биогенетического закона и говорит о том, животные в процессе индивидуального развития последовательно проходят стадии, которые прошли их предки в ходе исторического развития. Советский ученый А.Н.Северцев дополнил этот закон словами: «…но и онтогенез является базой для филогенеза».

Общие принципы строения тела животного.

Для всех домашних животных характерны общие принципы построения тела, а именно:

Биполярность (одноосность)- это наличие двух полюсов тела: головного (краниального) и хвостового (каудального).

Билатеральность (двустороняяя симметрия) выражается в сходстве по строению правой и левой половин тела, поэтому большинство органов парные (глаза, уши, легкие, почки, грудные и тазовые конечности…).

Сегментарность (метамерия) - близлежащие участки тела (сегменты) близки по строению. У млекопитающих сегментарность четко выражена в осевом отделе скелета (позвоночный столб).

Закон трубкообразного построения. Все системы организма (нервная, пищеварительная, дыхательная, мочевыделительная, половая…) развиваются в виде трубок.

Большинство непарных органов (пищевод, трахея, сердце, печень, желудок…) располагаются вдоль основной оси тела.

Заключение

Морфогенез - процесс сложный, в него вовлечено большое количество субклеточных структур и, возможно, различных генов. На процессы морфогенеза большое влияние оказывают условия внешней среды, во многом определяющие физиологическое состояние клеток. В неблагоприятных для данного вида условиях возможно нарушении процессов морфогенеза и образование клеток, сильно отличающихся по морфологии (форме, орнаментации, симметрии и другим признакам) от тех клеток, которые развивались в благоприятных условиях.

Размещено на Allbest.ur


Подобные документы

  • Главная особенность организации живых материй. Процесс эволюции живых и неживых систем. Законы, лежащие в основе возникновения всех форм жизни по Дарвину. Молекулярно-генетический уровень живых организмов. Прогрессия размножения, естестенный отбор.

    реферат [15,0 K], добавлен 24.04.2015

  • Понятие биологического возраста: критерии, признаки и методы оценки. Особенности биологического возраста в различных эколого-популяционных и этнических группах. Оценка биологического возраста лиц умственного труда на примере студентов и учителей школы.

    дипломная работа [1,4 M], добавлен 27.03.2014

  • Авторегуляция химической активности клетки, раздражимость и движение клетки. Основные законы генетики, природа и материальная основа гена и генотипа. Примеры цитоплазматической наследственности, генетика и эволюционная теория Дарвина, основные факторы.

    реферат [18,0 K], добавлен 13.10.2009

  • Основные компоненты естествознания как системы естественных наук. Александрийский период развития науки. Основные законы механики Ньютона. Этапы создания учения об электромагнетизме. Квантовая механика. Стехиометрические законы. Явление катализа.

    контрольная работа [39,9 K], добавлен 16.01.2009

  • Понятие синергетики и бифуркации, общая характеристика теории катастроф. Актуальность и область применения универсальных законов бедствий. Законы распределения вероятностей и степенные законы. Механизмы возникновения и развития катастрофических событий.

    аттестационная работа [788,8 K], добавлен 13.01.2011

  • Объекты биологического познания и структура биологических наук. Гипотезы возникновения жизни и генетического кода. Концепции начала и эволюции жизни. Системная иерархия организации живых организмов и их сообществ. Экология и взаимоотношения живых существ.

    реферат [52,9 K], добавлен 07.01.2010

  • Явления, относящиеся к наследственности: сходство признаков потомков и родителей, отличия признаков потомков от родительских, возникновение признаков, которые были у далеких предков. Понятие наследственности, ее типы и методы изучения, основные законы.

    курсовая работа [20,1 K], добавлен 27.08.2012

  • Экология биологического круговорота. Энергетическое обеспечение биологического круговорота и трофические цепи. Химический состав живого вещества как следствие избирательного перемещения элементов в биологическом круговороте. Классификации круговоротов.

    реферат [56,0 K], добавлен 07.01.2009

  • Основные компоненты естествознания и их характеристика. Александровский период развития науки. Законы Ньютона. Основные этапы создания учения об электромагнетизме. Гипотезы и постулаты, лежащие в основе квантовой механики. Свойства живого организма.

    контрольная работа [65,6 K], добавлен 30.06.2011

  • Клеточные основы роста растений. Рост тканей в зависимости от её специфичности. Процесс превращения эмбриональной клетки в специализированную (дифференциация). Основные части побега. Особенность роста листа однодольных растений. Морфогенез корня.

    курсовая работа [90,0 K], добавлен 23.04.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.